首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stimulation of cyclic GMP accumulation and particulate guanylate cyclase activity by atrial natriuretic peptide (ANP) was compared to the affinity and number of ANP receptors in eight cultured cell types. At 100 nM, ANP increased cyclic GMP by 13-fold in bovine adrenal cortical, 35-fold in human lung fibroblast, 58-fold in canine kidney epithelial, 60-fold in bovine aortic smooth muscle, 120-fold in rat mammary epithelial, 260-fold in rat Leydig, 300-fold in bovine kidney epithelial, and 475-fold in bovine aortic endothelial cells. ANP (1 microM) increased particulate guanylate cyclase activity by 1.5-, 2.5-, 3.1-, 3.2-, 5.0-, 7.0-, 7.8-, and 8.0-fold in bovine adrenal cortical, bovine aortic smooth muscle, human lung fibroblast, canine kidney epithelial, rat mammary epithelial, rat Leydig, bovine kidney epithelial, and bovine aortic endothelial cells, respectively. Specific 125I-ANP binding to intact rat Leydig (3,000 sites/cell; Kd = 0.11 nM), bovine aortic endothelial (14,000 sites/cell; Kd = 0.09 nM), bovine adrenal cortical (50,000 sites/cell; Kd = 0.12 nM), human lung fibroblast (80,000 sites/cell; Kd = 0.32 nM), and bovine aortic smooth muscle (310,000 sites/cell; Kd = 0.82 nM) cells was saturable and high affinity. No specific and saturable ANP binding was detected in bovine and canine kidney epithelial and rat mammary epithelial cells. Two ANP-binding sites of 66,000 and 130,000 daltons were specifically labeled by 125I-ANP after cross-linking with disuccinimidyl suberate. The 130,000-dalton ANP-binding sites bound to a GTP-agarose affinity column, and the specific activity of guanylate cyclase was increased by 90-fold in this fraction. Our results demonstrate that the increase in cyclic GMP accumulation and particulate guanylate cyclase activity by ANP does not correlate with the affinity and number of ANP-binding sites. These results suggest that multiple populations of ANP receptors exist in these cells and that only one receptor subtype (130,000 daltons) is associated with particulate guanylate cyclase activity.  相似文献   

2.
The interaction between the receptor (Rc) for atrial natriuretic peptide (ANP) and the effector enzyme particulate guanylate cyclase (GC) has been studied by radiation inactivation. Irradiation of bovine lung membranes produced an increase in GC activity at low radiation doses followed by a dose-dependent reduction at higher doses. This deviation from linearity in the inactivation curve disappeared when lung membranes were pretreated with ANP. Essentially identical results were also obtained with adrenal membranes. Based on these radiation inactivation data, the following dissociative mechanism of activation of particulate guanylate cyclase by ANP has been proposed: Rc.GC(inactive) + ANP----Rc.ANP + GC(active).  相似文献   

3.
Coupling of the atrial natriuretic peptide (ANP) receptor to particulate guanylate cyclase has been demonstrated kinetically and chromatographically using bovine lung plasma membranes and their detergent extracts. Addition of ANP to the membrane suspension stimulated guanylate cyclase activity 2-5-fold indicating the presence of ANP-sensitive particulate guanylate cyclase. The enzyme retained the ability to respond to ANP even after solubilization with digitonin. Characterization of the solubilized enzyme by gel filtration and affinity chromatography revealed that the ANP receptor and particulate guanylate cyclase exist as a functionally but not covalently linked stable complex.  相似文献   

4.
Many of the effects of ANP are mediated through the elevation of cellular cGMP levels by the activation of particulate guanylate cyclase. While the stimulation of this enzyme is receptor-mediated, the molecular mechanism of activation remains unknown. In this study we present evidence that ATP as well as its analogues adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S) and adenylylimidophosphate (AMPPNP) activates guanylate cyclase from rat lung membranes and markedly potentiates the effect of ANP on the enzyme. The order of potency is ATP gamma S greater than ATP greater than AMPPNP. The enzyme activation by adenine nucleotide and ANP together is much more than the sum of the individual activations, suggesting that ATP may be the physiological component essential for the ANP-stimulated guanylate cyclase activation. The ATP gamma S-stimulated guanylate cyclase activity diminishes in the presence of various kinds of detergents, suggesting either that the conformation of an ATP binding site in guanylate cyclase is altered by detergents or that protein-protein interaction may be involved in the activation of guanylate cyclase by ATP. Guanylate cyclase from rat lung membranes is poorly activated by ANP and/or ATP gamma S after removing the cytosolic and weakly membrane-associated proteins or factors by centrifugation. Pre-incubation of the membranes with ATP gamma S retains enzyme activation after membrane washing. These results suggest either that ATP gamma S stabilizes the conformation of nucleotide binding site in guanylate cyclase from denaturation by membrane washing, or that the stimulatory effect of ATP on guanylate cyclase activity may be mediated by accessory proteins or non-protein cofactors which are lost during membrane washing, but remain bound to membranes by ATP gamma S pretreatment.  相似文献   

5.
The guanylate cyclase/receptor family of proteins   总被引:5,自引:0,他引:5  
Guanylate cyclase, which catalyzes the formation of cGMP from GTP, exists in both the soluble and particulate fractions of cells. At least two different cellular compartments for the particulate enzyme exist: the plasma membrane and cytoskeleton. The enzyme form found in the soluble fraction is a heterodimer that can be regulated by free radicals and nitrovasodilators, whereas the membrane form exists as a single-chain polypeptide that can be regulated by various peptides. These peptides include resact and speract obtained from eggs and atrial natriuretic peptides (ANP). The species of guanylate cyclase present in cytoskeletal fractions resists solubilization with non-ionic detergents; its structural properties are not yet known. cDNAs encoding the membrane form of guanylate cyclase have been isolated from different tissues and species, and in all cases the DNA sequences predict a protein containing a single transmembrane domain. The carboxyl (intracellular) domain is highly conserved from sea urchins through mammals, whereas the extracellular domain (amino terminus) varies considerably. The predicted amino acid sequences demonstrate that the membrane form of guanylate cyclase is a member of a diverse and complex family of proteins that includes a low molecular weight ANP receptor, protein kinases, and the cytoplasmic form of guanylate cyclase. cDNA encoding a membrane form of the enzyme from mammalian tissues has been expressed in cultured cells, and the expressed guanylate cyclase specifically binds ANP and is activated by ANP. The membrane form of guanylate cyclase, then, serves as a cell surface receptor, representing the first recognized protein to directly catalyze formation of a low molecular weight second messenger in response to ligand binding.  相似文献   

6.
Enzymes in particulate fractions from sea urchin sperm and in soluble fractions from rat lung were shown to catalyze the formation of inosine 3',5'-monophosphate (cyclic IMP) and of 2'-deoxyguanosine 3',5'-monophosphate (cyclic dGMP) from ITP and dGTP, respectively. With sea urchin sperm particulate fractions, Mn2+ was an essential metal cofactor for inosinate, deoxyguanylate, guanylate and adenylate cyclase activities. Heat-inactivation studies differentiated inosinate and deoxyguanylate cyclase activities from adenylate cyclase, but indicated an association of these activities with guanylate cyclase. Preincubation of sea urchin sperm particulate fractions with trypsin altered in a very similar manner guanylate, inosinate, and deoxyguanylate cyclase activities, and various metals and metal-nucleotide combinations protected the three cyclase activities to comparable degrees against trypsin. The relative guanylate, deoxyguanylate and inosinate cyclase activities at 0.1 mM nucleoside triphosphate were 1.0, 0.5 and 0.08, respectively. With these three cyclase activities, plots of reciprocal velocities against reciprocal Mn2+-nucleoside triphosphate concentrations were concave upward, suggesting positive homotropic effects. With rat lung soluble preparations, relative guanylate, deoxyguanylate, inosinate and adenylate cyclase activities at 0.09 mM nucleoside triphosphate were 1.0, 1.7, 0.1 and 0, respectively. MnGTP was a competitive inhibitor of deoxyguanylate cyclase activity (Ki equals 12.2 muM) and MndGTP was a competitive inhibitor of guanylate cyclase activity (Ki equals 16.2 muM). Inhibition studies using ITP were not conducted. When soluble fractions from rat lung were applied to Bio-Gel A 1.5 m columns, elution profiles of guanylate, deoxyguanylate and inosinate cyclase activities were similar. These results suggest that deoxyguanylate, guanylate and inosinate cyclase activities reside within the same protein molecule.  相似文献   

7.
Using an antiserum raised against the purified atrial natriuretic peptide (ANP) receptor that has a disulfide-linked homodimeric structure and represents one subtype of the multiple ANP receptors, we showed that the receptor is coupled to the guanylate cyclase activation; formerly, this type of ANP receptor is not considered to be coupled to the cyclase. The specificity of the antiserum was determined by immunoblot analysis and immunoprecipitation. The anti-receptor antiserum did not compete with 125I-ANP for binding to the receptor but it lowered the affinity of the receptor. When added to bovine endothelial cell cultures, the antiserum blocked the cyclic GMP response of the cells triggered by ANP. These results indicate that the subtype of the ANP receptor recognized by the antiserum is responsible for the activation of particulate guanylate cyclase as well as the double function type receptor that has been assumed to contain both the receptor domain and the catalytic domain for cGMP synthesis on the same molecule. The presence of dissociative complexes of ANP receptor and particulate guanylate cyclase was also demonstrated by radiation inactivation analysis.  相似文献   

8.
Guinea pig caecal circular smooth muscle cells were used to determine whether brain natriuretic peptide (BNP) can inhibit the contractile response produced by cholecystokinin-octapeptide (CCK-8). In addition, we examined the effect of an inhibitor of cAMP-dependent protein kinase, an inhibitor of particulate or soluble guanylate cyclase, an atrial natriuretic peptide (ANP) antagonist (ANP 1-11), and selective receptor protection on the BNP-induced relaxation of these muscle cells. The effect of BNP on cAMP formation was also examined. BNP inhibited the contractile response produced by CCK-8 in a dose-response manner, with an IC50 value of 8.5 nM, and stimulated the production of cAMP. The inhibitor of cAMP-dependent protein kinase and the inhibitor of soluble guanylate cyclase significantly inhibited the relaxation produced by BNP. In contrast, the inhibitor of particulate guanylate cyclase did not have any significant effect on the relaxation produced by BNP. ANP 1-11 significantly but partially inhibited the relaxation produced by BNP. The muscle cells where CCK-8 and ANP binding sites were protected completely preserved the inhibitory response to ANP, but partially preserved the inhibitory response to BNP. The muscle cells where CCK-8 and BNP binding sites were protected completely preserved the inhibitory response to both ANP and BNP. This study demonstrates that BNP induces relaxation of these muscle cells via both ANP binding sites coupled to soluble guanylate cyclase and distinct BNP binding sites coupled to adenylate cyclase.  相似文献   

9.
Guanylate cyclase activities in supernatant and particulate fractions of homogenates from various rat tissues were examined in fed and fasted normal animals and in those with diabetes mellitus induced with streptozotocin. With fasting guanylate cyclase activity in supernatant fractions increased in liver and epididymal fat, decreased in kidney and lung, and was unchanged in cerebral cortex and skeletal muscle. Lung particulate activity also decreased with fasting while particulate activities in other tissues were unchanged. In diabetic animals soluble but not particulate activity was less in several tissues and the effect of fasting on soluble liver guanylate cyclase was absent. The effect of fasting on soluble liver guanylate cyclase reversed with refeeding animals and was associated with a decrease in the apparent Km for GTP as well as an increase in V. An inhibitory material was found in livers from fed but not fasted animals. The inhibitory material had properties of a nucleotide and inhibited guanylate cyclase in a competitive manner. Thus, soluble and particulate guanylate cyclase activities can be influenced independently of one another in the same and different tissues with fasting, refeeding, and diabetes mellitus. Some of these effects may be attributable to altered levels of small heat-stable inhibitory materials such as nucleotides.  相似文献   

10.
An atrial natriuretic factor (ANF) receptor from rat lung was solubilized with Lubrol-PX and purified by sequential chromatographic steps on GTP-agarose, DEAE-Sephacel, phenyl-agarose, and wheat germ agglutinin-agarose. The ANF receptor was enriched 19,000-fold. The purified receptor has a binding profile and properties that correspond to the affinity and specificity found in membranes and crude detergent extracts. Polyacrylamide gel electrophoresis of the purified preparation in the presence of sodium dodecyl sulfate and dithiothreitol showed the presence of one major protein band with a molecular mass of 120,000 daltons. When purified preparations were incubated with 125I-ANF, then cross-linked with disuccinimidyl suberate, the 120,000-dalton protein was specifically radiolabeled. This high affinity binding site for ANF co-purified with particulate guanylate cyclase. Particulate guanylate cyclase was purified to a specific activity of 19 mumol cyclic GMP produced/min/mg of protein utilizing Mn-GTP as substrate. This represented a 15,000-fold purification compared to the initial lung membrane preparation with Lubrol-PX. Gel permeation high performance liquid chromatography and glycerol density gradient sedimentation studies of the purified preparation also resulted in co-migration of specific ANF binding and guanylate cyclase activities. The co-purification of these activities suggests that both ANF binding and guanylate cyclase activities reside in the same macromolecular complex. Presumably ANF binding occurs at the external membrane surface and cyclic GMP synthesis at the internal membrane surface of this transmembrane glycoprotein.  相似文献   

11.
Guanylate cyclase was activated 3- to 10-fold by hemin in a dose-dependent manner in membranes prepared from homogenates of rat lung, C6 rat glioma cells, or B103 rat neuroblastoma cells. Maximum activation was observed with 50 to 100 microM hemin with higher concentrations being inhibitory. Activation was observed when Mg2+-GTP but not when Mn2+-GTP was used as the substrate. Increased enzyme activity reflected selective activation of the particulate form of guanylate cyclase; hemin inhibited the soluble form of guanylate cyclase 70 to 90% over a wide range of concentrations. Activation was not secondary to proteolysis since a variety of protease inhibitors failed to alter stimulation by hemin. Protophorphyrin IX had little effect on particulate guanylate cyclase activity and sodium borohydride almost completely abolished hemin-dependent activation. These data suggest a requirement for the ferric form of the porphyrin-metal chelate for activation. However, agents which interact with the iron nucleus of porphyrins, such as cyanide, had little effect on the ability of hemin to activate guanylate cyclase. The stimulatory effects of hemin were observed in the presence of detergents such as Lubrol-PX, and highly purified particulate enzyme could be activated to the same extent as enzyme in native membranes. These data suggest that the interaction of porphyrins with particulate guanylate cyclase is complex in nature and different from that with the soluble enzyme.  相似文献   

12.
Adenine nucleotides activate basal particulate guanylate cyclase in rat lung membranes. Activation is specific for adenine and not guanine, cytidine or uridine nucleotides. The concentration of adenine nucleotides yielding half-maximum activation of particulate guanylate cyclase is 0.1 mM and this nucleotide activates the enzyme by increasing maximum velocity 11-fold without altering affinity for substrate. Activation is specific for particulate guanylate cyclase, since soluble enzyme is inhibited by adenine nucleotides. Similarly, activation is specific for magnesium as the enzyme substrate cation cofactor, since adenine nucleotides inhibit particulate guanylate cyclase when manganese is used. Adenine nucleotide regulation of particulate guanylate cyclase may occur by a different molecular mechanism compared to other activators, since the effects of these nucleotides are synergistic with those of detergent, hemin and atrial natriuretic peptides. Cystamine inhibits adenine nucleotide activation of particulate guanylate cyclase at concentrations having minimal effects on basal enzyme activity suggesting a role for critical sulfhydryls in mechanisms underlying nucleotide regulation of particulate guanylate cyclase. Purification and quantitative recovery of particulate guanylate cyclase by substrate affinity chromatography results in the loss of adenine nucleotide regulation. These data suggest that adenine nucleotides may be important in the regulation of basal and activated particulate guanylate cyclase and may be mediated by an adenine nucleotide-binding protein which is separate from that enzyme.  相似文献   

13.
Guanylate cyclase was purified 1000-fold from washed rat lung particulate fractions to a final specific activity of 500 nmoles cyclic GMP produced/min/mg protein by a combination of detergent extraction and chromatography on concanavalin A-Sepharose, GTP-agarose, and blue agarose. Particulate guanylate cyclase has a molecular weight of 200 000 daltons, a Stokes radius of 48 A and a sedimentation coefficient of 9.4 while the soluble form has a molecular weight of 150 000 daltons, a Stokes radius of 44 A, and a sedimentation coefficient of 7.0. Whereas the particulate enzyme is a glycoprotein with a specific affinity for concanavalin A and wheat germ agglutinin, the soluble form of guanylate cyclase did not bind to these lectins. Purified particulate guanylate cyclase did not cross-react with a number of monoclonal antibodies generated to the soluble enzyme. While both forms of the enzyme could be regulated by the formation of mixed disulfides, the particulate enzyme was relatively insensitive to inhibition by cystine. With GTP as substrate both forms of the enzyme demonstrated typical kinetics, and with GTP analogues negative cooperativity was observed with both enzyme forms. These data support the suggestion that the two forms of guanylate cyclase possess similar catalytic sites, although their remaining structure is divergent, resulting in differences in subcellular distribution, physical characteristics, and antigenicity.  相似文献   

14.
The effects of alpha-rat atrial natriuretic peptide (alpha-rANP) and sodium nitroprusside on the activity of rat lung particulate guanylate cyclase were examined. The particulate guanylate cyclase in partially purified rat lung membranes was stimulated by both alpha-rANP and nitroprusside. The effects of alpha-rANP and nitroprusside were, however, not additive. Diamide and N-ethylmaleimide almost completely abolished the nitroprusside-mediated stimulation, while they had only moderate effects on the alpha-rANP-mediated stimulation of the enzyme activity. ATP potentiated the enzyme stimulation by alpha-rANP, whereas it had no effect on the nitroprusside-mediated stimulation. These findings suggest that the stimulation of lung particulate guanylate cyclase activity by alpha-rANP and nitroprusside is mediated by different mechanisms.  相似文献   

15.
Summary The cytochemical localization of particulate guanylate cyclase and adenylate cyclase activities in rabbit platelets were studied after stimulation with various agents, at the electron microscope level. In the presence of platelet aggregating agents such as thrombin and ADP, the particulate reaction product of guanylate cyclase activity was detectable on plasma membrane and on membranes of the open canalicular system. In contrast, samples incubated with platelet-activating factor showed no activation of the cyclase activity. Atrial natriuretic factor stimulated the particulate guanylate cyclase. The ultracytochemical localization of this activated cyclase was the same as that of thrombin-or ADP-stimulated guanylate cyclase. Adenylate cyclase activity was studied in platelets incubated with prostaglandin E1 plus or minus insulin. The enzyme reaction product was found at the same sites where guanylate cyclase was detected. Therefore guanylate and adenylate cyclase activities do not seem to be preferentially localised in platelet membranes.  相似文献   

16.
We used cultured rat lung fibroblasts to evaluate the role of particulate and soluble guanylate cyclase in the atrial natriuretic factor (ANF)-induced stimulation of cyclic GMP. ANF receptors were identified by binding of 125I-ANF to confluent cells at 37 degrees C. Specific ANF binding was rapid and saturable with increasing concentrations of ANF. The equilibrium dissociation constant (KD) was 0.66 +/- 0.077 nM and the Bmax. was 216 +/- 33 fmol bound/10(6) cells, which corresponds to 130,000 +/- 20,000 sites/cell. The molecular characteristics of ANF binding sites were examined by affinity cross-linking of 125I-ANF to intact cells with disuccinimidyl suberate. ANF specifically labelled two sites with molecular sizes of 66 and 130 kDa, which we have identified in other cultured cells. ANF and sodium nitroprusside produced a time- and concentration-dependent increase in intracellular cyclic GMP. An increase in cyclic GMP by ANF was detected at 1 nM, and at 100 nM an approx. 100-fold increase in cyclic GMP was observed. Nitroprusside stimulated cyclic GMP at 10 nM and at 1 mM a 500-600-fold increase in cyclic GMP occurred. The simultaneous addition of 100 nM-ANF and 10 microM-nitroprusside to cells resulted in cyclic GMP levels that were additive. ANF increased the activity of particulate guanylate cyclase by about 10-fold, but had no effect on soluble guanylate cyclase. In contrast, nitroprusside did not alter the activity of particulate guanylate cyclase, but increased the activity of soluble guanylate cyclase by 17-fold. These results demonstrate that rat lung fibroblasts contain ANF receptors and suggest that the ANF-induced stimulation of cyclic GMP is mediated entirely by particulate guanylate cyclase.  相似文献   

17.
Complementary DNA clones corresponding to the 70- and 82-kDa subunits of soluble guanylate cyclase of rat lung have been isolated. Blot hybridization of total poly(A)+ RNA from rat tissues detected mRNA of about 3.4 kilobases for the 70-kDa subunit and about 5.5 kilobases for the 82-kDa subunit. Messenger RNA levels of both subunits were abundant in lung and cerebrum, moderate in cerebellum, heart, and kidney, and low in liver and muscle, consistent with previously described enzyme activities in these tissues. Southern blot analysis of high molecular weight genomic DNA from rat liver indicated that the genes for the 70- and 82-kDa subunits are different. The carboxyl-terminal region of the 70- and 82-kDa subunits showed a high degree of homology and also had a partial homology with the putative catalytic domain of particulate guanylate cyclase and adenylate cyclase, indicating that both the 70- and 82-kDa subunits have catalytic domains. The cDNAs were subcloned to an expression vector and transfected to L cells. The cells transfected with cDNA of the 70-kDa subunit or the 82-kDa subunit showed no guanylate cyclase activity, whereas the cells transfected with both the 70- and 82-kDa subunit cDNAs showed significant guanylate cyclase activity that was activated markedly by sodium nitroprusside. These data suggest that both subunits are required for both the basal catalytic and regulatory activity of soluble guanylate cyclase. Presumably both catalytic subunits must be present and interactive to permit synthesis of cyclic GMP and nitrovasodilator activation.  相似文献   

18.
Naturally occurring cholesterol-sequestering agents, digitonin, cereolysin and streptolysin O, activated rat lung particulate guanylate cyclase. Particulate enzyme treated with digitonin and cereolysin was further activated by sodium nitroprusside. Digitonin and cereolysin lowered sodium nitroprusside activation of the rat lung soluable guanylate cyclase. Activation of the particulate guanylate cyclase by digitonin and cereolysin was not due to the solubilization of the enzyme.  相似文献   

19.
R K Sharma  R B Marala  T M Duda 《Steroids》1989,53(3-5):437-460
The original concept that cyclic GMP is one of the mediators of the hormone-dependent process of steroidogenesis has been strengthened by the characterization of a 180-kDa protein from rat adrenocortical carcinoma and rat and mouse testes. This protein appears to have an unusual characteristic of containing both the atrial natriuretic factor (ANF)-binding and guanylate cyclase activities, and appears to be intimately involved in the ANF-dependent steroidogenic signal transduction. In rat adrenal glands we now demonstrate: 1) the direct presence of a 180-kDa ANF-binding protein in GTP-affinity purified membrane fraction as evidenced by affinity cross-linking technique and by the Western blot analysis of the partially purified enzyme; 2) that the enzyme is biochemically and immunologically different from the soluble guanylate cyclase as there is no antigenic cross-reactivity of 180-kDa guanylate cyclase antibody with soluble guanylate cyclase; 3) in contrast to the soluble guanylate cyclase, the particulate enzyme is not stimulated by nitrite-generating compounds and hemin; and 4) protein kinase C inhibits both the basal and ANF-dependent guanylate cyclase activity and phosphorylates the 180-kDa guanylate cyclase. These results reveal the presence of a 180-kDa protein in rat adrenal glands and support the contention that: (a) this protein contains both the guanylate cyclase and ANF receptor; (b) the 180-kDa enzyme is coupled with the ANF-dependent cyclic GMP production; (c) the 180-kDa enzyme is biochemically distinct from the nonspecific soluble guanylate cyclase; and (d) there is a protein kinase C-dependent negative regulatory loop for the operation of ANF-dependent cyclic GMP signal pathway which acts via the phosphorylation of 180-kDa guanylate cyclase.  相似文献   

20.
After the repeated injection of sea urchin sperm guanylate cyclase into rabbits, antibodies to the enzyme were formed. These antibodies inhibited the particulate or the Triton-dispersed forms of the sperm enzyme by greater than 97%. The sperm adenylate cyclase, cyclic GMP phosphodiesterase, adenosine triphosphatase, guanosine triphosphatase, and 5'-nucleotidase enzymes were not affected by the antiserum. The antiserum inhibited the Triton-dispersed guanylate cyclase from rat heart, liver, lung, spleen, and kidney but did not inhibit the soluble form of the enzyme from any of these tissues. The inhibition of the Triton-dispersed enzyme in these tissues was partial, however, ranging from 30% (liver) to 70% (heart). These results provide evidence that adenylate cyclase is antigenically different from guanylate cyclase, and that the soluble form of guanylate cyclase is antigenically different from a particulate form of the enzyme in various rat tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号