首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The inhibitory effect of enterocin 4, a bacteriocin produced by Enterococcus faecalis INIA 4, on Listeria monocytogenes strains Ohio and Scott A during themanufacture and ripening of Manchego cheese was investigated. Raw ewe's milk wasinoculated with ca 105 cfu ml−1 of L.monocytogenes and with 1% of a commercial lactic starter, 1% of an Ent. faecalis INIA 4 culture, or 1% of each culture. Manchego cheeses were manufactured according tousual procedures. Listeria monocytogenes Ohio counts decreased by 3 log units after8 h and by 6 log units after 7 d in cheese made from milk inoculated with Ent. faecalis INIA 4 or with both cultures, whereas no inhibition was recorded after 60 d in cheese made frommilk inoculated with commercial lactic starter. Listeria monocytogenes Scott A wasnot inhibited by enterocin 4 during cheese manufacture, but decreases of 1 log unit after 7 d andof 2 log units after 60 d were achieved in cheese made from milk inoculated with bothcommercial lactic starter and Ent. faecalis INIA 4.  相似文献   

2.
Bacteriocins including nisin, pediocin PO2, brevicin 286 and piscicolin 126 were adsorbed from culture supernates by various food-grade porous silica anti-caking agents and the food colourant, titanium dioxide. All the porous silica (calcium silicate or silicon dioxide) materials showed substantial capacity in adsorbing bacteriocin activities from the culture supernate and biological activity was recovered in the adsorbents. In contrast, the food colourant titanium dioxide adsorbed most of the bacteriocin activity from the supernate, with minimal biological activity retained in the adsorbent. Experiments with piscicolin 126 showed that optimum adsorption could be achieved with Micro-Cel E within 30 min, independent of the supernate pH (2.0-10.0). Piscicolin activity of up to 5 × 107 AU g-1 of Micro-Cel E was obtained after adsorption from culture supernates and the adsorbed piscicolin demonstrated substantial biological activity against Listeria monocytogenes in both broth and a milk growth medium.  相似文献   

3.
The efficacy of using a lacticin 3147-producing starter as a protective culture to improve the safety of cottage cheese was investigated. This involved the manufacture of cottage cheese using Lactococcus lactis DPC4268 (control) and L. lactis DPC4275, a bacteriocin-producing transconjugant strain derived from DPC4268. A number of Listeria monocytogenes strains, including a number of industrial isolates, were assayed for their sensitivity to lacticin 3147. These strains varied considerably with respect to their sensitivity to the bacteriocin. One of the more tolerant strains, Scott A, was used in the cottage cheese study; the cheese was subsequently inoculated with approximately 10(4) L. monocytogenes Scott A g-1. The bacteriocin concentration in the curd was measured at 2560 AU ml-1, and bacteriocin activity could be detected throughout the 1 week storage period. In cottage cheese samples held at 4 degrees C, there was at least a 99.9% reduction in the numbers of L. monocytogenes Scott A in the bacteriocin-containing cheese within 5 d, whereas in the control cheeses, numbers remained essentially unchanged. At higher storage temperatures, the kill rate was more rapid. These results demonstrate the effectiveness of lacticin 3147 as an inhibitor of L. monocytogenes in a food system where post-manufacture contamination by this organism could be problematic.  相似文献   

4.
Quantification of sanitary-important bacteria (e.g. Enterobacteriaceae), as well as indicators of environmental contamination, was assessed in samples of cattle dung from 25 cattle farms in 15 north-eastern Slovakia districts. The inhibitory effect of crude bacteriocin extract CBE V24 from Enterococcus faecalis V24 against Listeria monocytogenes Ohio and Yersinia enterocolitica YE85 was examined in cattle dung water with the aim of finding a new way of eliminating the health risk of the animal slurry. The following bacterial groups were quantified: Salmonella spp., Shigella-like spp. , Proteus spp., Enterobacter spp., Citrobacter spp., Pseudomonas spp. , Escherichia coli, Listeria spp., staphylococci, streptococci and enterococci (the average count ranged from 102 up to 104 cfu ml-1). Antagonistic effect of the crude bacteriocin from Enterococcus faecalis V24 in the range of 100-600 Arbitrary units per ml (AU ml-1) was shown against the following bacteria: Enterobacter cloacae, Ent. asburiae, Proteus spp., Salmonella spp., Acinetobacter lwoffi, L. monocytogenes as well as Y. enterocolitica YE85. During tests performed to study the inhibitory effect of the crude bacteriocin CBE V24 (concentration 800, 1600 AU ml-1) against L. monocytogenes Ohio and Y. enterocolitica YE85 in experimentally contaminated cattle dung, a reduction of 2.03 and 1.44 log cfu ml-1, respectively, was already noted after 1 h after crude bacteriocin CBE V24 addition.  相似文献   

5.
AIM: Use of a bacteriocin-producing lactococcal strain to control Listeria monocytogenes in jben. METHODS AND RESULTS: A Lactococcus lactis strain isolated from lben was shown, by the spot technique, to produce a bacteriocin different from nisin. Inhibitory activity of the bacteriocin-producing strain against Listeria monocytogenes was investigated in jben, made from cow's milk fermented with the producer organism and contaminated with 104 or 107 cfu ml-1. Listeria counts were monitored during manufacture, and during conservation at room and at refrigeration temperatures. Results showed that the pathogen was reduced by 2.7 logarithmic units after 30 h of jben processing when the initial inoculum of 107 cfu ml(-1) was used. For the initial inoculum of 104 cfu ml(-1), the bacterium was completely eliminated at 24 h. Furthermore, the use of the bacteriocin-producing starter culture extended the shelf-life of jben by 5 days. CONCLUSIONS: In situ production of the lactococcal bacteriocin is an efficient biological means of controlling L. monocytogenes in jben and of allowing shelf-life extension. SIGNIFICANCE AND IMPACT OF THE STUDY: The proposed technology will essentially benefit minimally processed dairy products and those made with raw milk.  相似文献   

6.
Piscicolin 126 is a class IIa bacteriocin isolated from Carnobacterium piscicola JG126 that exhibits strong activity against Listeria monocytogenes. The gene encoding mature piscicolin 126 (m-pisA) was cloned into an Escherichia coli expression system and expressed as a thioredoxin-piscicolin 126 fusion protein that was purified by affinity chromatography. Purified recombinant piscicolin 126 was obtained after CNBr cleavage of the fusion protein followed by reversed-phase chromatography. Recombinant piscicolin 126 contained a single disulfide bond and had a mass identical to that of native piscicolin 126. This novel bacteriocin expression system generated approximately 26 mg of purified bacteriocin from 1 liter of E. coli culture. The purified recombinant piscicolin 126 acted by disruption of the bacterial cell membrane.  相似文献   

7.
The effect of addition of purified nisin Z in liposomes to cheese milk and of in situ production of nisin Z by Lactococcus lactis subsp. lactis biovar diacetylactis UL719 in the mixed starter on the inhibition of Listeria innocua in cheddar cheese was evaluated during 6 months of ripening. A cheese mixed starter culture containing Lactococcus lactis subsp. lactis biovar diacetylactis UL719 was selected for high-level nisin Z and acid production. Experimental cheddar cheeses were produced on a pilot scale, using the selected starter culture, from milk with added L. innocua (10(5) to 10(6) CFU/ml). Liposomes with purified nisin Z were prepared from proliposome H and added to cheese milk prior to renneting to give a final concentration of 300 IU/g of cheese. The nisin Z-producing strain and nisin Z-containing liposomes did not significantly affect cheese production and gross chemical composition of the cheeses. Immediately after cheese production, 3- and 1.5-log-unit reductions in viable counts of L. innocua were obtained in cheeses with encapsulated nisin and the nisinogenic starter, respectively. After 6 months, cheeses made with encapsulated nisin contained less than 10 CFU of L. innocua per g and 90% of the initial nisin activity, compared with 10(4) CFU/g and only 12% of initial activity in cheeses made with the nisinogenic starter. This study showed that encapsulation of nisin Z in liposomes can provide a powerful tool to improve nisin stability and inhibitory action in the cheese matrix while protecting the cheese starter from the detrimental action of nisin during cheese production.  相似文献   

8.
Semi-hard cheeses were experimentally elaborated with pasteurized milk from sheep, goat and cow (15: 35: 50) and inoculated to contain 1.9 times 105 Listeria monocytogenes /ml in cheeses 1 and 2 and 4 times 103 L. monocytogenes /ml in cheeses 3 and 4. Counts of L. monocytogenes were determined by direct surface plating of samples on listeria selective agar medium. The results show the substantial survival of L. monocytogenes present in milk during manufacture and ripening of this type of cheese.  相似文献   

9.
AIMS: The aim of this research was to investigate the antimicrobial activity produced by Brevibacterium linens ATCC 9175. METHODS AND RESULTS: A bacteriocin produced by the red smear cheese bacterium B. linens ATCC 9175 was identified. The antimicrobial activity was first produced at the exponential growth phase. A crude bacteriocin obtained from the culture supernatant fluid was inhibitory to some indicator strains. It inhibited the growth of Listeria monocytogenes ATCC 7644, B. linens ATCC 9172 and Corynebacterium fimi NCTC 7547, but was inactive against the Gram-negative bacteria and yeast tested. The bacteriocin was stable at 30 degrees C but the activity was lost when the temperature reached 50 degrees C. It was sensitive to the proteolytic action of trypsin, papain and pronase E and was active between pH 6.0 and 9.0. The bacteriocin was bactericidal to L. monocytogenes at 40 AU ml(-1). Bacteriostasis was observed for a low dose of bacteriocin (20 AU ml(-1)). CONCLUSIONS: An antibacterial peptide produced by B. linens was characterized, presenting potential for use as a biopreservative in food systems. SIGNIFICANCE AND IMPACT OF THE STUDY: The identification of a novel bacteriocin active against L. monocytogenes addresses an important aspect of food protection against pathogens and spoilage micro-organisms.  相似文献   

10.
Lactobacillus plantarum LMG P-26358 isolated from a soft French artisanal cheese produces a potent class IIa bacteriocin with 100% homology to plantaricin 423 and bacteriocidal activity against Listeria innocua and Listeria monocytogenes. The bacteriocin was found to be highly stable at temperatures as high as 100°C and pH ranges from 1-10. While this relatively narrow spectrum bacteriocin also exhibited antimicrobial activity against species of enterococci, it did not inhibit dairy starters including lactococci and lactobacilli when tested by well diffusion assay (WDA). In order to test the suitability of Lb. plantarum LMG P-26358 as an anti-listerial adjunct with nisin-producing lactococci, laboratory-scale cheeses were manufactured. Results indicated that combining Lb. plantarum LMG P-26358 (at 108 colony forming units (cfu)/ml) with a nisin producer is an effective strategy to eliminate the biological indicator strain, L. innocua. Moreover, industrial-scale cheeses also demonstrated that Lb. plantarum LMG P-26358 was much more effective than the nisin producer alone for protection against the indicator. MALDI-TOF mass spectrometry confirmed the presence of plantaricin 423 and nisin in the appropriate cheeses over an 18 week ripening period. A spray-dried fermentate of Lb. plantarum LMG P-26358 also demonstrated potent anti-listerial activity in vitro using L. innocua. Overall, the results suggest that Lb. plantarum LMG P-26358 is a suitable adjunct for use with nisin-producing cultures to improve the safety and quality of dairy products.  相似文献   

11.
The effect of addition of purified nisin Z in liposomes to cheese milk and of in situ production of nisin Z by Lactococcus lactis subsp. lactis biovar diacetylactis UL719 in the mixed starter on the inhibition of Listeria innocua in cheddar cheese was evaluated during 6 months of ripening. A cheese mixed starter culture containing Lactococcus lactis subsp. lactis biovar diacetylactis UL719 was selected for high-level nisin Z and acid production. Experimental cheddar cheeses were produced on a pilot scale, using the selected starter culture, from milk with added L. innocua (105 to 106 CFU/ml). Liposomes with purified nisin Z were prepared from proliposome H and added to cheese milk prior to renneting to give a final concentration of 300 IU/g of cheese. The nisin Z-producing strain and nisin Z-containing liposomes did not significantly affect cheese production and gross chemical composition of the cheeses. Immediately after cheese production, 3- and 1.5-log-unit reductions in viable counts of L. innocua were obtained in cheeses with encapsulated nisin and the nisinogenic starter, respectively. After 6 months, cheeses made with encapsulated nisin contained less than 10 CFU of L. innocua per g and 90% of the initial nisin activity, compared with 104 CFU/g and only 12% of initial activity in cheeses made with the nisinogenic starter. This study showed that encapsulation of nisin Z in liposomes can provide a powerful tool to improve nisin stability and inhibitory action in the cheese matrix while protecting the cheese starter from the detrimental action of nisin during cheese production.  相似文献   

12.
The overall incidence of Listeria spp. in raw milk samples surveyed was found to be 25.0% (Listeria monocytogenes 15.3%), with the incidence in samples from processing centres 54.0% (L. monocytogenes 33.3%); this was higher than that in samples from dairy farms (Listeria spp. 8.8%; L. monocytogenes 5.3%). The FDA enrichment procedure was much more productive than cold enrichment and Oxford agar was superior to modified McBride agar for isolation of Listeria. Listeria monocytogenes was never isolated by direct plating of raw milk samples on Oxford agar at a detection level of 1.0 cfu/ml. Listeria spp. were isolated from 1 of 95 pasteurized milk samples (L. monocytogenes) and 1 of 33 soft cheese samples (L. seeligeri). Restriction fragment length polymorphism was more useful than sero- or phage-typing for typing of L. monocytogenes strains, and results suggest that specific L. monocytogenes strains may persist in both farm and processing environments.  相似文献   

13.
The inhibitory effect of enterocin CCM 4231 (concentration 3200 AU ml-1) was used to control the growth of Listeria monocytogenes Ohio and Staphylococcus aureus in soy milk. The growth and bacteriocin (enterocin) production of producer strain CCM 4231 in soy milk was also checked. Bacteriocin production by CCM 4231 strain in soy milk was first detected after 2 h from the beginning of cultivation (100 AU ml-1). The stationary phase for CCM 4231 was reached after 6 h reaching 10.38 cfu ml-1 (log10) with a slight increase up to 24 h (10.43 cfu ml-1, log10), and the maximum bacteriocin production in soy milk (200 AU ml-1) was noted after 8 h of the beginning of cultivation with stability up to 24 h. The addition of enterocin CCM 4231 at 3200 AU ml-1 to a growing indicator strain, L. monocytogenes Ohio, in soy milk resulted in inhibition for 24 h. The high inhibitory effect of enterocin was found after 1 h and 2 h of its addition (in 5 h-6 h of cultivation), the difference between the experimental and the control samples (ES, CS) being 4.96 log cycles at 5 h and 5.15 log cycles at 6 h. Staphylococcus aureus was not fully inhibited, although a difference of 3.55 log cycles was found when ES and CS were compared at the end of cultivation (24 h). The pH was not influenced by enterocin addition. The inhibitory effect of enterocin CCM 4231 against L. monocytogenes Ohio in soy milk was probably bacteriocidal; while Staph. aureus was influenced bacteriostatically. In general, the observed inhibitory activity confirmed the possibility for further application of bacteriocins in food environments as the protective agents. Of course, legislation problems must be solved.  相似文献   

14.
J. HARVEY AND A. GILMOUR. 1992. The overall incidence of Listeria spp. in raw milk samples surveyed was found to be 25.0% ( Listeria monocytogenes 15.3%), with the incidence in samples from processing centres 54.0% ( L. monocytogenes 33.3%); this was higher than that in samples from dairy farms ( Listeria spp. 8.8% L. monocytogenes 5.3%). The FDA enrichment procedure was much more productive than cold enrichment and Oxford agar was superior to modified McBride agar for isolation of Listeria. Listeria monocytogenes was never isolated by direct plating of raw milk samples on Oxford agar at a detection level of 1.0 cfu/ml. Listeria spp. were isolated from 1 of 95 pasteurized milk samples ( L. monocytogenes ) and 1 of 33 soft cheese samples ( L. seeligeri ). Restriction fragment length polymorphism was more useful than sero- or phage-typing for typing of L. monocytogenes strains, and results suggest that specific L. monocytogenes strains may persist in both farm and processing environments.  相似文献   

15.
The polymerase chain reaction (PCR) amplification technique was investigated as a tool for direct detection of Listeria monocytogenes in soft cheeses. Different sets of oligonucleotide primers were used, and parts of the L. monocytogenes Dth 18-gene could be amplified specifically when either a plasmid vector carrying the cloned gene or chromosomal DNA was used a template. The detection limit for L. monocytogenes in dilutions of pure cultures was between 1 and 10 colony-forming units. In extracts from soft cheeses containing L. monocytogenes DNA, the amplification was strongly inhibited. This inhibition could be reduced by an additional purification step. Despite this the detection limit showed a large variation, depending on the brand of cheese used. In some cheeses 10(3) cfu/0.5g could be visualized whereas in others the presence of 10(8) cfu/0.5 g did not yield a detectable quantity of amplified product.  相似文献   

16.
The bacteriocin produced by Pediococcus acidilactici PAC 1.0, previously designated PA-1 bacteriocin, was found to be inhibitory and bactericidal for Listeria monocytogenes. A dried powder prepared from PAC 1.0 culture supernatant fortified with 10% milk powder was found to contain bacteriocin activity. An MIC against L. monocytogenes and lytic effects in broth cultures were determined. Inhibition by PA-1 powder occurred over the pH range 5.5 to 7.0 and at both 4 and 32 degrees C. In addition, inhibition of L. monocytogenes was demonstrated in several food systems including dressed cottage cheese, half-and-half cream, and cheese sauce.  相似文献   

17.
Use of PCR methods for identification of Listeria monocytogenes in milk   总被引:4,自引:0,他引:4  
The aim of this work was to estimate the limit of Listeria monocytogenes cfu in polymerase chain reaction (PCR) for a DNA fragment of listeriolysine O (hly A) gene. The PCR method, with used primers selected in areas of the listeriolysin O gene, allows to differentiate L. monocytogenes strains from other Listeria species. The amplified fragment (456 bp) of hly A gene was obtained for all strains L. monocytogenes and no other Listeria species. The PCR method with the selected primers allowed to detect 50-500 cfu L. monocytogenes/ml suspended in water or milk. Among 20 samples of raw milk from cows, 10 samples contained > 50 cfu L. monocytogenes/ml. Obtained results indicate that the PCR assay of L. monocytogenes identification is technically simple and may be conduct with minimal time. So, it could be recommended as quick diagnostic method in identification L. monocytogenes in milk.  相似文献   

18.
The bacteriocin produced by Pediococcus acidilactici PAC 1.0, previously designated PA-1 bacteriocin, was found to be inhibitory and bactericidal for Listeria monocytogenes. A dried powder prepared from PAC 1.0 culture supernatant fortified with 10% milk powder was found to contain bacteriocin activity. An MIC against L. monocytogenes and lytic effects in broth cultures were determined. Inhibition by PA-1 powder occurred over the pH range 5.5 to 7.0 and at both 4 and 32 degrees C. In addition, inhibition of L. monocytogenes was demonstrated in several food systems including dressed cottage cheese, half-and-half cream, and cheese sauce.  相似文献   

19.
The polymerase chain reaction (PCR) amplification technique was investigated as a tool for direct detection of Listeria monocytogenes in soft cheeses. Different sets of oligonucleotide primers were used, and parts of the L. monocytogenes Dth18-gene could be amplified specifically when either a plasmid vector carrying the cloned gene or chromosomal DNA was used as a template. The detection limit for L. monocytogenes in dilutions of pure cultures was between 1 and 10 colony-forming units. In extracts from soft cheeses containing L. monocytogenes DNA, the amplification was strongly inhibited. This inhibition could be reduced by an additional purification step. Despite this the detection limit showed a large variation, depending on the brand of cheese used. In some cheeses 103 cfu/0.5 g could be visualized whereas in others the presence of 108 cfu/0.5 g did not yield a detectable quantity of amplified product.  相似文献   

20.
The bacteriocin production byEnterococcus faecium strain in cheese milk and cheese was demonstrated. Purified enterocin CCM 4231 exhibited an anti-listerial effect during Saint-Paulin cheese manufacture. During cheese production the strain grew to a final concentration of 10.1±0.01 log CFU per mL per g in cheese. Then only a slight decrease of the cell concentration was noticed during ripening and was almost stable for 8 weeks. No significant differences in pH were observed between the experimental and reference cheeses. Bacteriocin production during cheese manufacture was detected only in milk samples and curd, reaching a level of 100 AU/mL. After addition of purified enterocin CCM 4231 (concentration 3200 AU/mL) into the experimental cheese, the initial concentration of 6.7±0.06 log CFU per mL ofListeria monocytogenes Ohio was reduced up to 1.9±0.01 log CFU per mL per g. After 6 weeks and at the end of the experiment the difference of surviving cells ofL. monocytogenes Ohio in ECH was only one or 0.7 log cycle compared to the control cheese. Although enterocin CCM 4231 partially inhibitedL. monocytogenes in Saint-Paulin cheese manufacture, an inhibitory effect of enterocin added was shown in 1-week cheese; however, it was not possible to detect bacteriocin activity by the agar spot test. The traditional fermentation and ripening process was not disturbed, resulting in acceptable end-products, including sensory aspects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号