首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The beta-amylase from Clostridium thermosulfurogenes was readily adsorbed onto raw starch. The adsorbed beta-amylase was eluted from raw starch by using boiled soluble starch solution as an elutant. The soluble starch treated beta-amylase could not adsorb onto raw starch which indicates that the soluble and insoluble substrate binding sites of the beta-amylase may be the same. The beta-amylase was purified to homogeneity by raw starch adsorption-desorption techniques and octyl-Sepharose chromatography. It had a specific activity of 4188 units/mg protein. The insoluble substrate adsorption-desorption technique may be used for the purification of other enzymes.  相似文献   

2.
Soybean beta-amylase (EC 3.2.1.2) wap immobilized on phenylboronate-agarose by strong interactive binding. The insoluble derivative was active and more stable to temperature changes than the free enzyme. The absence of enzyme leakage even in the presence of substrate was demonstrated. Changes in pH over a wide range (4.0-8.0) did not affect the stability of the complex. The support could be recovered by sorbitol elution, which demonstrated the reversibility of the binding. Since the enzyme was not retained on phenylagarose under similar conditions, we rejected hydrophobic interactions as a cause of the strong binding of the enzyme to phenylboronate-agarose. We suggest that the bonding of the enzyme to the phenylboronate ligand occurs by a charge transfer mechanism between the trigonal boronate and the side chain nitrogenated groups. It was concluded that phenylboronate-agarose has good properties as a support, which recommends its use for the preparation of immobilized enzymes.  相似文献   

3.
Studies on the thermal inactivation of immobilized enzymes   总被引:1,自引:0,他引:1  
The thermal inactivation of a great number of immobilized enzymes shows a biphasic kinetics, which distinctly differs from the first-order inactivation kinetics of the corresponding soluble enzymes. As shown for alpha-amylase, chymotrypsin, and trypsin covalently bound to silica, polystyrene, or polyacrylamide, the dependence of the remaining activities on the heating time can be well described by the sum of two exponential terms. To interpret this mathematical model function, the catalytic properties of immobilized enzymes (number of active sites in silica-bound trypsin, K(M) and E(a) values in silica-bound alpha-amylase and chymotrypsin) at different stages of inactivation and the influence of various factors (coupling conditions, addition of denaturants or stabilizers, etc.) on the thermal inactivation of silica-bound alpha-amylase were studied. Furthermore, conformational alterations in the thermal denaturation of spin-labeled soluble and silica-bound beta-amylase were compared by electron spin resonance (ESR) studies. The results suggest that the biphasic inactivation kinetics reflects two different pathways according to which catalytically identical enzyme molecules are predominantly inactivated.  相似文献   

4.
The crystal structures of beta-amylase from Bacillus cereus var. mycoides in complexes with five inhibitors were solved. The inhibitors used were three substrate analogs, i.e. glucose, maltose (product), and a synthesized compound, O-alpha-D-glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->4)-D-xylopyranose (GGX), and two affinity-labeling reagents with an epoxy alkyl group at the reducing end of glucose. For all inhibitors, one molecule was bound at the active site cleft and the non-reducing end glucose of the four inhibitors except GGX was located at subsite 1, accompanied by a large conformational change of the flexible loop (residues 93-97), which covered the bound inhibitor. In addition, another molecule of maltose or GGX was bound about 30 A away from the active site. A large movement of residues 330 and 331 around subsite 3 was also observed upon the binding of GGX at subsites 3 to 5. Two affinity-labeling reagents, alpha-EPG and alpha-EBG, were covalently bound to a catalytic residue (Glu-172). A substrate recognition mechanism for the beta-amylase was discussed based on the modes of binding of these inhibitors in the active site cleft.  相似文献   

5.
6.
Lauer SA  Nolan JP 《Cytometry》2002,48(3):136-145
BACKGROUND: For ease of purification, proteins are often expressed with a short affinity sequence of five or six adjacent histidine residues (His-tag). This His-tag binds to the metal of metal chelator complexes such as Ni(2+)-nitrilotriacetic acid (Ni-NTA) or -iminodiacetic acid (Ni-IDA). Chromatography resins bearing covalently attached metal chelator complexes are used widely for the easy affinity purification of His-tagged proteins or peptides. Because Ni-NTA microspheres were not commercially available at the beginning of our studies, we prepared and characterized such microspheres to immobilize His-tagged proteins and study their interactions. Our microspheres are of three types: (a) metal chelator complexes bound covalently to polystyrene microspheres, (b) metal chelator complexes bound covalently to silica microspheres, and (c) lipid-linked metal chelator complexes adsorbed to silica microspheres forming self-assembled bilayer membranes where the metal chelators have lateral mobility. METHODS: The microspheres bearing covalently attached Ni-chelator were synthesized by reacting a primary amine-bearing Ni-NTA ligand with carboxy-functionalized microspheres and then loading with Ni(2+). Microspheres with laterally mobile metal chelator were made by incubating glass microspheres with liposomes containing phosphatidylcholine (PC) and the metal chelating lipid 1,2-dioleoyl-sn-glycero-3-[(N (5-amino-1-carboxypentyl)iminodiacetic acid)succinyl]. Binding of a His-tagged enhanced green fluorescent protein (EGFP) was used to characterize these microspheres by flow cytometry for their specificity, sensitivity, capacity and stability. RESULTS: While all micospheres specifically bind His-tagged proteins, the conditions to achieve this are different for the polystyrene- and silica-based spheres. All three types of microspheres bind His-EGFP with saturation occurring at 30-50 nM and an apparent avidity (concentration of half-maximal binding) of approximately 1 to 2 x 10(-8) M at pH 7.4. Binding of His-EGFP is inhibited by imidazole or ethylene-diaminetetraacetic acid (EDTA). Polystyrene Ni-NTA microspheres showed significant nonspecific binding as measured by binding in the presence of imidazole or EDTA or by binding of fluorescent proteins lacking a His-tag. This nonspecific binding of proteins to and aggregation of polystyrene spheres could only be prevented by the inclusion of low concentrations of Tween 20, but not by including bovine serum albumin (BSA), polyethylene glycols, or polyvinylpyrrolidones as blocking agents. In contrast, silica-based microspheres with covalently attached Ni-NTA or silica microspheres bearing adsorbed bilayers that contain Ni-NTA-lipid showed little nonspecific binding in the presence of BSA. Our results on the stability of immobilization indicate that washing destabilizes the binding of His-tagged proteins to Ni-NTA microspheres. This binding consists of two interactions of different affinities. We also demonstrate that limited multiplexed analysis with differently sized silica microspheres bearing the Ni-NTA-lipid is feasible. CONCLUSIONS: The microspheres described are well suited to selectively immobilize His-tagged proteins to analyze their interactions by flow cytometry. The affinity and kinetic stability of the interaction of His-tagged proteins with Ni-NTA are insufficient to use Ni-NTA microspheres in multiplexed analysis formats where different His-tagged proteins are bound to distinct microspheres. Improvements towards this end (improved chelators and/or improved affinity tags) are critical for extending the use of this method. We are currently working on novel chelators to strengthen the stability of immobilization of His-tagged proteins to surfaces. Such improvements would greatly enhance the analysis of interactions of immobilized His-tagged proteins and could make the development of microsphere-based arrays with His-tagged protein/antibody possible.  相似文献   

7.
1. The enzymic product formation curves for several enzymes have been studied. 2. The product formation kinetics was related to the initial velocity kinetics and to the diffusion rate limited kinetics. 3. The time curves revealed new constants characterizing structural and binding properties of the enzymic systems which are not revealed from initial velocities. 4. The influence of selected inhibitors on the time curves has been studied. 5. The time curves revealed the specific substrate-receptor binding which was not revealed from initial velocities. 6. The product formation kinetics of acid phosphatase, beta-amylase and NADPH2 cytochrome-c reductase in the absence and in the presence of inhibitors, mercuric acetate and o-iodosobenzoate is described. 7. The time curves revealed the binding of cytochrome-c to the specific natural protein receptors. 8. The activation energies of acid phosphatase and beta-amylase were determined from the time curves.  相似文献   

8.
A high-performance affinity chromatography support based on silica has been developed for the immobilization of proteins containing primary amino groups. A hydrophilic polymer covalently bound to the silica surface minimizes nonspecific protein binding to the support while preserving high binding capacity. The Schiff base reaction involved in the coupling of a ligand to the affinity medium is rapid, allows the use of mild conditions during the coupling process, and results in a very stable linkage. Reaction parameters were studied for protein coupling to the affinity support to determine optimum binding conditions and dynamic capacity as a function of protein size. The stability of the ligand-matrix bond was determined. The performance and reproducibility of the affinity support are demonstrated by its use in the analysis of nitrophenyl sugar derivatives, purification of glycoproteins, and isolation of anti-bovine immunoglobulin G developed in rabbit.  相似文献   

9.
Extracts of Bradyrhizobium japonicum were fractionated on Sepharose columns covalently derivatized with lactose. Elution of the material that was specifically bound to the affinity column with lactose yielded a protein of Mr approximately 38,000. Isoelectric focusing of this sample yielded two spots with pI values of 6.4 and 6.8. This protein specifically bound to galactose-containing glycoconjugates, but did not bind either to glucose or mannose. Derivatives of galactose at the C-2 position showed much weaker binding; there was an 18-fold difference in the relative binding affinities of galactose versus N-acetyl-D-galactosamine. These results indicate that we have purified a newly identified carbohydrate-binding protein from Bradyrhizobium japonicum, that can exquisitely distinguish galactose from its derivatives at the C-2 position.  相似文献   

10.
The kinetics of the hydrolysis of starch with beta-amylase and debranching enzymes was studied. The hydrolysis of the alpha-1, 6-glycoside bonds of the substrate by debranching enzymes does not create any new nonreducing ends, so debranching enzyme promotes the action of beta-amylase not by increasing the concentration of the substrate of beta-amylase but by increasing the linear linkage portion of the substrate. The introduction of an effective chain length function was used to formulate a kinetic model.  相似文献   

11.
The interaction of rabbit skeletal muscle phosphorylase kinase with CNBr-activated glycogen results in the formation of a covalent complex. The non-bound kinase was removed by chromatography on DEAE-cellulose and phenyl-Sepharose. The amount of the bound protein increased with an increase in the number of activated groups in the glycogen molecule; the enzyme activity was thereby decreased. The kinase covalently and non-covalently bound to glycogen exhibited a higher affinity for the protein substrate (phosphorylase b) as well as for Mg2+ and Ca2+ than did the kinase in the absence of glycogen. Electrophoresis performed under denaturating conditions showed that the gamma-subunit of phosphorylase kinase is responsible for the enzyme binding to CNBr-glycogen. The effect of cross-linking reagents (glutaric aldehyde, 1.5-difluoro-2.4-dinitrobenzene) on the binding of phosphorylase kinase subunits was studied. Glycogen afforded protection of the gamma-subunit from the cross-linking to other enzyme subunits. An analysis of the subunit composition of phosphorylase kinase covalently bound to CNBr-glycogen and of the enzyme treated with cross-linking reagents in the presence of glycogen-revealed that the gamma-subunit is involved in the specific binding of phosphorylase kinase to glycogen.  相似文献   

12.
R Bisson  B Jacobs  R A Capaldi 《Biochemistry》1980,19(18):4173-4178
Two arylazidocytochrome c derivatives, one modified at lysine-13 and the second modified at lysine-22, were reacted with beef heart cytochrome c oxidase. The lysine-13 modified arylazidocytochrome c was found to cross-link both to the enzyme and with lipid bound to the cytochrome c oxidase complex. The lysine-22 derivative reacted only with lipids. Cross-linking to protein was through subunit II of the cytochrome c oxidase complex, as first reported by Bisson et al. [Bisson, R., Azzi, A., Gutweniger, H., Colonna, R., Monteccuco, C., & Zanotti, A. (1978) J. Biol. Chem. 253, 1874]. Binding studies show that the cytochrome c derivative covalently bound to subunit II was in the high-affinity binding site for the substrate. Evidence is also presented to suggest that cytochrome c bound to the lipid was in the low-affinity binding site [as defined by Ferguson-Miller et al. [Ferguson-Miller, S., Brautigan, D. L., & Margoliash, E. (1976) J. Biol. Chem. 251, 1104]]. Covalent binding of the cytochrome c derivative into the high-affinity binding site was found to inhibit electron transfer even when native cytochrome c was added as a substrate. Inhibition was almost complete when 1 mol of the Lys-13 modified arylazidocytochrome c was covalently bound to the enzyme per cytochrome c oxidase dimer (i.e., congruent to 280 000 daltons). Covalent binding of either derivative with lipid (low-affinity site) had very little effect on the overall electron transfer activity of cytochrome c oxidase. These results are discussed in terms of current theories of cytochrome c-cytochrome c oxidase interactions.  相似文献   

13.
A new method was developed to monitor specific protein binding reactions with an ATP-labeled ligand and firefly luciferase. The ligand, 2,4-dinitrobenzene, was covalently coupled to four ATP derivatives and three of these conjugates were measured quantitatively at nanomolar levels with firefly luciferase. Incubation of the conjugates with antibody to the 2,4-dinitrophenyl residue diminished the peak light intensities produced in the bioluminescent assay, whereas incubation with immunoglobulin from a nonimmunized rabbit did not affect light production. Therefore, the antibody-bound ligand-ATP conjugates were inactive in the bioluminescent assay and levels of unbound conjugate could be measured in the presence of the bound form. The firefly luciferase was used to monitor competitive binding reactions between the antibody, the conjugates, and N(2,4-dinitrophenyl)-β-alanine.  相似文献   

14.
The prosthetic heme group in the CYP4A family of cytochrome P450 enzymes is covalently attached to an I-helix glutamic acid residue. This glutamic acid is conserved in the CYP4 family but is absent in other P450 families. As shown here, the glutamic acid is linked, presumably via an ester bond, to a hydroxyl group on the heme 5-methyl group. Mutation of the glutamic acid to an alanine in CYP4A1, CYP4A3, and CYP4A11 suppresses covalent heme binding. In wild-type CYP4A3 68% of the heme is covalently bound to the heterologously expressed protein, but in the CYP4A3/E318D mutant, 47% of the heme is unchanged, 47% is present as noncovalently bound 5-hydroxymethylheme, and only 6% is covalently bound to the protein. In the CYP4A3/E318Q mutant, the majority of the heme is unaltered, and <2% is covalently linked. The proportion of covalently bound heme in the recombinant CYP4A proteins increases with time under turnover conditions. The catalytic activity is sensitive in some, but not all, CYP4A enzymes to the extent of covalent heme binding. Mutations of Glu(318) in CYP4A3 decrease the apparent k(cat) values for lauric acid hydroxylation. The key conclusions are that (a) covalent heme binding occurs via an ester bond to the heme 5-methyl group, (b) covalent binding of the heme is mediated by an autocatalytic process, and (c) fatty acid oxidation is sensitive in some CYP4A enzymes to the presence or absence of the heme covalent link.  相似文献   

15.
Ma YF  Eglinton JK  Evans DE  Logue SJ  Langridge P 《Biochemistry》2000,39(44):13350-13355
Barley beta-amylase undergoes proteolytic cleavage in the C-terminal region after germination. The implication of the cleavage in the enzyme's characteristics is unclear. With purified native beta-amylases from both mature barley grain and germinated barley, we found that the beta-amylase from germinated barley had significantly higher thermostability and substrate binding affinity for starch than that from mature barley grain. To better understand the effect of the proteolytic cleavage on the enzyme's thermostability and substrate binding affinity for starch, recombinant barley beta-amylases with specific deletions at the C-terminal tail were generated. The complete deletion of the four C-terminal glycine-rich repeats significantly increased the enzyme's thermostability, but an incomplete deletion with one repeat remaining did not change the thermostability. Although different C-terminal deletions affect the thermostability differently, they all increased the enzyme's affinity for starch. The possible reasons for the increased thermostability and substrate binding affinity, due to the removal of the four C-terminal glycine-rich repeats, are discussed in terms of the three-dimensional structure of beta-amylase.  相似文献   

16.
Purified outer membrane proteins O-8 and O-9 were able to bind to the peptidoglycan sacculi in sodium dodecyl sulfate solution. Binding was stimulated by lipopolysaccharide, that of protein O-9 being stimulated more remarkably. Proteins which had been heated in sodium dodecyl sulfate solution did not bind to the peptidoglycan sacculi even in the presence of lipopolysaccharide, while heated lipopolysaccharide stimulated the binding of non-heated proteins. The removal by pronase of the lipoprotein covalently bound to the peptidoglycan sacculi did not change the protein binding ability of the sacculi.  相似文献   

17.
3-Deoxy-3-azido-25-hydroxyvitamin D3 was covalently incorporated in the 25-hydroxyvitamin D3 binding site of purified human plasma vitamin D binding protein. Competition experiments showed that 3-deoxy-3-azido-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 bind at the same site on the protein. Tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was synthesized from tritiated 25-hydroxyvitamin D3, retaining the high specific activity of the parent compound. The tritiated azido label bound reversibly to human vitamin D binding protein in the dark and covalently to human vitamin D binding protein after exposure to ultraviolet light. Reversible binding of tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was compared to tritiated 25-hydroxyvitamin D3 binding to human vitamin D binding protein. Scatchard analysis of the data indicated equivalent maximum density binding sites with a KD,app of 0.21 nM for 25-hydroxyvitamin D3 and a KD,app of 1.3 nM for the azido derivative. Covalent binding was observed only after exposure to ultraviolet irradiation, with an average of 3% of the reversibly bound label becoming covalently bound to vitamin D binding protein. The covalent binding was reduced 70-80% when 25-hydroxyvitamin D3 was present, indicating strong covalent binding at the vitamin D binding site of the protein. When tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was incubated with human plasma in the absence and presence of 25-hydroxyvitamin D3, 12% of the azido derivative was reversibly bound to vitamin D binding protein. After ultraviolet irradiation, four plasma proteins covalently bound the azido label, but vitamin D binding protein was the only protein of the four that was unlabeled in the presence of 25-hydroxyvitamin D3.  相似文献   

18.
M-GTFI, originally screened as an inhibitor of Streptococcus mutans glucosyltransferase, strongly inhibited alpha-glucosidase, in a non-competitive manner especially when the synthetic substrate p-nitrophenyl-alpha-D-glucopyranoside was used. It also inhibited beta-glucosidase, beta-amylase and, to a lesser extent, beta-glucuronidase. The inhibitor was stable in neutral and alkaline pH ranges and dependency of the inhibition on pH and temperature was not observed. Some proteinases and polysaccharides-hydrolyzing enzymes as well as human saliva did not inactivate the inhibitor. There was a correlation between the release of sulfate anions from the inhibitor molecule on incubation with HCl (0.2 N) at 100 degrees C and loss of inhibitory properties of the molecule. It is suggested that the presence of sulfate ester linkages in the inhibitor molecule play an important role in the inhibition process.  相似文献   

19.
Alkaline treatment of Pseudomonas aeruginosa type 5 lipopolysaccharide (LPS) resulted in reduced toxicity as measured by both the Limulus amoebocyte assay and the rabbit pyrogenicity test. Chemical analysis of the deacylated LPS (D-LPS) revealed that ester-linked fatty acids were removed while the amide-linked fatty acids remained intact. The neutral and amino sugar compositions for native LPS and D-LPS were identical within experimental error. Antigenic determinants for complement-dependent human opsonic antibody were retained under these deacylation conditions. To enhance its immunogenicity, D-LPS was covalently coupled to Pseudomonas pili and the 1,4-diaminobutyl derivatives of Pseudomonas exotoxin A and tetanus toxoid. Quantitative amino sugar analyses revealed that 2.6 and 3.2 mol of D-LPS were covalently bound to aminobutyl Pseudomonas exotoxin A and aminobutyl tetanus toxoid, respectively. Gel electrophoresis data indicated at least 1 mol of D-LPS covalently bound per pilus subunit protein. Initial immunologic data indicated that antibody against D-LPS could be induced when the D-LPS is covalently attached to protein carriers.  相似文献   

20.
Invertase from baker's yeast (Saccharomyces cerevisiae) was covalently bound via benzoquinone and glutaraldehyde to a macroporous polystyrene anion exchanger. The behavior of the invertase-polystyrene complexes in batch and packed-bed reactors was characterized kinetically. In addition to kinetic studies on sucrose hydrolysis at low initial substrate concentrations, the dependence of conversion degree on flow rate at high, industrially used substrate concentrations was determined. The described invertase-polystyrene complexes are suitable for technical application in the production of glucose-fructose mixtures because of their high specific and relative activities, as well as the good hydrodynamical and mechanical properties of the polystyrene matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号