首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
2.
3.
4.
5.
6.
The sheer complexity of intracellular regulatory networks, which involve signal transducing, metabolic, and genetic circuits, hampers our ability to carry out a quantitative analysis of their functions. Here, we describe an approach that greatly simplifies this type of analysis by capitalizing on the modular organization of such networks. Steady-state responses of the network as a whole are accounted for in terms of intermodular interactions between the modules alone; processes operating solely within modules need not be considered when analysing signal transfer through the entire network. The intermodular interactions are quantified through (local) response coefficients which populate an interaction map (matrix). This matrix can be derived from a biochemical or molecular biological analysis of (macro) molecular interactions that constitute the regulatory network. The approach is illustrated by two examples: (i) mitogenic signalling through the mitogen-activated protein kinase cascade in the epidermal growth factor receptor network and (ii) regulation of ammonium assimilation in Escherichia coli.  相似文献   

7.
In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function-hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology) and the association of individual genes or proteins with these concepts (e.g., GO terms), our method will assign a Hierarchical Modularity Score (HMS) to each node in the hierarchy of functional modules; the HMS score and its p-value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of "enriched" functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our method using Saccharomyces cerevisiae data from KEGG and MIPS databases and several other computationally derived and curated datasets. The code and additional supplemental files can be obtained from http://code.google.com/p/functional-annotation-of-hierarchical-modularity/ (Accessed 2012 March 13).  相似文献   

8.
9.
10.
The gene regulatory network of a developmental process contains many mutually repressive interactions between two genes. They are often regulated by or regulate an additional factor, which constitute prominent network motifs, called regulated and regulating mutual loops. Our database analysis on the gene regulatory network for Drosophila melanogaster indicates that those with mutual repression are working specifically for the segmentation process. To clarify their biological roles, we mathematically study the response of the regulated mutual loop with mutual repression to input stimuli. We show that the mutual repression increases the response sensitivity without affecting the threshold input level to activate the target gene expression, as long as the network output is unique for a given input level. This high sensitivity of the motif can contribute to sharpening the spatial domain pattern without changing its position, assuring a robust developmental process. We also study transient dynamics that shows shift of domain boundary, agreeing with experimental observations. Importance of mutual repression is addressed by comparing with other types of regulations.  相似文献   

11.
12.
Advances in single-cell biotechnology have increasingly revealed interactions of cells with their surroundings, suggesting a cellular society at the microscale. Similarities between cells and humans across multiple hierarchical levels have quantitative inference potential for reaching insights about phenotypic interactions that lead to morphological forms across multiple scales of cellular organization, namely cells, tissues and organs. Here, the functional and structural comparisons between how cells and individuals fundamentally socialize to give rise to the spatial organization are investigated. Integrative experimental cell interaction assays and computational predictive methods shape the understanding of societal perspective in the determination of the cellular interactions that create spatially coordinated forms in biological systems. Emerging quantifiable models from a simpler biological microworld such as bacterial interactions and single-cell organisms are explored, providing a route to model spatio-temporal patterning of morphological structures in humans. This analogical reasoning framework sheds light on structural patterning principles as a result of biological interactions across the cellular scale and up.  相似文献   

13.
Global explorations of regulatory network dynamics, organization and evolution have become tractable thanks to high-throughput sequencing and molecular measurement of bacterial physiology. From these, a nascent conceptual framework is developing, that views the principles of regulation in term of motifs, modules and games. Motifs are small, repeated, and conserved biological units ranging from molecular domains to small reaction networks. They are arranged into functional modules, genetically dissectible cellular functions such as the cell cycle, or different stress responses. The dynamical functioning of modules defines the organism's strategy to survive in a game, pitting cell against cell, and cell against environment. Placing pathway structure and dynamics into an evolutionary context begins to allow discrimination between those physical and molecular features that particularize a species to its surroundings, and those that provide core physiological function. This approach promises to generate a higher level understanding of cellular design, pathway evolution and cellular bioengineering.  相似文献   

14.
Modular organization of protein interaction networks   总被引:6,自引:0,他引:6  
MOTIVATION: Accumulating evidence suggests that biological systems are composed of interacting, separable, functional modules. Identifying these modules is essential to understand the organization of biological systems. RESULT: In this paper, we present a framework to identify modules within biological networks. In this approach, the concept of degree is extended from the single vertex to the sub-graph, and a formal definition of module in a network is used. A new agglomerative algorithm was developed to identify modules from the network by combining the new module definition with the relative edge order generated by the Girvan-Newman (G-N) algorithm. A JAVA program, MoNet, was developed to implement the algorithm. Applying MoNet to the yeast core protein interaction network from the database of interacting proteins (DIP) identified 86 simple modules with sizes larger than three proteins. The modules obtained are significantly enriched in proteins with related biological process Gene Ontology terms. A comparison between the MoNet modules and modules defined by Radicchi et al. (2004) indicates that MoNet modules show stronger co-clustering of related genes and are more robust to ties in betweenness values. Further, the MoNet output retains the adjacent relationships between modules and allows the construction of an interaction web of modules providing insight regarding the relationships between different functional modules. Thus, MoNet provides an objective approach to understand the organization and interactions of biological processes in cellular systems. AVAILABILITY: MoNet is available upon request from the authors.  相似文献   

15.
Molecular networks in cells are organized into functional modules, where genes in the same module interact densely with each other and participate in the same biological process. Thus, identification of modules from molecular networks is an important step toward a better understanding of how cells function through the molecular networks. Here, we propose a simple, automatic method, called MC(2), to identify functional modules by enumerating and merging cliques in the protein-interaction data from large-scale experiments. Application of MC(2) to the S. cerevisiae protein-interaction data produces 84 modules, whose sizes range from 4 to 69 genes. The majority of the discovered modules are significantly enriched with a highly specific process term (at least 4 levels below root) and a specific cellular component in Gene Ontology (GO) tree. The average fraction of genes with the most enriched GO term for all modules is 82% for specific biological processes and 78% for specific cellular components. In addition, the predicted modules are enriched with coexpressed proteins. These modules are found to be useful for annotating unknown genes and uncovering novel functions of known genes. MC(2) is efficient, and takes only about 5 min to identify modules from the current yeast gene interaction network with a typical PC (Intel Xeon 2.5 GHz CPU and 512 MB memory). The CPU time of MC(2) is affordable (12 h) even when the number of interactions is increased by a factor of 10. MC(2) and its results are publicly available on http://theory.med.buffalo.edu/MC2.  相似文献   

16.
17.
本研究旨在利用生物信息学方法构建经铜诱导的ATP7B基因敲除HepG2细胞系的转录调控网络。探讨关键转录因子在肝豆状核变性发生、发展中的潜在作用机制。收集公共基因表达数据库(gene expression omnibus, GEO)中包含野生型、ATP7B基因敲除型、铜诱导的野生型和铜诱导的ATP7B基因敲除型HepG2细胞系数据。筛选由铜诱导产生的差异表达基因(differentially expressed genes,DEGs)后进行基因本体论(gene ontology,GO)、京都基因和基因组百科全书(Kyoto encyclopedia of genes and genomes, KEGG)富集分析。基于蛋白相互作用网络,识别疾病关键基因和功能模块,并对关键功能模块中的基因进行富集分析。最后,构建转录调控网络,筛选核心转录因子。共筛选出1 034个差异表达基因,其中上调525个,下调509个。上、下调关键功能模块分别包括了3785个和3931个基因。关键功能模块中的基因主要定位于细胞-基质连接、染色体、剪接复合体、核糖体等区域,共同参与了mRNA加工、组蛋白修饰、RNA剪切...  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号