首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A generalization of the well-known Levins’ model of metapopulations is studied. The generalization consists of (i) the introduction of immigration from a mainland, and (ii) assuming the dynamics is stochastic, rather than deterministic. A master equation, for the probability that n of the patches are occupied, is derived and the stationary probability P s (n), together with the mean and higher moments in the stationary state, determined. The time-dependence of the probability distribution is also studied: through a Gaussian approximation for general n when the boundary at n = 0 has little effect, and by calculating P(0, t), the probability that no patches are occupied at time t, by using a linearization procedure. These analytic calculations are supplemented by carrying out numerical solutions of the master equation and simulations of the stochastic process. The various approaches are in very good agreement with each other. This allows us to use the forms for P s 0) and P(0, t) in the linearization approximation as a basis for calculating the mean time for a metapopulation to become extinct. We give an analytical expression for the mean time to extinction derived within a mean field approach. We devise a simple method to apply our mean field approach even to complex patch networks in realistic model metapopulations. After studying two spatially extended versions of this nonspatial metapopulation model—a lattice metapopulation model and a spatially realistic model—we conclude that our analytical formula for the mean extinction time is generally applicable to those metapopulations which are really endangered, where extinction dynamics dominates over local colonization processes. The time evolution and, in particular, the scope of our analytical results, are studied by comparing these different models with the analytical approach for various values of the parameters: the rates of immigration from the mainland, the rates of colonization and extinction, and the number of patches making up the metapopulation.  相似文献   

2.
For any essentially nonlinear system of reaction-diffusion equations of the generic form ∂ci/∂t=Di2ci+Qi(c,x,t) supplemented with Robin type boundary conditions over the surface of a closed bounded three-dimensional region, it is demonstrated that all solutions for the concentration distributionn-tuple function c=(c 1(x,t),...,c n (x,t)) satisfy a differential variational condition. Approximate solutions to the reaction-diffusion intial-value boundary-value problem are obtainable by employing this variational condition in conjunction with a Galerkin-Ritz procedure. It is shown that the dynamical evolution from a prescribed initial concentrationn-tuple function to a final steady-state solution can be determined to desired accuracy by such an approximation method. The variational condition also admits a systematic Galerkin-Ritz procedure for obtaining approximate solutions to the multi-equation elliptic boundary-value problem for steady-state distributions c=−c(x). Other systems of phenomenological (non-Lagrangian) field equations can be treated by Galerkin-Ritz procedures based on analogues of the differential variational condition presented here. The method is applied to derive approximate nonconstant steady-state solutions for ann-species symbiosis model.  相似文献   

3.
Asymptotic distributions are derived for the number of non-mutant ancestors, at time t in the past, of a sample of n from a neutral infinite alleles model. Either the number of non-mutant ancestors L n (t) has a normal distribution or n-Ln(t) has a Poisson distribution as n , t 0.  相似文献   

4.
A group of n susceptible individuals exposed to a contagious disease isconsidered. It is assumed that at each point in time one or more susceptible individuals can contract the disease. The progress of this simple batch epidemic is modeled by a stochastic process Xn(t), t[0, ∞), representing the number of infectiveindividuals at time t. In this paper our analysis is restricted to simple batch epidemics with transition rates given by [α2Xn(t){nXn(t) +Xn(0)}]1/2, t[0, ∞), α(0, ∞). This class of simple batch epidemics generalizes a model used and motivated by McNeil (1972) to describe simple epidemic situations. It is shown for this class of simple batch epidemics, that Xn(t), with suitable standardization, converges in distribution as n→∞ to a normal random variable for all t(0, t0), and t0 is evaluated.  相似文献   

5.
There are some analytical solutions of the Penna model of biological aging; here, we discuss the approach by Coe et al. (Phys. Rev. Lett. 89, 288103, 2002), based on the concept of self-consistent solution of a master equation representing the Penna model. The equation describes transition of the population distribution at time t to next time step (t + 1). For the steady state, the population n(a, l, t) at age a and for given genome length l becomes time-independent. In this paper we discuss the stability of the analytical solution at various ranges of the model parameters—the birth rate b or mutation rate m. The map for the transition from n(a, l, t) to the next time step population distribution n(a + 1, l, t + 1) is constructed. Then the fix point (the steady state solution) brings recovery of Coe et al. results. From the analysis of the stability matrix, the Lyapunov coefficients, indicative of the stability of the solutions, are extracted. The results lead to phase diagram of the stable solutions in the space of model parameters (b, m, h), where h is the hunt rate. With increasing birth rate b, we observe critical b 0 below which population is extinct, followed by non-zero stable single solution. Further increase in b leads to typical series of bifurcations with the cycle doubling until the chaos is reached at some b c. Limiting cases such as those leading to the logistic model are also discussed.  相似文献   

6.
Differential inequality methods are developed for establishing upper and lower bounds on the total particle numberN(t)=∫θ(x,t) d3 x associated with solutions to nonlinear reaction-diffusion equations of the form ∂θ/∂t=D2θ+fθ-gθ n+1 , whereD(>0),n(>0),f andg are constant parameters. If finite in a neighborhood oft=0,N(t) is bounded below for allt≥0 by a certain derived function oft for equations withg≥0. An upper bound onN(t) is obtained for equations withn=1,f<0 andg<0. These results provide general preservation and extinction criteria for the total particle number.  相似文献   

7.
A model of a pre-planned single joint movements performed without feedback is considered. Modifications of this movement result from transformation of a trajectory pattern f(t) in space and time. The control system adjusts the movement to concrete external conditions specifying values of the transform parameters before the movement performance. The preplanned movement is considered to be simple one, if the transform can be approximated by an affine transform of the movement space and time. In this case, the trajectory of the movement is x(t) = Af(t/ + s) +p, were A and 1/ are space and time scales, s and p are translations. The variability of movements is described by time profiles of variances and covariances of the trajectory x(t), velocity v(t), and acceleration a(t). It is assumed that the variability is defined only by parameters variations. From this assumption follows the main finding of this work: the variability time profiles can be expanded on a special system of basic functions corresponding to established movement parameters. Particularly, basic functions of variance time profiles, reflecting spatial and temporal scaling, are x 2(t) and t 2 v 2(t) for trajectory, v 2(t) and (v(t) + t · a(t))2 for velocity, and a 2(t) and (2a(t) +t · j(t))2, where j(t) = d3 x(t)/dt 3, for acceleration. The variability of a model of a reaching movement was studied analytically. The model predicts certain peculiarities of the form of time profiles (e.g., the variance time profile of velocity is bi-modal, the one of acceleration is tri-modal, etc.). Experimental measurements confirmed predictions. Their consistence allows them to be considered invariant properties of reaching movement. A conclusion can be made, that reaching movement belongs to the type of simple preplanned movements. For a more complex movement, time profiles of variability are also measured and explained by the model of movements of this type. Thus, a movement can be attributed to the type of simple pre-planned ones by testing its variability.  相似文献   

8.
The parameters of the function f(t)=c(e?at-e?bt) are related in a simple way to the moments tnf(t)dt(n=0, 1, 2). Using empirical values of f, the moments can be estimated by numerical integration. Therefrom estimates of the parameters are obtained by elementary algebra.  相似文献   

9.
Chemotactic collapse for the Keller-Segel model   总被引:1,自引:0,他引:1  
 This work is concerned with the system (S) {u t u − χ∇ (uv) for x∈Ω, t>0Γ v t v+(u−1) for x∈Ω, t>0 where Γ, χ are positive constants and Ω is a bounded and smooth open set in ℝ2. On the boundary ∂Ω, we impose no-flux conditions: (N) ∂u∂n =∂v∂n =0 for x∈∂ Ω, t>0 Problem (S), (N) is a classical model to describe chemotaxis corresponding to a species of concentration u(x, t) which tends to aggregate towards high concentrations of a chemical that the species releases. When completed with suitable initial values at t=0 for u(x, t), v(x, t), the problem under consideration is known to be well posed, locally in time. By means of matched asymptotic expansions techniques, we show here that there exist radial solutions exhibiting chemotactic collapse. By this we mean that u(r, t) →Aδ(y) as t→T for some T<∞, where A is the total concentration of the species. Received 9 March 1995; received in revised form 25 December 1995  相似文献   

10.
Our model of decompression sickness determines the cumulative probability of developing symptoms of this illness by the exponential equation whose index is the integral cumulative risk function of all body tissue lesions by bubbles, F cum(t) = ΣF n(t). The underwater dives may be considered as practically safe in the context of this model when the function F cum(t) during its growth will not exceed some small value F cum-max = ΣF n-max. Using hypothetical values of parameters of tissues and functions F n(t), we calculated the curves depth-duration for practically safe non-stop dives with air and with mixtures of oxygen with helium, neon and argon. Doing so, we obtained the distributions of values F n-max in regard to the values of inert gas washout half-times from tissues which show that the tissues experienced the largest risks of bubble lesions are different for dives with different duration. The comparison of the indicated curves shows that the short-term dives with air are less dangerous and the long-term dives are more dangerous than the dives with helium-oxygen mixture. At the same time, the least risk of bubble lesions of tissues arises at dives with neon-oxygen mixture and the greatest risk arises at dives with argon-oxygen mixture.  相似文献   

11.
This article treats the problem of the sharp front observed when a diffusing substance interacts irreversibly with binding sites within the medium. The model consists of two simultaneous partial differential equations that are nonlinear and cannot be solved in closed form. The parameters are the diffusion coefficient D in the direction under consideration (x), the interaction constant k, the binding-site concentration μ and the boundary concentration of the diffusing ion c 0. Our aim is to develop methods to enable the estimation of these parameters from the experimental data. An analytical solution for the case k → ∞, as found by others, is given first and then a finite element analysis package is used to obtain numerical solutions for the general case. Graphs are presented to illustrate the effects of the various parameters. Simple graphical procedures are described to compute μ and c 0. The position of the advancing front ξ then provides, together with μ, a way to estimate D. A mathematical identity relating D and x and a second one involving D, k and t help to reduce the complexity of the problem. A new, measurable quantity S(t) is defined as where f is the total concentration (free + bound) of the diffusing ion at time t, and detailed plots are furnished that permit the computation of k directly from S(t), μ and D. The accuracy with which such methods can be expected to determine the various parameters of the model is considered at some length. Finally, in a concluding section, we simulate typical experimental data, examine the validity of our methods, and see how their accuracy is affected by controlled amounts of various kinds of noise.  相似文献   

12.
In order to understand generally how the biological evolution rate depends on relevant parameters such as mutation rate, intensity of selection pressure and its persistence time, the following mathematical model is proposed: dN n (t)/dt=(m n (t-)N n (t)+N n-1(t) (n=0,1,2,3...), where N n (t) and m n (t) are respectively the number and Malthusian parameter of replicons with step number n in a population at time t and is the mutation rate, assumed to be a positive constant. The step number of each replicon is defined as either equal to or larger by one than that of its parent, the latter case occurring when and only when mutation has taken place. The average evolution rate defined by is rigorously obtained for the case (i) m n (t)=m n is independent of t (constant fitness model), where m n is essentially periodic with respect to n, and for the case (ii) (periodic fitness model), together with the long time average m of the average Malthusian parameter . The biological meaning of the results is discussed, comparing them with the features of actual molecular evolution and with some results of computer simulation of the model for finite populations.An early version of this study was read at the International Symposium on Mathematical Topics in Biological held in kyoto, Japan, on September 11–12, 1978, and was published in its Procedings.  相似文献   

13.
In biology and medicine many substances and drugs enter the system not at regular time intervals but rather according to a random process. In the present article a situation is investigated where input enters a 2-compartment system according to a Poisson process. The arising two random concentration curves y(t), one for the central and one for the peripheral compartment are discussed (shot noise). The equations for E[y(t)] and Var [y(t)] are derived. The dependence of E[y(t)] and Var [y(t)] and of the index of dispersion ID[y(t)] on the rate parameters is analysed and discussed in both compartments. The arising calculations were considerably simplified by means of “Mathematica”, a computer program which allows to perform symbolic calculations.  相似文献   

14.
Thus far an individual height growth curve hij(t) of the i-th person in the j-th period, t being his (or her) age, has been studied as a function of t associated with its velocity curve. In this note we introduce a natural scale X(t) in place of t, which linearizes this personal curve and facilitates its analysis, in the sense that this equation of growth contains apparently two personal parameters for one period but one of them plays an essential role. The effectiveness of this approach will be seen in four figures.  相似文献   

15.
Summary A segregated population model for budding yeasts and a simulation program based on it are presented. They enable the study of bioprocesses utilizing yeasts in steady and perturbed conditions and in particular the comparison between the model predictions and the experimental results obtained by flow cytometry, which allows the measurement of segregated parameters of cell populations.Nomenclature a genealogical age - A parameter of the budding law - CV coefficient of variation - F in(t) volumetric input flow - F out(t) volumetric output flow - h parameter of the division law - K s parameter of the Monod's law - m cell mass - M i discretized cell mass - m b (a,s) critical mass level for budding - m p cell mass at the time of budding - n(t) cell number per unit volume - n p number of sub-populations - n c number of channels - p (a, i, j, k) discrete density function - Q parameter of the budding law - s(t) substrate concentration - S in(t) substrate concentration in the input flow - t time - T m minimal length of the budded phase - V(t) culture volume - x(t) biomass concentration - Y yield coefficient - channel width - (s) specific growth rate - max parameter of the Monod's law  相似文献   

16.
By observing that the n-tuple of rate functionsQ(c) is orthogonal to the c-space gradients of each of the (n - 1) constants of the motion Φ v (c), a generic canonical expression for the rate functions is given in terms of the exterior product of the gradients of the (n - 1) Φ v 's. For models withQ so prescribed from the outset, an analytical general solution is obtainable directly for the system of autonomous ordinary differential equations dc/dt =Q(c). Thus, the generic canonical expression for the rate functions can be utilized to construct analytically solvable models for interacting biological species, as ilIus~rated by examples here.  相似文献   

17.
The system is designed for data-acquisition and computationof a relatively large nwnber of parameters of a single twitchor tetanic contraction generated by an electrically stimulatedskeletal muscle. The parameters that can be computed using theprogram facilities are: (i) the rise time (Tc), 50% relaxationtime (50% Tr) and the maximwn tendon (Pt) of the twitch contraction;(ii) the approximate number of motor units innervating the muscleand the fatigue index; (iii) the fission frequency of the tetaniccontraction and the twitch to tetanus ratio; (iv) the maximumtetanic tension (P0) and its Tc and 50% Tn (v) the P0 versusmuscle length diagram; (vi) the fatigue-time course.  相似文献   

18.
In this paper we introduce a continuous time stochastic neurite branching model closely related to the discrete time stochastic BES-model. The discrete time BES-model is underlying current attempts to simulate cortical development, but is difficult to analyze. The new continuous time formulation facilitates analytical treatment thus allowing us to examine the structure of the model more closely. We derive explicit expressions for the time dependent probabilities p(γ,t) for finding a tree γ at time t, valid for arbitrary continuous time branching models with tree and segment dependent branching rates. We show, for the specific case of the continuous time BES-model, that as expected from our model formulation, the sums needed to evaluate expectation values of functions of the terminal segment number μ(f(n),t) do not depend on the distribution of the total branching probability over the terminal segments. In addition, we derive a system of differential equations for the probabilities p(n,t) of finding n terminal segments at time t. For the continuous BES-model, this system of differential equations gives direct numerical access to functions only depending on the number of terminal segments, and we use this to evaluate the development of the mean and standard deviation of the number of terminal segments at a time t. For comparison we discuss two cases where mean and variance of the number of terminal segments are exactly solvable. Then we discuss the numerical evaluation of the S-dependence of the solutions for the continuous time BES-model. The numerical results show clearly that higher S values, i.e. values such that more proximal terminal segments have higher branching rates than more distal terminal segments, lead to more symmetrical trees as measured by three tree symmetry indicators.  相似文献   

19.
20.
We consider a general, neutral, dynamical model of biodiversity. Individuals have i.i.d. lifetime durations, which are not necessarily exponentially distributed, and each individual gives birth independently at constant rate λ. Thus, the population size is a homogeneous, binary Crump–Mode–Jagers process (which is not necessarily a Markov process). We assume that types are clonally inherited. We consider two classes of speciation models in this setting. In the immigration model, new individuals of an entirely new species singly enter the population at constant rate μ (e.g., from the mainland into the island). In the mutation model, each individual independently experiences point mutations in its germ line, at constant rate θ. We are interested in the species abundance distribution, i.e., in the numbers, denoted I n (k) in the immigration model and A n (k) in the mutation model, of species represented by k individuals, k = 1, 2, . . . , n, when there are n individuals in the total population. In the immigration model, we prove that the numbers (I t (k); k ≥ 1) of species represented by k individuals at time t, are independent Poisson variables with parameters as in Fisher’s log-series. When conditioning on the total size of the population to equal n, this results in species abundance distributions given by Ewens’ sampling formula. In particular, I n (k) converges as n → ∞ to a Poisson r.v. with mean γ/k, where γ : = μ/λ. In the mutation model, as n → ∞, we obtain the almost sure convergence of n −1 A n (k) to a nonrandom explicit constant. In the case of a critical, linear birth–death process, this constant is given by Fisher’s log-series, namely n −1 A n (k) converges to α k /k, where α : = λ/(λ + θ). In both models, the abundances of the most abundant species are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号