首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
1.  Chronic ingestion of caffeine by male NIH strain mice alters the density of a variety of central receptors.
2.  The density of cortical A1 adenosine receptors is increased by 20%, while the density of striatal A2A adenosine receptors is unaltered.
3.  The densities of cortical 1 and cerebellar 2 adrenergic receptors are reduced byca. 25%, while the densities of cortical 1 and 2 adrenergic receptors are not significantly altered. Densities of striatal D1 and D2 dopaminergic receptors are unaltered. The densities of cortical 5 HT1 and 5 HT2 serotonergic receptors are increased by 26–30%. Densities of cortical muscarinic and nicotinic receptors are increased by 40–50%. The density of cortical benzodiazepine-binding sites associated with GABAA receptors is increased by 65%, and the affinity appears slightly decreased. The density of cortical MK-801 sites associated with NMDA-glutaminergic receptors appear unaltered.
4.  The density of cortical nitrendipine-binding sites associated with calcium channels is increased by 18%.
5.  The results indicate that chronic ingestion of caffeine equivalent to about 100 mg/kg/day in mice causes a wide range of biochemical alterations in the central nervous system.
  相似文献   

2.
Ion channel hypothesis for Alzheimer amyloid peptide neurotoxicity   总被引:6,自引:0,他引:6  
Summary 1. Alzheimer's disease (AD) is a chronic dementia and neurodegenerative disorder affecting the oldest portions of the population. Brains of AD patients accumulate large amount of the AP peptide in amyloid plaques.2. The AP[1–40] peptide is derived by proteolytic processing from a much larger amyloid precursor protein (APP), and has been circumstantially identified as the toxic principle causing cell damage in the disease.4. The AP[1–40] peptide is able to form quite characteristic calcium channels in planar lipid bilayers. These channels have conductances in the nS range, and can dissipate ion gradients quickly. The peptide can also cause equivalent cation conductances in cells.5. We suggest that amyloid channel blocking agents might be therapeutically useful in Alzheimer's Disease, and have constructed molecular models of the channels to aid in the design of such compounds.  相似文献   

3.
A theoretical model of calcium signaling is presented that simulates oscillations of cytoplasmic calcium concentration ([Ca2+]cyt) in stomatal guard cells under the action of abscisic acid. The model is based on the kinetics of inositol 1,4,5-trisphosphate-sensitive calcium channels of endoplasmic reticulum and cyclic ADP-ribose-sensitive calcium channels of the tonoplast. The operation of two energy-dependent pumps—the Ca2+-ATPase of the endoplasmic reticulum and the Ca2+/H+ antiporter of the tonoplast—is also included in the model. It is shown that the removal of excessive Ca2+ from the cytoplasm by the tonoplast Ca2+/H+ antiporter is the main factor accounting for generation of [Ca2+]cyt oscillations at a wide range of ABA concentrations (0.01–1 M). The long period of [Ca2+]cyt oscillations in plant cells is explained by a slow release from inhibition of inositol 1,4,5-trisphosphate-gated calcium channels.  相似文献   

4.
N- and P/Q-type calcium channels are localized in high density in presynaptic nerve terminals and are crucial elements in neuronal excitation–secretion coupling. In addition to mediating Ca2+ entry to initiate transmitter release, they are thought to interact directly with proteins of the synaptic vesicle docking/fusion machinery. As outlined in the preceding article, these calcium channels can be purified from brain as a complex with SNARE proteins which are involved in exocytosis. In addition, N-type and P/Q-type calcium channels are co-localized with syntaxin in high-density clusters in nerve terminals. Here we review the role of the synaptic protein interaction (synprint) sites in the intracellular loop II–III (LII–III) of both 1B and 1A subunits of N-type and P/Q-type calcium channels, which bind to syntaxin, SNAP-25, and synaptotagmin. Calcium has a biphasic effect on the interactions of N-type calcium channels with SNARE complexes, stimulating optimal binding in the range of 10–20 M. PKC or CaM KII phosphorylation of the N-type synprint peptide inhibits interactions with native brain SNARE complexes containing syntaxin and SNAP-25. Introduction of the synprint peptides into presynaptic superior cervical ganglion neurons reversibly inhibits EPSPs from synchronous transmitter release by 42%. At physiological Ca2+ concentrations, synprint peptides cause an approximate 25% reduction in transmitter release of injected frog neuromuscular junction in cultures, consistent with detachment of 70% of the docked vesicles from calcium channels based on a theoretical model. Together, these studies suggest that presynaptic calcium channels not only provide the calcium signal required by the exocytotic machinery, but also contain structural elements that are integral to vesicle docking, priming, and fusion processes.  相似文献   

5.
We investigated whether amyloid--peptide (A1–42) has an effect on the elevations of the intracellular concentration of Ca2+ ions ([Ca2+]i) induced by depolarizations of NG108-15 cells and on related Ca2+ channels. A1–42 (10-1000 nM) had no immediate effect on depolarization-induced [Ca2+]i elevations. [Ca2+]i increases were slightly diminished in cells grown in the presence of 100 or 1000 nM A1–42. Nifedipine (1 M) reduced these elevations equally in cells grown in the absence or presence of A1–42. In contrast, the ability of -conotoxin GVIA to diminish the depolarization-induced [Ca2+]i responses became lost in cells grown in the presence of 100 nM A1–42. This indicates that the influx of calcium through the N-type Ca2+ channels was compromised by the chronic exposure of cells to a submicromolar concentration of A1–42, presumably because of impairement of their function or diminished expression. This may be important in the pathogeny of Alzheimer's dementia in view of the pivotal role of N-type Ca2+ channels in neurotransmitter release.  相似文献   

6.
The plant alkaloids ryanodine and dehydroryanodine are high affinity, biphasic modulators of the intracellularly located, calcium-regulated calcium release channels of a variety of cell types. To date, little is certain about the molecular basis of the interactions that prompt low concentrations of ryanodine (nanomolar to low micromolar) to activate (open) the channels and higher concentrations to deactivate (functionally close) the sarcoplasmic reticulum calcium release channel. In the present study, we approached this question using novel, semi-synthetic C10–Oeq ester derivatives of ryanodine and dehydroryanodine as molecular probes of the ryanodine binding sites on the calcium release channel.Binding affinities of these C10–Oeq ester derivatives of ryanodine and dehydroryanodine with acidic, basic and neutral side chains (Kd values> 53.9 nM, Kd values 0.3–0.7 nM and Kd values 1.3–20.4 nM, compared with 2.3 and 2.8 nM for ryanodine and dehydroryanodine, respectively) were evaluated for their ability to modulate, the patency of the sarcoplasmic reticulum calcium release channel. With the exception of only two derivatives tested to date, all the semi-synthetic C10–Oeq esters selectivelyactivate the Ca2+ release channel. That is, they produce no functional closure of the sarcoplasmic reticulum calcium release channels at the highest concentration, that could be tested. Half-maximal concentrations for activation (EC50act , values) ranged from 0.87–4.2, M, compared with an EC50act of 1.3 M for ryanodine.  相似文献   

7.
Tension and patch clamp recording techniques were used to investigate the relaxation of rabbit pulmonary artery and the properties of the K+ current activated by levcromakalim in isolated myocytes. Under whole-cell voltage clamp, holding at –60 mV in symmetrical 139 mm K+, levcromakalim (10 m) induced a noisy inward current of –116 ± 19 pA (n = 13) which developed over 1 to 2 min. This current could be blocked by either glibenclamide (10 m) or phencyclidine (5–50 M) and was unaffected when extracellular Ca2+ was removed. Both these drugs inhibited the levcromakalim-induced relaxation of muscle strips precontracted with 20 mm [K+] o . Application of voltage ramps in symmetrical 139 mm K+ confirmed that the levcromakalim-induced current was carried by K+ ions and was weakly voltage dependent over the potential range from –100 to +40 mV.The unitary current amplitude and density of the channels underlying the levcromakalim-activated whole-cell K+ current was estimated from the noise in the current record. We estimate that levcromakalim caused activation of around 300 channels per cell, with a single channel current of 1.1 pA, corresponding to a slope conductance of about 19 pS. Furthermore, cells dialyzed with an ATP-free pipette solution developed a large noisy inward current at –60 mV, which could subsequently be blocked by flash photolysis of caged ATP. Analysis of the noise associated with this current indicated that the single channel amplitude underlying the ATP-blocked current was 1.4 pA, a value similar to that estimated for the levcromakalim-induced current. We conclude that the conductance of this ATP-sensitive channel is likely to be small under physiological conditions and that it is present at low density.We thank SmithKline & Beecham for the gift of levcromakalim, ICI Pharmaceuticals for the gift of charybdotoxin and Prof. D. Colquhoun for the noise analysis programs. We also thank Mr. R. Davey for technical assistance with tension experiments. This work was supported by the British Heart Foundation and the Wellcome Trust. L.H.C. is a Wellcome Research Fellow and P.L. is an intermediate fellow of the BHF.  相似文献   

8.
Summary Calcium channels in GH3 cells exhibit at least five conductance levels when examined in cell-attached or outside-out patches. These channels resemble the high threshold Ca2+ current in their range of activation and inactivation, and in their sensitivity to dihydropyridines (DHP). Mean open times for the five levels were brief (<1 msec) in control solutions but increased in the presence of BAY K 8644. In 100mm Ba2+ and BAY K 8644, the five predominant slope conductances were 8–9, 12–13, 16–18, 23–24, and 28 pS. The present study is the first report of multiple levels of the DHP-sensitive Ca2+ channel occurring with high frequency in native membranes. The range of conductance levels that we observed encompasses the range of conductances found for two other different types of Ca2+ channels and indicates that unit conductance should be used with caution as a distinguishing characteristic for identification of different channel types.  相似文献   

9.
Summary The effects of the calcium antagonist D-600 (methoxyverapamil) on the excitatory inward sodium current,I Na, of internally perfused squid giant axons were studied under voltageclamp conditions. We observed little or no effect of the drug when it was added to the external solution at concentrations of 10–200 M. Furthermore, it did not produce a frequency, or use-dependent block ofI Na when repetitive voltage-clamp pulses were used at rates of 2–5Hz. However, it did produce use-dependent blockade ofI Na when it was placed internally at a concentration of 200 M. These results in conjunction with other studies suggest that D-600 is a selective blocker of calcium channels in squid axons when the drug is placed in the external solution. Its effects, when placed in the internal solution, are similar to those of permanently charged local anesthetic derivatives, which also produce use-dependent block ofI Na.  相似文献   

10.
Summary Whole-cell patch-clamp recordings were made from freshly isolated human platelets. The pipette contained a high concentration of divalent cations, which permitted easy disruption of cell-attached membrane patches by suction. Single-channel currents were measured when the pipette contained isotonic BaCl2 or MgCl2 saline; over 30 sec –5 min an increasing number of channels appeared until conductance steps through individual channels could no longer be distinguished. The current-voltage relationship was curvilinear; chord conductance at –35 mV was 25 pS increasing to 45 to 52 pS at +45 mV. Ion substitution experiments showed the current to be primarily carried by Cl.E rev was shifted 30 mV/10-fold change in external Cl (replaced by gluconate), was similar with BaCl2 or MgCl2 in the pipette and was not significantly shifted by replacing external Na+ with K+. Addition of 1mm BAPTA to the MgCl2 pipette saline prevented activation of Cl currents; with isotonic CaCl2 internal saline, current appeared immediately upon patch rupture, suggesting that the Cl channels are dependent on internal Ca2+, 5-nitro-2-(3-phenylpropylamino)-benzoate, reported to block a Cl conductance in studies of rat epithelial cells, caused a potent flickery block and may be a useful tool with which to investigate the physiological role of Cl currents in human platelets.  相似文献   

11.
In recent years, it has been hypothesized that muscarinic receptor-stimulated phosphoinositide (PI) metabolism may represent a relevant target for the developmental neurotoxicity of ethanol. Age-, brain region-, and receptor-specific inhibitory effects of ethanol on this system have been found, both in vitro and after in vivo administration. As a direct consequence of this action, alterations of calcium homeostasis would be expected, through alterations of inositol trisphosphate formation, which mediates intracellular calcium mobilization. In the present study, the effects of ethanol (50–500 mM) on carbachol-stimulated PI metabolism and free intracellular calcium levels were investigated in rat primary cortical cultures, by measuring release of inositol phosphates and utilizing the two calcium probes fluo-3 and indo-1 on an ACAS (Adherent Cell Analysis and Sorting) Laser Cytometer. Ethanol exerted a concentration-dependent inhibition of carbachol-stimulated PI metabolism. In addition, ethanol's inhibitory effect paralleled the temporal development of the muscarinic receptor signal transduction system, with the strongest inhibition (25–50%) occurring when maximal stimulation by carbachol occurs (days 5–7). Ethanol also exerted a concentration-dependent decrease in free intracellular calcium levels following carbachol stimulation. Both initial calcium spike amplitude, seen in all responsive cells, as well as the total number of cells responding to carbachol, were decreased by ethanol. The inhibitory effects of ethanol seemed dependent upon preincubation time, in that a longer preincubation (30 min) with the lowest dose (50 mM), showed almost the same decrease in responding cell number and reduction in spike amplitude in responding cells, as a shorter incubation (10 min) with the highest ethanol dose (500 mM). The specificity of the response to carbachol was demonstrated by blocking the response with 10 M atropine. Moreover, experiments with carbachol in calcium-free buffer with 1 mM EGTA indicated that the initial calcium spike was due to intracellular calcium mobilization from intracellular stores. Since calcium is believed to play important roles in cell proliferation and differentiation, these results support the hypothesis that this intracellular signal-transduction pathway may be a target for ethanol, contributing to its developmental neurotoxicity.  相似文献   

12.
The antibodies against omega-conotoxin GVIA (-CTX GVIA; N-type voltage-dependent calcium channel [VDCC] blocker) and B1Nt (N-terminal segment [residues 1–13] of BI 1 subunits of VDCCs) were prepared, and the selectivity for each antigen -CTX GVIA and B1Nt was investigated. For the antigen selectivity of anti–-CTX GVIA antibody against -CTX GVIA, ELISA, and immunoprecipitation were used. The reactions for ELISA and immunoprecipitation were observed except when antibody IgG purified by Protein A–Sepharose CL-4B from nonimmunized serum (purified NI-Ab) was used. The specific reactions were inhibited by 10 nM -CTX GVIA, but not by -CTX SVIB (N-type VDCC blocker), -CTX MVIIC (N- and P-type VDCC blocker), or -Aga IVA (P-type VDCC blocker). For the antigen selectivity of the anti-B1Nt antibody, analyses by ELISA, immunoprecipitation, and Western blotting were conducted. The reactions were observed except when NI-Ab was used. The ELISA and immunoprecipitation reactions were inhibited by the antigen peptide B1Nt, and the IC50 values were about 1.2 × 1028 and 1.3 × 1028 M, respectively. The bands of 210 and 190 kD by Western blotting of crude membranes from chick brain were also inhibited by 1 M B1Nt. These results suggest that the antibodies prepared against -CTX GVIA and B1Nt in this work have high selectivity for their antigen. Therefore we assume that the antibodies against -CTX GVIA and B1Nt are useful tools for the analyses of the function and distribution of N-type VDCCs. The anti -CTX GVIA antibody must also be useful for the radioimmunoassay of -CTX GVIA.  相似文献   

13.
The mitochondrial ATP-Mg/Pi carrier functions to modulate the matrix adenine nucleotide pool size (ATP + ADP + AMP). Micromolar Ca2+ is required to activate the carrier. Net adenine nucleotide transport occurs as an electroneutral divalent exchange of ATP-Mg2– for HPO 4 2– . A steady-state adenine nucleotide pool size is attained when the HPO 4 2– and ATP-Mg2– matrix/cytoplasm concentration ratios are the same. This means that ATP-Mg2– can be accumulated against a concentration gradient in proportion to the [HPO 4 2– ] gradient that is normally maintained by the Pi/OH carrier. In liver, changes in matrix adenine nucleotide concentrations that are brought about by the ATP-Mg/Pi carrier can affect the activity of adenine nucleotide-dependent enzymes that are in the mitochondrial compartment. These enzymes in turn contribute to the overall regulation of bioenergetic function, flux through the gluconeogenesis and urea synthesis pathways, and organelle biogenesis. The ATP-Mg/Pi carrier is distinct from other mitochondrial transport systems with respect to kinetics and to substrate and inhibitor sensitivity. It is the only carrier regulated by Ca2+. This carrier is present in kidney and liver mitochondria, but not in heart.  相似文献   

14.
A number of ω-conotoxin GVIA mimetics based on an anthranilamide core were prepared and tested for their affinity for rat brain Cav2.2 channels. Features such as the presence of hydroxyl and fluoro substituents on the tyrosine side chain mimic, the length of the chains on the lysine/arginine side chain mimics and the use of diguanidino and diamino substituents rather than mono-guanidine/mono-amine substitution were examined. The diguanidinylated compounds proved to be the most active and deletion of the hydroxyl substituent had a limited influence on activity. The SAR associated with variation in the lysine/arginine side chain mimics was not strong. The introduction of a fluoro substituent into the tyrosine mimic produced the most active compound prepared in this study (2g), with an EC50 at rat brain Cav2.2 channels of 6 μM.  相似文献   

15.
Pentobarbital stimulates 36Cl permeation across single Deiters' membranes in a microchamber system, acting on classical, extracellularly facing, GABAA receptors. However, when applied on the membrane cytoplasmic side it activates per se labeled chloride inout permeation. No effect was found on chloride outin permeation. Similarly, at lower concentrations it facilitates the increase of 36Cl inout permeation by application of GABA on the membrane inside, again via asymmetric chloride channels allowing inout but not outin passage. These data confirm that on the Deiters' membrane cytoplasmic side there are structures behaving pharmacologically as GABAA receptors whose function is that of a Cl extrusion pump. This mechanism involves a cycle of activation-phosphorylation/desensitization-reactivation of the receptor complexes  相似文献   

16.
1. Caffeine at 0.3–10 mM enhanced the binding of [3H]ryanodine to calcium-release channels of rabbit muscle sarcoplasmic reticulum. A variety of other xanthines were as efficacious as caffeine or nearly so, but none appeared markedly more potent.2. Caffeine at 1 mM markedly inhibited binding of [3H]diazepam to GABAA receptors in rat cerebral cortical membranes.3. Other xanthines also inhibited binding with certain dimethylpropargylxanthines being nearly fivefold more potent than caffeine.4. Caffeine at 1 mM stimulated binding of [35S]TBPS to GABAA receptors as did certain other xanthines.5. The dimethylpropargylxanthines had little effect. 1,3-Dipropy1-8-cyclopentylxan- thine at 100 M had no effect on [3H]diazepam binding, but markedly inhibited [35S]TBPS binding.6. Structure–activity relationships for xanthines do differ for calcium-release channels and and for different sites on GABAA receptors, but no highly selective lead compounds were identified.  相似文献   

17.
The effect of centrally and peripherally administered dopamine D1 and D2 specific compounds on core body temperature in mice was investigated. Quinpirole (LY-17155), a D2 agonist, induced a dose-dependent fall in body temperature (2.4–11.6%; p<0.003) when injected intraperitoneally (ip, 0.3–3.0 mg/kg) and intracerebroventricularly (icv, 0.1 mg/kg). This quinpirole-induced (1.0 mg/kg, ip) hypothermia was reversed by the central and peripheral administration of the D2 antagonists S-(–)-sulpiride (3.0–30.0 mg/kg, ip; 0.1–3.0 mg/kg, icv) and spiperone (0.03 and 0.1 mg/kg, ip; 0.03–3.0 mg/kg, icv). Domperidone, a D2 antagonist which does not cross the blood brain barrier, had no effect on quinpirole-induced hypothermia (1.0–10.0 mg/kg, ip). Domperidone partially reversed quinpirole-induced hypothermia at 0.1–30.0 mg/kg, icv. The D1 agonist, SKF-38393 at a high dose of 10.0 mg/kg, ip mildly attenuated quinpirole-induced hypothermia (a 1.8% increase in temperature). SKF-38393 at 10.0 mg/kg, icv potentiated quinpirole-induced hypothermia. SCH-23390 (0.1–3.0 mg/kg, ip), a D1 antagonist, had no effect on quinpirole-induced hypothermia and potentiated the hypothermia when administered icv. An ineffective icv dose of spiperone (0.01 mg/kg) in reversing quinpirole-induced hypothermia was rendered effective by prior administration of SCH-23390 (0.1–3.0 mg/kg, icv) but not by SKF-38393 (1.0–10.0 mg/kg, icv). These data suggest a central D2 receptor mechanism mediating hypothermia in mice which is capable of being modulated by the D1 receptor.  相似文献   

18.
In primary cultures of neonatal rat heart cells we found a linear correlation between the number of L-type calcium channel-specific dihydropyridine (DHP) binding sites and spontaneous beating frequency (v).Formation of glycoproteins in tissue culture was suppressed by different inhibitors of N-glycosylation. This inhibition alters to a different extent the binding of the DHP ligand (+)-[methyl-3H]PN 200-110 and v. The most severe but reversible effect occurs at 6 g/ml tunicamycin (Bmax 45% and v 6%, resp., of control), a slight increase in Bmax at 0.1–0.5 mM castanospermine and 0.05–2.5 mM deoxymannojirimycin. The other inhibitors gave no significant alterations of Bmax.  相似文献   

19.
Summary Elementary Na+ currents were recorded in cell attached patches from short-time cultured neonatal cardiocytes in order to test the hypothesis whether the open state of DPI-modified, noninactivating cardiac Na+ channels is basically sensitive to blocking drug molecules such as antiarrhythmics.Lidocaine (300 mol/liter) effectively reduced the open probability of cardiac Na+ channels and, at a stimulation rate of 1 Hz, depressed the reconstructed macroscopic peak I Na to 40+ 3.5% of the predrug value. The same drug concentration failed to influence DPI-modified Na+ channels. Their open state proved almost insensitive to lidocaine. open decreased only slightly to 85 ±2%. Still more importantly, the number of transitions between the conducting and a nonconducting configuration did not increase. At –40 mV, lidocaine may interfere with the open state with an association rate constant of 1.3×105 mol–1sec–1 which is about two orders of magnitude smaller than the rate constant obtained with propafenone or prajmalium. Moreover, propafenone (10–20 mol/liter) or prajmalium (30 mol/liter) led to a tremendous increase in the number of transitions between the open and a nonconducting configuration. Lidocaine also failed to evoke a fast flicker blockade with reaction kinetics in the microsecond range.It is concluded that DPI-modified cardiac Na+ channels discriminate between lidocaine and other antiarrhythmic drugs. As a tentative explanation, this might be indicative for multiple binding sites for those drugs in cardiac Na+ channels.This work was supported by a grant from the Deutsche Forschungs-gemeinschagt (Ko 778/2–3), Bonn.  相似文献   

20.
A New Binding Method (NBM) was used to investigate the characteristics of the specific binding of 125I-omega-conotoxin (ω-CTX) GVIA and 125I-ω-CTX MVIIC to Cav2.1 and Cav2.2 channels captured from chick brain membranes by antibodies against B1Nt (a peptide sequence in Cav2.1 and Cav2.2 channels). The results for the NBM were as follows. (1) The ED50 values for specific binding of 125I-ω-CTX GVIA and 125I-ω-CTX MVIIC to Cav2.1 and Cav2.2 channels were about 68 and 60 pM, respectively, and very similar to those (87 and 35 pM, respectively) to crude membranes from chick brain. (2) The specific 125I-ω-CTX GVIA (100 pM) binding was inhibited by ω-CTX GVIA (0.5 nM), dynorphine A (Dyn), gentamicin (Gen), neomycin (Neo) and tobramicin (Tob) (100 μM each), but not by ω-agaconotoxin (Aga) IVA, calciseptine, ω-CTX SVIB, ω-CTX MVIIC (0.5 nM each), PN200-110 (PN), diltiazem (Dil) or verapamil (Ver) (100 μM each). Calmodulin (CaM) inhibited the specific binding in a dose-dependent manner (IC50 value of about 100 μg protein/ml). (3) The specific 125I-ω-CTX MVIIC (60 pM) binding was inhibited by ω-CTX MVIIC, ω-CTX GVIA, ω-CTX SVIB (0.5 nM each), Dyn, Neo and Tob (100 μM, each), but not by ω-Aga IVA, calciseptine (0.5 nM each), PN, Dil, Ver (100 μM each) or 100 μg protein/ml CaM. These results suggested that the characteristics of the specific binding of 125I-ω-CTX GVIA and 125I-ω-CTX MVIIC to Cav2.1 and Cav2.2 channels in the NBM were very similar to those to crude membranes from chick brain, although the IC50 values for CaM and free Ca2+ of CaM were about 33- and 5000-fold higher, respectively, than those for the specific binding of 125I-ω-CTX GVIA and 125I-ω-CTX MVIIC to crude membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号