首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: Selection of suitable surfactants for enhancing and stabilizing alpha-amylase of Geobacillus thermoleovorans. METHODS AND RESULTS: Geobacillus thermoleovorans was cultivated in shake flasks containing 50 ml of starch-yeast extract-tryptone (SYT) medium with/without surfactants. Titres of the enzyme in media were monitored. The enzyme was also preserved at 4 degrees C with/without surfactants and enzyme activities were determined. Among polyethylene glycol (PEGs) of different molecular weights, PEG 8000 (0.5%, w/v) caused a slight increase in the enzyme titre, while Tween-20, Tween-40 and Tween-60 (0.03%, w/v) exerted a significant stimulatory effect on enzyme secretion. In the presence of SDS, Tween-80 and cholic acid (0.03%, w/v), the enzyme production was nearly twofold higher than that in the control. The anionic (SDS, cholic acid) and non-ionic (Tweens) detergents increased the cell membrane permeability, and thus, enhanced alpha-amylase secretion. Furthermore, anionic surfactants exhibited stabilizing effect on the enzyme during preservation at 4 degrees C. CONCLUSIONS: PEG 8000 and the ionic detergents (SDS, cholic acid and Tween-80) were more effective in the solubilization of cell membrane components, and enhancing enzyme yields than the cationic detergents such as CTAB (N,Cetyl-N,N,N-trimethyl ammonium bromide). Further, these surfactants were found to stabilize the enzyme at 4 degrees C. SIGNIFICANCE AND IMPACT OF THE STUDY: The secretion of Ca2+-independent hyperthermostable alpha-amylase was enhanced in the presence of certain anionic and non-ionic detergents in the medium. Furthermore, the surfactants stabilized the enzyme during preservation at 4 degrees C. The use of this enzyme in starch hydrolysis eliminates the addition of Ca2+ in starch liquefaction and its subsequent removal by ion exchange from sugar syrups.  相似文献   

2.
Pyrococcus woesei (DSM 3773) alpha-amylase gene was cloned into pET21d(+) and pYTB2 plasmids, and the pET21d(+)alpha-amyl and pYTB2alpha-amyl vectors obtained were used for expression of thermostable alpha-amylase or fusion of alpha-amylase and intein in Escherichia coli BL21(DE3) or BL21(DE3)pLysS cells, respectively. As compared with other expression systems, the synthesis of alpha-amylase in fusion with intein in E. coli BL21(DE3)pLysS strain led to a lower level of inclusion bodies formation-they exhibit only 35% of total cell activity-and high productivity of the soluble enzyme form (195,000 U/L of the growth medium). The thermostable alpha-amylase can be purified free of most of the bacterial protein and released from fusion with intein by heat treatment at about 75 degrees C in the presence of thiol compounds. The recombinant enzyme has maximal activity at pH 5.6 and 95 degrees C. The half-life of this preparation in 0.05 M acetate buffer (pH 5.6) at 90 degrees C and 110 degrees C was 11 h and 3.5 h, respectively, and retained 24% of residual activity following incubation for 2 h at 120 degrees C. Maltose was the main end product of starch hydrolysis catalyzed by this alpha-amylase. However, small amounts of glucose and some residual unconverted oligosaccharides were also detected. Furthermore, this enzyme shows remarkable activity toward glycogen (49.9% of the value determined for starch hydrolysis) but not toward pullulan.  相似文献   

3.
AIM: An investigation was carried out on the production of alpha-amylase by Bacillus thermooleovorans NP54, its partial purification and characterization. METHODS AND RESULTS: The thermophilic bacterium was grown in shake flasks and a laboratory fermenter containing 2% soluble starch, 0.3% tryptone, 0.3% yeast extract and 0.1% K2HPO4 at 70 degrees C and pH 7.0, agitated at 200 rev min(-1) with 6-h-old inoculum (2% v/v) for 12 h. When the enzyme was partially purified using acetone (80%[v/v] saturation), a 43.7% recovery of enzyme with 6.2-fold purification was recorded. The KM and Vmax (soluble starch) values were 0.83 mg ml(-1) and 250 micromol mg(-1) protein min(-1), respectively. The enzyme was optimally active at 100 degrees C and pH 8.0 with a half-life of 3 h at 100 degrees C. Both alpha-amylase activity and production were Ca2+ independent. CONCLUSIONS: Bacillus thermooleovorans NP54 produced calcium-independent and thermostable alpha-amylase. SIGNIFICANCE AND IMPACT OF THE STUDY: The calcium-independent and thermostable alpha-amylase of B. thermooleovorans NP54 will be extremely useful in starch saccharification since the alpha-amylases used in the starch industry are calcium dependent. The use of this enzyme in starch hydrolysis eliminates the use of calcium in starch liquefaction and subsequent removal by ion exchange.  相似文献   

4.
Some properties of immobilized alpha-amylase by Aspergillus sclerotiorum within calcium alginate gel beads were investigated and compared with soluble enzyme. Optimum pH and temperature were found to be 5.0 and 40 degrees C, respectively, for both soluble and immobilized enzymes. The immobilized enzyme had a better Km value, but kcat/Km values were the same for both enzymes. Entrapment within calcium alginate gel beads improved, remarkably, the thermal and storage stability of alpha-amylase. The half life values of immobilized enzyme and soluble enzyme at 60 degrees C were 164.2, and 26.2 min, respectively. The midpoint of thermal inactivation (Tm) shifted from 56 degrees C (for soluble enzyme) to 65.4 degrees C for immobilized enzyme. The percentages of soluble starch hydrolysis for soluble and immobilized alpha-amylase were determined to be 97.5 and 92.2% for 60 min, respectively.  相似文献   

5.
Mutational experiments were carried out to decrease the protease productivity of Aspergillus ficum IFO 4320 by using N-methyl-N'-nitro-N-nitrosoguanidine. A protease-negative mutant, M-33, exhibited higher alpha-amylaseactivity than the parent strain under submerged culture at 30 degrees C for 24 h. About 70% of the total alpha-amylase activity in the M-33 culture filtrate was adsorbed onto starch granules. The electrophoretically homogeneous preparation of raw-starch-adsorbable alpha-amylase (molecular weight, 88,000), acid stable at pH 2, showed intensive raw-starch-digesting activity, dissolving corn starch granules completely. The preparation also exhibited a high synergistic effect with glucoamylase I. A mutant, M-72, with higher protease activity produced a raw cornstarch-unadsorbable alpha-amylase. The purified enzyme (molecular weight, 54,000), acid unstable, showed no digesting activity on raw corn starch and a lower synergistic effect with glucoamylase I in the hydrolysis of raw corn starch. The fungal alpha-amylase was therefore divided into two types, a novel type of raw-starch-digesting enzyme and a conventional type of raw-starch-nondigesting enzyme.  相似文献   

6.
Thermotoga maritima MSB8 has a chromosomal alpha-amylase gene, designated amyA, that is predicted to code for a 553-amino-acid preprotein with significant amino acid sequence similarity to the 4-alpha-glucanotransferase of the same strain and to alpha-amylase primary structures of other organisms. Upstream of the amylase gene, a divergently oriented open reading frame which can be translated into a polypeptide with similarity to the maltose-binding protein MalE of Escherichia coli was found. The T. maritima alpha-amylase appears to be the first known example of a lipoprotein alpha-amylase. This is in agreement with observations pointing to the membrane localization of this enzyme in T. maritima. Following the signal peptide, a 25-residue putative linker sequence rich in serine and threonine was found. The amylase gene was expressed in E. coli, and the recombinant enzyme was purified and characterized. The molecular mass of the recombinant enzyme was estimated at 61 kDa by denaturing gel electrophoresis (63 kDa by gel permeation chromatography). In a 10-min assay at the optimum pH of 7.0, the optimum temperature of amylase activity was 85 to 90 degrees C. Like the alpha-amylases of many other organisms, the activity of the T. maritima alpha-amylase was dependent on Ca2+. The final products of hydrolysis of soluble starch and amylose were mainly glucose and maltose. The extraordinarily high specific activity of the T. maritima alpha-amylase (about 5.6 x 10(3) U/mg of protein at 80 degrees C, pH 7, with amylose as the substrate) together with its extreme thermal stability makes this enzyme an interesting candidate for biotechnological applications in the starch processing industry.  相似文献   

7.
The hydrolysis of starch to low-molecular-weight products (normally characterised by their dextrose equivalent (DE), which is directly related to the number-average molecular mass) was studied at different temperatures. Amylopectin potato starch, lacking amylose, was selected because of its low tendency towards retrogradation at lower temperatures. Bacillus licheniformis alpha-amylase was added to 10% [w/w] gelatinised starch solutions. The hydrolysis experiments were done at 50, 70, and 90 degrees C. Samples were taken at defined DE values and these were analysed with respect to their saccharide composition. At the same DE the oligosaccharide composition depended on the hydrolysis temperature. This implies that at the same net number of bonds hydrolysed by the enzyme, the saccharide composition was different. The hydrolysis temperature also influenced the initial overall molecular-weight distribution. Higher temperatures led to a more homogenous molecular weight distribution. Similar effects were observed for alpha-amylases from other microbial sources such as Bacillus amyloliquefaciens and Bacillus stearothermophilus. Varying the pH (5.1, 6.2, and 7.6) at 70 degrees C did not significantly influence the saccharide composition obtained during B. licheniformis alpha-amylase hydrolysis. The underlying mechanisms for B. licheniformis alpha-amylase were studied using pure linear oligosaccharides, ranging from maltotriose to maltoheptaose as substrates. Activation energies for the hydrolysis of individual oligosaccharides were calculated from Arrhenius plots at 60, 70, 80, and 90 degrees C. Oligosaccharides with a degree of polymerisation exceeding that of the substrate could be detected. The contribution of these oligosaccharides increased as the degree of polymerisation of the substrate decreased and the temperature of hydrolysis increased. The product specificity decreased with increasing temperature of hydrolysis, which led to a more equal distribution between the possible products formed. Calculations with the subsite map as determined for the closely related alpha-amylase from B. amyloliquefaciens reconfirmed this finding of a decreased substrate specificity with increased temperature of hydrolysis. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

8.
An alpha-amylase (EC 3.2.1.1) secreted by Clostridium perfringens NCTC 8679 type A was purified to homogeneity and characterized. It was isolated from concentrated cell-free culture medium by ion-exchange and gel permeation chromatography. The enzyme exhibited maximal activity at pH 6.5 and 30 degrees C without the presence of calcium. The pI of the enzyme was 4.75. The estimated molecular weight of the purified enzyme was 76 kDa. The purified enzyme was inactivated between 35 and 40 degrees C, which increased to between 45 and 50 degrees C in the presence of calcium (5 mM). The purified enzyme produced a mixture of oligosaccharides as major end products of starch hydrolysis, indicating alpha-amylase activity.  相似文献   

9.
The enzymatic hydrolysis of soluble starch with an alpha-amylase from Bacillus licheniformis (commercial enzyme Termamyl 300 L Type DX) have been experimentally studied at pH 7.5, within the temperature range of 37-75 degrees C, at initial substrate concentrations of between 0.25 and 2.00 g/L, and enzyme concentrations of between 0.575 x 10(-4) and 13.8 x 10(-4) g/L. To follow the reaction a procedure based on the iodometric method for measuring alpha-amylase activity was used. The kinetics of the enzymatic hydrolysis was fitted to the Michaelis-Menten equation using the integral method, taking into account that the thermal deactivation of the enzyme follows a second-order kinetic. These parameters were fitted to the Arrhenius equation obtaining activation energies of 24.4 and 41.7 kJ/mol and preexponential factors of 734.9 g/L and 1.74 x 10(8) min(-1) for K(M) and k, respectively.  相似文献   

10.
The effectiveness of thermoseparating polymer-based aqueous two-phase systems (ATPS) in the enzymatic hydrolysis of starch was investigated. In this work, the phase diagrams of PEO-PPO-2500/ammonium sulfate and PEO-PPO-2500/magnesium sulfate systems were determined at 25 degrees C. The partition behavior of pure alpha-amylase and amyloglucosidase in four ATPS, namely, PEO-PPO/(NH(4))(2)SO(4), PEO-PPO/MgSO(4), polyethylene glycol (PEG)/(NH(4))(2)SO(4), and PEG/MgSO(4), was evaluated. The effects of phase-forming component concentrations on the enzyme activity and partitioning were assessed. Partitioning of a recombinant, thermostable alpha-amylase (MJA1) from the hyperthermophile, Methanococcus jannaschii was also investigated. All of the studied enzymes partitioned unevenly in these polymer/salt systems. The PEO-PPO-2500/MgSO(4) system was extremely attractive for starch hydrolysis. Polymer-based starch hydrolysis experiments containing PEO-PPO-2500/MgSO(4) indicated that the use of ATPS had a significant effect on soluble starch hydrolysis. Batch starch hydrolysis experiments with PEO-PPO/salt two-phase systems resulted in higher production of maltose or glucose and exhibited remarkably faster hydrolysis. A 22% gain in maltose yield was obtained as a result of the increased productivity. This work is the first reported application of thermoseparating polymer ATPS in the processing of starches. These results reveal the potential for thermoseparating polymer-enhanced extractive bioconversion of starch as a practical technology.  相似文献   

11.
The hydrolysis of amylopectin potato starch with Bacillus licheniformis alpha-amylase (Maxamyl) was studied under industrially relevant conditions (i.e. high dry-weight concentrations). The following ranges of process conditions were chosen and investigated by means of an experimental design: pH [5.6-7.6]; calcium addition [0-120 microg/g]; temperature [63-97 degrees C]; dry-weight concentration [3-37% [w/w]]; enzyme dosage [27.6-372.4 microL/kg] and stirring [0-200 rpm]. The rate of hydrolysis was followed as a function of the theoretical dextrose equivalent. The highest rate (at a dextrose equivalent of 10) was observed at high temperature (90 degrees C) and low pH (6). At a higher pH (7.2), the maximum temperature of hydrolysis shifted to a lower value. Also, high levels of calcium resulted in a decrease of the maximum temperature of hydrolysis. The pH, temperature, and the amount of enzyme added showed interactive effects on the observed rate of hydrolysis. No product or substrate inhibition was observed. Stirring did not effect the rate of hydrolysis. The oligosaccharide composition after hydrolysis (at a certain dextrose equivalent) did depend on the reaction temperature. The level of maltopentaose [15-24% [w/w]], a major product of starch hydrolysis by B. licheniformis alpha-amylase, was influenced mostly by temperature.  相似文献   

12.
An alpha-amylase produced by Scytalidium thermophilum was purified using DEAE-cellulose and CM-cellulose ion exchange chromatography and Sepharose 6B gel filtration. The purified protein migrated as a single band in 6% PAGE and 7% SDS-PAGE. The estimated molecular mass was 36 kDa (SDS-PAGE) and 49 kDa (Sepharose 6B). Optima of pH and temperature were 6.0 and 60 degrees C, respectively. In the absence of substrate the purified alpha-amylase was stable for 1 h at 50 degrees C and had a half-life of 12 min at 60 degrees C, but was fully stable in the presence of starch. The enzyme was not activated by several metal ions tested, including Ca(2+) (up to 10 mM), but HgCl(2 )and CuCl(2) inhibited its activity. The alpha-amylase produced by S. thermophilum preferentially hydrolyzed starch, and to a lesser extent amylopectin, maltose, amylose and glycogen in that order. The products of starch hydrolysis (up to 6 h of reaction) analyzed by thin layer chromatography, showed oligosaccharides such as maltotrioses, maltotetraoses and maltopentaoses. Maltose and traces of glucose were formed only after 3 h of reaction. These results confirm the character of the enzyme studied to be an alpha-amylase (1,4-alpha-glucan glucanohydrolase).  相似文献   

13.
An endophytic fungus, Fusicoccum sp. BCC4124, showed strong amylolytic activity when cultivated on multi-enzyme induction enriched medium and agro-industry substrates. alpha-Amylase and alpha-glucosidase activities were highly induced in the presence of maltose and starch. The purified target alpha-amylase, Amy-FC1, showed strong hydrolytic activity on soluble starch (kcat/Km=6.47 x 10(3) min(-1)(ml/mg)) and selective activity on gamma- and beta-cyclodextrins, but not on alpha-cyclodextrin. The enzyme worked optimally at 70 degrees C in a neutral pH range with t(1/2) of 240 min in the presence of Ca(2+) and starch. Maltose, matotriose, and maltotetraose were the major products from starch hydrolysis but prolonged reaction led to the production of glucose, maltose, and maltotriose from starch, cyclodextrins, and maltooligosaccharides (G3-G7). The amylase showed remarkable glucose tolerance up to 1 M, but was more sensitive to inhibition by maltose. The deduced protein primary structure from the putative gene revealed that the enzyme shared moderate homology between alpha-amylases from Aspergilli and Lipomyces sp. This thermotolerant, glucose tolerant maltooligosaccharide-forming alpha-amylase is potent for biotechnological application.  相似文献   

14.
Liquefaction of corn starch is generally considered to be difficult to achieve. A double enzyme system, a combination of bacterial alpha-amylase and fungal glucoamylase, was tested for the production of dextrose from corn starch. The former liquefies starch and the latter hydrolyzes further into glucose

Particularly various conditions for liquefaction of corn starch were examined. As criteria of solubilization of starch molecule, turbidity of filtrate obtained while the solution was hot, iodine coloration value, filterability and turbidity of the saccharified solution after the addition of alcohol were measured.

Starch slurry containing bacterial alpha-amylase was poured continuously in fine stream into hot water with vigorous agitation. Liquefaction at 92°C was better than at 87°C for dissolving corn starch. It was indispensable to apply heat treatment under high pressure after liquefaction followed by the second addition of bacterial alpha-amylase at 90°C to render remaining tightly bound starch micelle to be broken down. Heat treatment was continued at 120°C or at higher temperature. Then, solution was cooled rapidly down to about 90°C. Immediately bacterial alpha-amylase was added. In case the second addition of bacterial alpha-amylase was carried out after cooling to 55°C or after holding for 10min at 80°C, no effect was observed by the second addition. These findings were confirmed in the experiments on commercial production scale.  相似文献   

15.
Rhizopus microsporus var. rhizopodiformis produced high levels of alpha-amylase and glucoamylase under solid state fermentation, with several agricultural residues, such as wheat bran, cassava flour, sugar cane bagasse, rice straw, corncob and crushed corncob as carbon sources. These materials were humidified with distilled water, tap water, or saline solutions--Segato Rizzatti (SR), Khanna or Vogel. The best substrate for amylase production was wheat bran with SR saline solution (1:2 v/v). Amylolytic activity was still improved (14.3%) with a mixture of wheat bran, corncob, starch and SR saline solution (1:1:0.3:4.6 w/w/w/v). The optimized culture conditions were initial pH 5, at 45 degrees C during 6 days and relative humidity around 76%. The crude extract exhibited temperature and pH optima around 65 degrees C and 4-5, respectively. Amylase activity was fully stable for 1 h at temperatures up to 75 degrees C, and at pH values between 2.5 and 7.5.  相似文献   

16.
Xu X  Fang J  Wang W  Guo J  Chen P  Cheng J  Shen Z 《Transgenic research》2008,17(4):645-650
An alpha-amylase gene from Bacillus stearothermophilus under the control of the promoter of a major rice-seed storage protein was introduced into rice. The transgenic line with the highest alpha-amylase activity reached about 15,000 U/g of seeds (one unit is defined as the amount of enzyme that produces 1 mumol of reducing sugar in 1 min at 70 degrees C). The enzyme produced in the seeds had an optimum pH of 5.0-5.5 and optimum temperature of 60-70 degrees C. Without extraction or purification, the power of transgenic rice seeds was able to liquify 100 times its weight of corn powder in 2 h. Thus, the transgenic rice could be used for industrial starch liquefaction.  相似文献   

17.
The extracellular amylolytic enzymes of Schwanniomyces alluvius were studied to determine future optimization of this yeast for the production of industrial ethanol from starch. Both alpha-amylase and glucoamylase were isolated and purified. alpha-Amylase had an optimum pH of 6.3 and was stable from pH 4.5 to 7.5. The optimum temperature for the enzyme was 40 degrees C, but it was quickly inactivated at temperatures above 40 degrees C. The Km for soluble starch was 0.364 mg/ml. The molecular weight was calculated to be 61,900 +/- 700. alpha-Amylase was capable of releasing glucose from starch, but not from pullulan. Glucoamylase had an optimum pH of 5.0 and was stable from pH 4.0 to greater than 8.0. The optimum temperature for the enzyme was 50 degrees C, and although less heat sensitive than alpha-amylase, it was quickly inactivated at 60 degrees C. Km values were 12.67 mg/ml for soluble starch and 0.72 mM for maltose. The molecular weight was calculated to be 155,000 +/- 3,000. Glucoamylase released only glucose from both soluble starch and pullulan. S. alluvius is one of the very few yeasts to possess both alpha-amylase and glucoamylase as well as some fermentative capacity to produce ethanol.  相似文献   

18.
The extracellular amylolytic enzymes of Schwanniomyces alluvius were studied to determine future optimization of this yeast for the production of industrial ethanol from starch. Both alpha-amylase and glucoamylase were isolated and purified. alpha-Amylase had an optimum pH of 6.3 and was stable from pH 4.5 to 7.5. The optimum temperature for the enzyme was 40 degrees C, but it was quickly inactivated at temperatures above 40 degrees C. The Km for soluble starch was 0.364 mg/ml. The molecular weight was calculated to be 61,900 +/- 700. alpha-Amylase was capable of releasing glucose from starch, but not from pullulan. Glucoamylase had an optimum pH of 5.0 and was stable from pH 4.0 to greater than 8.0. The optimum temperature for the enzyme was 50 degrees C, and although less heat sensitive than alpha-amylase, it was quickly inactivated at 60 degrees C. Km values were 12.67 mg/ml for soluble starch and 0.72 mM for maltose. The molecular weight was calculated to be 155,000 +/- 3,000. Glucoamylase released only glucose from both soluble starch and pullulan. S. alluvius is one of the very few yeasts to possess both alpha-amylase and glucoamylase as well as some fermentative capacity to produce ethanol.  相似文献   

19.
AIM: Statistical optimization for maximum production of a hyperthermostable, Ca2+-independent and high maltose-forming alpha-amylase by Geobacillus thermoleovorans. METHODS AND RESULTS: G. thermoleovorans was cultivated in 250 ml flasks containing 50 ml of chemically defined glucose-arginine medium (g l(-1): glucose 20; arginine 1.2; riboflavin 150 microg ml(-1); MgSO4. 7H2O 0.2; NaCl 1.0; pH 7.0). The medium was inoculated with 5 h-old bacterial inoculum (1.8x10(8) CFU ml(-1)), and incubated in an incubator shaker at 70 degrees C for 12 h at 200 rev min(-1). The fermentation variables optimized by 'one variable at a time' approach were further optimized by response surface methodology (RSM). The statistical model was obtained using central composite design (CCD) with three variables: glucose, riboflavin and inoculum density. An over all 24 and 70% increase in enzyme production was attained in shake flasks and fermenter because of optimization by RSM, respectively. A good coverage of interactions could also be explained by RSM. The end products of the action of alpha-amylase on starch were maltose (62%), maltotriose (31%) and malto-oligosaccharides (7%). CONCLUSIONS: RSM allowed optimization of medium components and cultural parameters for attaining high yields of alpha-amylase, and further, a good coverage of interactions could be explained. The yield of maltose was higher than maltotriose and malto-oligosaccharides in the starch hydrolysate. SIGNIFICANCE AND IMPACT OF THE STUDY: By applying RSM, critical fermentation variables were optimized rapidly. The starch hydrolysate contained a high proportion of maltose, and therefore, the enzyme can find application in starch saccharification process for the manufacture of high maltose syrups. The use of this enzyme in starch saccharification eliminates the addition of Ca2+.  相似文献   

20.
Glycogen content and alpha-amylase activity were estimated in the infective juveniles (IJs) of Heterorhabditis bacteriophora at different times of storage. The glycogen content declined from 5.8 to 2.5 ng/IJ during storage for 40 days at 27 degrees C. The change in glycogen content coincided with the change of alpha-amylase activity during storage. alpha-Amylase was purified from IJs at zero time of storage by ion exchange chromatography and gel filtration. Ion exchange chromatography resolved alpha-amylase into three isoenzymes. The major isoenzyme alpha-amylase I had the highest specific activity and was purified to homogeneity. A molecular mass of 46-47 kDa was estimated for both the native and denatured enzyme, suggesting that the enzyme is monomeric. The Km values were 6.5 and 9.6 mg/ml using starch and glycogen as substrates, respectively. alpha-Amylase I showed optimum activity at pH 7.0 and had an optimum temperature of 40 degrees C. The enzyme was unstable at temperatures above 40 degrees C. The enzyme activity was severely inhibited by EDTA, p-CMB and iodoacetic acid, but potentiated by CaCl2 and NaCl. These results are discussed and compared with previously reported alpha-amylases in the insect hosts of the parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号