首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenoloxidase (PO) is a major component of the insect immune system. The enzyme is involved in encapsulation and melanization processes as well as wound healing and cuticle sclerotization. PO is present as an inactive proenzyme, prophenoloxidase (PPO), which is activated via a protease cascade. In this study, we have cloned a full-length PPO1 cDNA and a partial PPO2 cDNA from the Indianmeal moth, Plodia interpunctella (Hubner) (Lepidoptera: Pyralidae) and documented changes in PO activity in larvae paralyzed and parasitized by the ectoparasitoid Habrobracon hebetor (Say) (Hymenoptera: Braconidae). The cDNA for PPO1 is 2,748 bp and encodes a protein of 681 amino acids with a calculated molecular weight of 78,328 and pI of 6.41 containing a conserved proteolytic cleavage site found in other PPOs. P. interpunctella PPO1 ranges from 71-78% identical to other known lepidopteran PPO-1 sequences. Percent identity decreases as comparisons are made to PPO-1 of more divergent species in the orders Diptera (Aa-48; As-49; and Sb-60%) and Coleoptera (Tm-58; Hd-50%). Paralyzation of host larvae of P. interpunctella by the idiobiont H. hebetor results in an increase in phenoloxidase activity in host hemolymph, a process that may protect the host from microbial infection during self-provisioning by this wasp. Subsequent parasitization by H. hebetor larvae causes a decrease in hemolymph PO activity, which suggests that the larval parasitoid may be secreting an immunosuppressant into the host larva during feeding.  相似文献   

2.
The melanization reaction is a major immune response in Arthropods and involves the rapid synthesis of melanin at the site of infection and injury. A key enzyme in the melanization process is phenoloxidase (PO), which catalyzes the oxidation of phenols to quinones, which subsequently polymerize into melanin. The Drosophila genome encodes three POs, which are primarily produced as zymogens or prophenoloxidases (PPO). Two of them, PPO1 and PPO2, are produced by crystal cells. Here we have generated flies carrying deletions in PPO1 and PPO2. By analyzing these mutations alone and in combination, we clarify the functions of both PPOs in humoral melanization. Our study shows that PPO1 and PPO2 are responsible for all the PO activity in the hemolymph. While PPO1 is involved in the rapid early delivery of PO activity, PPO2 is accumulated in the crystals of crystal cells and provides a storage form that can be deployed in a later phase. Our study also reveals an important role for PPO1 and PPO2 in the survival to infection with Gram-positive bacteria and fungi, underlining the importance of melanization in insect host defense.  相似文献   

3.
刘奎  林健荣  符悦冠  彭正强  金启安 《昆虫学报》2008,51(10):1011-1016
为了测明椰扁甲啮小蜂Tetrastichus brontispae寄生对寄主椰心叶甲Brontispa longissima蛹的血细胞和体液免疫反应的影响,开展了椰扁甲啮小蜂寄生对椰心叶甲蛹血细胞数量和延展性、血淋巴酚氧化酶活性、血淋巴黑化百分率和血细胞凝集素活性等影响的研究。结果表明:与同期未被寄生蛹相比,寄生蛹血细胞总量在寄生后2 d显著降低,但寄生后4 d显著升高; 寄生蛹的浆血细胞延展率在寄生后2 d显著降低,寄生后4 d显著升高;寄生蛹的血淋巴黑化百分率在寄生后0.5~2 d较高,寄生后3~4 d降低直至为0;寄生蛹的血淋巴酚氧化酶活性在寄生后0.5 d,1 d和4 d时显著升高;寄生蛹的血凝素活性在寄生后2 d较高,寄生后1 d和4 d较低。结果说明椰扁甲啮小蜂寄生使寄主椰心叶甲蛹血细胞和体液免疫反应呈现不规律的变化。  相似文献   

4.
Insect prophenoloxidase (PPO) induces melanization around pathogens. Before melanization, PPO is cleaved into phenoloxidase (PO) by serine proteases. Insect PPO can also be activated by exogenous proteases secreted by pathogens as well as by other compounds, such as ethanol and cetylpyridinium chloride (CPC). However, the effect of these activators on the activity of PO is unclear. In this study, the insect endogenous serine protease AMM1, α‐chymotrypsin, and ethanol were used to activate recombinant Drosophila PPO1 (rPPO1), and the PO activity differed depending on the activator applied. The PO‐induced intermediates during melanization also varied markedly in their numbers and abundances. Therefore, this study indicates that the mechanism of PPO activation influences PO activity. It also suggests that PO‐induced different intermediates may affect the antibacterial activity during melanization due to their toxicity.  相似文献   

5.
6.
Drosophila melanogaster, a freeze intolerant and cold shock sensitive insect, was transformed with the hyperactive insect antifreeze protein gene (AFP) from the spruce budworm, Choristoneura fumiferana. Transformation P-element constructs (pCasper) were made with CfAFP 337 isoform DNA using a strong constitutive promoter, Actin 5c. This is the first report of insect AFP used to transform another insect. Properly folded active insect AFP was only detected when signal sequences were used to target proteins to the endoplasmic reticulum for secretion into the hemolymph. The 18 residue Drosophila binding protein signal sequence (BiP) constructs resulted in transformed fly lines with significantly higher AFP expression in hemolymph than when the native C. fumiferana AFP signal sequence was used. The resultant transgene fly lines have the highest levels of thermal hysteresis, 0.8 degrees C, seen for any engineered Drosophila. Despite the high level of expression, even higher than some overwintering fish with natural levels of endogenous AFP, the transformants did not display any cold shock resistance compared to controls or low AFP expressing lines. These results indicate that insect AFP alone cannot protect Drosophila from cold shock and may not be useful for Drosophila cryopreservation.  相似文献   

7.
Most parasitic wasps inject maternal factors into the host hemocoel to suppress the host immune system and ensure successful development of their progeny. Melanization is one of the insect defence mechanisms against intruding pathogens or parasites. We previously isolated from the venom of Cotesia rubecula a 50 kDa protein that blocked melanization in the hemolymph of its host, Pieris rapae [Insect Biochem. Mol. Biol. 33 (2003) 1017]. This protein, designated Vn50, is a serine proteinase homolog (SPH) containing an amino-terminal clip domain. In this work, we demonstrated that recombinant Vn50 bound P. rapae hemolymph components that were recognized by antisera to Tenebrio molitor prophenoloxidase (proPO) and Manduca sexta proPO-activating proteinase (PAP). Vn50 is stable in the host hemolymph-it remained intact for at least 72 h after parasitization. Using M. sexta as a model system, we found that Vn50 efficiently down-regulated proPO activation mediated by M. sexta PAP-1, SPH-1, and SPH-2. Vn50 did not inhibit active phenoloxidase (PO) or PAP-1, but it significantly reduced the proteolysis of proPO. If recombinant Vn50 binds P. rapae proPO and PAP (as suggested by the antibody reactions), it is likely that the molecular interactions among M. sexta proPO, PAP-1, and SPHs were impaired by this venom protein. A similar strategy might be employed by C. rubecula to negatively impact the proPO activation reaction in its natural host.  相似文献   

8.
The prophenoloxidase (PPO) activation pathway and Toll pathway are two critical insect immune responses against microbial infection. Activation of these pathways is mediated by an extracellular serine protease cascade, which is negatively regulated by serpins. In this study, we found that the mRNA abundance of silkworm serpin-5 (BmSpn-5) increased dramatically in the fat body after bacterial infection. The expression level of antimicrobial peptides (AMPs), gloverin-3, cecropin-D and -E decreased in the silkworm larvae injected with recombinant BmSpn-5 protein. Meanwhile, the inhibition of beads melanization, systemic melanization and PPO activation by BmSpn-5 was also observed. By means of immunoaffinity purification and analysis by mass spectrometry, we identified that the silkworm clip domain serine proteases BmHP6 and BmSP21 form a complex with BmSpn-5, which suggests that BmHP6 and SP21 are the cognate proteases of BmSpn-5 and are essential in the serine protease cascade that activates the Toll and PPO pathways. Our study provides a comprehensive characterization of BmSpn-5 and sheds light on the multiple pathways leading to PPO activation and their regulation by serpins.  相似文献   

9.
10.
Polydnaviruses (PDVs) are obligatory symbionts of parasitoid wasps and play an important role in suppressing host immune defenses. Although PDV genes that inhibit host melanization are known in Microplitis bracovirus, the functional homologs in Cotesia bracoviruses remain unknown. Here, we find that Cotesia vestalis bracovirus (CvBV) can inhibit hemolymph melanization of its host, Plutella xylostella larvae, during the early stages of parasitization, and that overexpression of highly expressed CvBV genes reduced host phenoloxidase activity. Furthermore, CvBV-7-1 in particular reduced host phenoloxidase activity within 12 h, and the injection of anti-CvBV-7-1 antibody increased the melanization of parasitized host larvae. Further analyses showed that CvBV-7-1 and three homologs from other Cotesia bracoviruses possessed a C-terminal leucine/isoleucine-rich region and had a similar function in inhibiting melanization. Therefore, a new family of bracovirus genes was proposed and named as C -terminal L eucine/isoleucine-rich P rotein (CLP). Ectopic expression of CvBV-7-1 in Drosophila hemocytes increased susceptibility to bacterial repression of melanization and reduced the melanotic encapsulation of parasitized D. melanogaster by the parasitoid Leptopilina boulardi. The formation rate of wasp pupae and the eclosion rate of C. vestalis were affected when the function of CvBV-7-1 was blocked. Our findings suggest that CLP genes from Cotesia bracoviruses encoded proteins that contain a C-terminal leucine/isoleucine-rich region and function as melanization inhibitors during the early stage of parasitization, which is important for successful parasitization.  相似文献   

11.
In arthropods, the melanization reaction is associated with multiple host defense mechanisms leading to the sequestration and killing of invading microorganisms. Arthropod melanization is controlled by a cascade of serine proteases that ultimately activates the enzyme prophenoloxidase (PPO), which, in turn, catalyzes the synthesis of melanin. Here we report the biochemical and genetic characterization of a Drosophila serine protease inhibitor protein, Serpin-27A, which regulates the melanization cascade through the specific inhibition of the terminal protease prophenoloxidase-activating enzyme. Our data demonstrate that Serpin-27A is required to restrict the phenoloxidase activity to the site of injury or infection, preventing the insect from excessive melanization.  相似文献   

12.
The phenoloxidase (PO) cascade regulates the melanization of hemolymph, which serves as a conserved humoral immune response in insects and other arthropods. The reductant glutathione (GSH) has long been used to inhibit melanization of hemolymph from insects but whether GSH levels in hemolymph are sufficient to play a physiological role in regulating melanization is unknown. Here, we characterized the abundance and effects of GSH on the melanization of plasma from larval stage Pseudoplusia includens (Lepidoptera: Noctuidae). GSH concentration in newly collected plasma from day two fifth instars ranged from 50 to 115 μM, while the titer of tyrosine, a substrate for the PO cascade, was 141 μM. GSH titers rapidly declined in plasma after collection from larvae, but no melanin formation occurred until GSH levels fell below 20 μM. Added GSH dose-dependently blocked melanization while PO substrates overrode GSH inhibition. Experiments conducted in the absence of oxygen and presence of PO cascade inhibitors further suggested that depletion of GSH from plasma was primarily due to formation of reactive intermediates produced by activated PO. Additional studies identified hemocytes as a potential source of plasma GSH. Hemocyte lysates recycled oxidized glutathione (GSSG) into GSH using NADPH, while intact hemocytes released GSH into the medium. These results suggest that in addition to protease cascade-releated mechanisms that regulate phenoloxidase, GSH exerts another level of control on melanization of insect hemolymph.  相似文献   

13.
Some pathogens are capable of suppressing the melanization response of host insects, but the virulence factors responsible are largely unknown. The insect pathogen Microplitis demolitor bracovirus encodes the Egf family of small serine proteinase inhibitors. One family member, Egf1.0, was recently shown to suppress melanization of hemolymph in Manduca sexta in part by inhibiting the enzymatic activity of prophenoloxidase activating proteinase 3 (PAP3). However, other experiments suggested this viral protein suppresses melanization by more than one mechanism. Here we report that Egf1.0 inhibited the amidolytic activity of PAP1 and dose-dependently blocked processing of pro-PAP1 and pro-PAP3. Consistent with its PAP inhibitory activity, Egf1.0 also prevented processing of pro-phenoloxidase, serine proteinase homolog (SPH) 1, and SPH2. Isolation of Egf1.0-protein complexes from plasma indicated that Egf1.0 binds PAPs through its C-terminal repeat domain. Egf1.0 also potentially interacts with SPH2 and two other proteins, ferritin and gloverin, not previously associated with the phenoloxidase cascade. Overall, our results indicate that Egf1.0 is a dual activity PAP inhibitor that strongly suppresses the insect melanization response.  相似文献   

14.
In the spruce budworm, Choristoneura fumiferana, and the obliquebanded leafroller, C. rosaceana, mating significantly depressed pheromone production after 24 h. On subsequent days, the pheromone titre increased slightly in C. fumiferana, but not in C. rosaceana. No pheromonostatic activity was associated with male accessory sex gland (ASG) extracts, 20-hydroxy-ecdysone or hemolymph taken from mated females. However, pheromone production in mated females was not suppressed when the ventral nerve cord (VNC) was transected prior to mating, indicating that an intact VNC is required to permanently switch off pheromone production after mating. As suggested for other moth species, the presence of sperm in the spermatheca probably triggers the release of a signal, via the VNC, to inhibit pheromone production. The fact that in both species the brain-suboesophageal ganglion (Br-SEG) of mated females contains pheromonotropic activity and that their pheromone glands may be stimulated by the synthetic pheromone-biosynthesis-activating-neuropeptide (PBAN) or a brain extract supports the hypothesis that the neural signal prevents the release of PBAN into the hemolymph rather than inhibiting its biosynthesis. Therefore, we speculate that following the depletion of sperm in the spermatheca, the neural signal declines and is less effective in preventing the release of PBAN, thereby stimulating the resumption of pheromone production, as seen in mated C. fumiferana females. In a previous study, mating was shown to induce a significant rise in the juvenile hormone (JH) titre of both Choristoneura female moths, suggesting that post-mating pheromone inhibition may be under hormonal regulation. However, following topical applications or injections of the juvenile hormone analogue (JHA) and JH II into virgins, the pheromone only declined significantly 48 h after treatment in C. rosaceana. This suggests that the significant rise in the hemolymph JH titre after mating in C. rosaceana females plays a role in keeping the pheromone titre consistently low throughout their reproductive life. These findings will be discussed in relation to the different life histories of the two Choristoneura species.  相似文献   

15.
A detailed biochemical analysis has shown that during larval development on artificial medium, the amounts of K+, Na+, and Ca2+ in the hemolymph of healthy Choristoneura fumiferana varied from 85 to 110 mg/100 mL, 29 to 33 mg/100 mL, and 4.8 to 7.3 mg/100 mL, respectively. Similar results were obtained with Malacosoma disstria. Intoxication by Bacillus thuringiensis "H3a,3b" (B. t.) considerably modified the amounts of the cations. Thus, after 4 h, the quantity of K+ in M. disstria increased from 99 to 229 mg/100 mL and Na+ from 26.5 to 50.3 mg/100 mL while that of Ca2+ decreased from 5.8 to 1.2 mg/100 mL. Similar results were observed with C. fumiferana, but these variations occurred after 2 to 4 days of B. t. intoxication. The variations detected during the bacillosis, with respect to the cationic composition of the insect hemolymph, are rapidly detectable, well before light microscope observation can confirm the presence of this intoxication. Aspartate aminotransferase, alanine aminotransferase, alpha-hydroxybutyrate dehydrogenase, and isocitrate dehydrogenase activity fluctuated very slightly in the hemolymph of either healthy or bacillosed larvae of the two insects under study. These results suggest that it is possible to diagnose biochemically the presence of a B. t. intoxication in lepidopteran forest pests following treatments by this biological insecticide for their control.  相似文献   

16.
17.
18.
19.
Melanization of foreign targets in the mosquito, Anopheles gambiae, was studied using a model Sephadex bead system. A mosquito factor that was deposited on beads and prevented bead melanization (MPF) was purified. The N-terminal sequence of the factor identified it as lysozyme c-1 (Lys c-1). Gene silencing of Lys c-1 mediated by RNA interference resulted in a significant reduction in the MPF activity compared with controls. The purified Lys c-1 protein reduced dopachrome formation by mosquito hemolymph phenoloxidase in solution assays in vitro. In vivo, Lys c-1 might inhibit melanization of beads by blocking attachment of critical factors to the bead surface or by inhibiting PO directly. This work indicates that insect lysozymes can play unexpected roles in mediating melanization of foreign targets.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号