首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report details the effects of methotrexate on the intracellular folate pools of the MCF-7 human breast cancer cell line. To achieve this goal, we designed a high-pressure liquid chromatography system capable of separating the physiologic folates. The folate pools were quantitated following growth and equilibration in 2.25 microM radiolabeled folic acid. Each of the intracellular folates was identified by coelution with standard folates and by chemical/biochemical tests unique to each of the various folates. The 10-formyl-H4PteGlu (where H4PteGlu represents dl-tetrahydrofolic acid) pool accounted for 20.5% of the total intracellular folate pool in untreated cells, whereas 5-formyl-H4PteGlu and H4PteGlu accounted for 6.5 and 10.6%, respectively. The levels of these three folates remained stable throughout cell growth. The 5-methyl-H4PteGlu pool accounted for less than 10% in early growth phase cells but assumed greater than 60% of the total pool by the mid- and late-log phases of cell growth. When the MCF-7 cells were exposed to 1 microM methotrexate, de novo purine synthesis and de novo thymidylate synthesis were rapidly inhibited to less than 20% of control within 3 h. During this time period, rapid alterations in the folate pools also occurred such that dihydrofolic acid levels rose from less than 1% in untreated cells to greater than 30% of the total pool. This rise was accompanied by a parallel fall in 5-methyl-H4PteGlu. H4PteGlu and 5-formyl-H4PteGlu were undetectable following 2 h of methotrexate exposure, but 10-formyl-H4PteGlu, the required cosubstrate for de novo purine synthesis, was preserved at greater than 80% of pretreatment values following a 1 microM methotrexate exposure of up to 21 h. The rapid inhibition of de novo purine synthesis in these cells following methotrexate exposure coupled with a relatively preserved 10-formyl-H4PteGlu pool suggests direct inhibition of this synthetic pathway by the temporally coincident accumulation of dihydrofolic acid and/or methotrexate polyglutamates. This inhibition cannot be ascribed to depletion of the folate cofactor 10-formyl-H4PteGlu.  相似文献   

2.
The endogenous levels of the various folate compounds in rat liver were determined using high-pressure liquid chromatography for the rapid separation of folate monoglutamate forms with specific quantitation of the folates by microbiological analysis of eluted fractions. The eight folate derivatives that were assayable were tetrahydrofolic acid (H4PteGlu), 5-methyl-H4PteGlu, 10-formyl-H4PteGlu, 5-formyl-H4PteGlu, 5,10-methenyl-H4PteGlu, 5,10-methylene-H4PteGlu, H2PteGlu, and PteGlu. New techniques for the preparation of tissues were developed in order to reduce the degradation of the folates. Tissue folates were converted to the monoglutamate form by a partially purified hog kidney polyglutamate hydrolase preparation and incubations were carried out at pH 6.0. This minimized folate degradation but still allowed for maximal polyglutamate hydrolase activity. Rapid removal of tissues was compared with freeze-clamping techniques. The major folates in rat liver were H4PteGlu and 5-methyl-H4PteGlu, comprising 42 and 39%, respectively, of the total liver folate pool of 27.30 nmol/g liver (about 13 μg/g liver). In addition, 10-formyl-H4PteGlu and 5-formyl-H4PteGlu each comprised 10% of the total folate pool. No endogenous PteGlu, H2PteGlu, or 5,10-methylene-H4PteGlu was detected in rat liver samples under our conditions. Distribution of 14C derived from a previous [14C]folic acid injection paralleled the distribution of folate as determined microbiologically after high-pressure liquid chromatography separation. The importance of these methods for the direct determination and estimation of flux of H4PteGlu, 5-methyl-H4PteGlu, and 10-formyl-H4PteGlu in studies dealing with the folate system was emphasized.  相似文献   

3.
Thymidylate synthase has been purified greater than 4000-fold from a human colon adenocarcinoma maintained as a xenograft in immune-deprived mice. In this disease, the enzyme is an important target for the cytotoxic action of 5-fluorouracil, which is influenced by the reduced folate substrate CH2-H4PteGlu. Due to the importance of this interaction, and the existence in cells of folate species as polyglutamyl forms, the interaction of folylpolyglutamates with thymidylate synthase was examined. Polyglutamates of PteGlu were used as inhibitors, and the interaction of CH2-H4PteGlu polyglutamates as substrates or in an inhibitory ternary complex were also examined. Using PteGlu1-7, Ki values were determined. A maximal 125-fold decrease in Ki was observed between PteGlu1 and PteGlu4; further addition of up to three glutamyl residues did not result in an additional decrease in Ki. Despite the increased binding affinity of folypolyglutamates for this enzyme, no change in the Km values for either dUMP (3.6 microM) or CH2-H4PteGlu (4.3 microM) were detected when polyglutamates of [6R]CH2-H4PteGlu were used as substrates. Product inhibition studies demonstrated competitive inhibition between dTMP and dUMP in the presence of CH2-H4PteGlu5. In addition, CH2-H4PteGlu4 stabilized an inhibitory ternary complex formed between FdUMP, thymidylate synthase, and CH2-H4PteGlu4. Thus the data do not support a change in the order of substrate binding and product release upon polyglutamylation of CH2-H4PteGlu reported for non-human mammalian enzyme. This is the first study to characterize kinetically thymidylate synthase from a human colon adenocarcinoma.  相似文献   

4.
Most mammalian cells receive exogenous folate from the bloodstream in the form of 5-methyltetrahydropteroylmonoglutamate (CH3-H4PteGlu1). Because this folate derivative is a very poor substrate for folylpolyglutamate synthetase, the enzyme that adds glutamyl residues to intracellular folates, CH3-H4PteGlu1 must first be converted to tetrahydropteroylmonoglutamate (H4PteGlu1), 10-formyltetrahydropteroylmonoglutamate (CHO-H4PteGlu1), or dihydrofolate (H2folate), which are excellent substrates for folylpolyglutamate synthetase. Polyglutamylation is required both for retention of intracellular folates and for efficacy of folates as substrates for most folate-dependent enzymes. Two enzymes are known that will react with CH3-H4PteGlu1 in vitro, methylenetetrahydrofolate reductase and methyltetrahydrofolate-homocysteine methyltransferase (cobalamin-dependent methionine synthase). These studies were performed to assess the possibility that methylenetetrahydrofolate reductase might catalyze the conversion of CH3-H4PteGlu1 to CH2-H4PteGlu1. CH2-H4PteGlu1 is readily converted to CHO-H4PteGlu1 by the action of methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase, and these enzyme activities show very little preference for folypolyglutamate substrates as compared with folylmonoglutamates. We conclude from in vitro studies of the enzyme that methylenetetrahydrofolate reductase cannot convert CH3-H4PteGlu1 to CH2-H4PteGlu1 under physiological conditions and that uptake and retention of folate will be dependent on methionine synthase activity.  相似文献   

5.
The endogenous levels of the various folate monoglutamate compounds in cultured human fibroblasts were determined using high-performance liquid chromatography for the separation of folate monoglutamate. Endogenous folates were converted to monoglutamate forms using conjugase enzyme present in rat serum and incubation was carried out at pH 6.5. This minimized folate coenzyme interconversion during processing. Using methanol for precipitation of protein instead of heat minimized degradation of labile folates. Recovery of all folates except 10-formyltetrahydrofolic acid (10-CHO H4PteGlu) using this procedure was more than 90%. Disruption of cells by boiling appeared to cause less postextraction changes of cell folates than did freezing and thawing or sonication. When heat to release endogenous folate, conjugase treatment with rat serum at pH 6.5, and precipitation of protein with methanol were used, more than half of the intracellular folate of normal fibroblasts in confluent growth was 5-methyltetrahydrofolic acid (5-CH3 H4PteGlu), and 10-CHO H4PteGlu and tetrahydrofolic acid (H4PteGlu) comprised 29 and 6%, respectively.  相似文献   

6.
Transport and metabolism of folates by bacteria.   总被引:3,自引:0,他引:3  
Transport of labeled folic acid (PteGlu), pteroylpolyglutamates (PteGlu3-5), 5-methyl-tetrahydrofolate (5-methyl-H4PteGlu), and methotrexate in late-log phase cells of Lactobacillus casei was active, and subject to inhibition by unlabeled pteroylmonoglutamates, pteroylpolyglutamates, and iodoacetate, but not glutamate or glutamate dipeptides. Pteroylpolyglutamates were transported without prior hydrolysis and shared a common uptake system with pteroylmonoglutamates. The affinity and maximum velocity of PteGlun uptake decreased with increasing glutamate chin length (Km:PteGlu1, 0.03 mum; PteGlu3, 0.32 mum; PteGlu4, 1.9 mum; PteGlu5, 3.7 mum) and comparisons with growth response curves suggested that polyglutamates were more effectively utilized by L. casei, once transported, than monoglutamate. No concentration of 5-methyl-H4PteGlu3-8 inside the cells was observed. The major folate metabolites found in L. casei preloaded with high levels of [3H]PteGlu (0.5 mum) were 10-formyl-H4PteGlu2 and 10-formyl-PteGlu. Both compounds were released, the monoglutamate more rapidly. Pteroyltriglutamate formation appeared to be a rate-limiting step in intracellular metabolism. No 10-formyl-Pte-Glu was found in iodoacetate-treated cells and efflux was inhibited. Cells preloaded with low levels of [3H]PteGlu (7 nm) metabolized the vitamin to polyglutamate forms, the major derivatives being H4PteGlun. First order exit rates of labeled folate from preloaded L. casei indicated an inhibition of PteGlu uptake with time. Exit rates dropped from 0.05 min-1 to greater than 0.002 min-1 as intracellular folate was metabolized from monoglutamate to polyglutamate derivatives (n larger than or equal to 3). In the latter case, materials lost by efflux were breakdown products and no folate of glutamate chain length greater than two was released. Pediococcus cerevisiae actively transported 5-methyl-H4PteGlu but did not take up to 5-methyl-H4PTeGlu3-8. No active accumulation of 5-methyl-H4PteGlu was observed in Streptococcus faecalis.  相似文献   

7.
We have investigated the role of dihydrofolate (H2PteGlu) accumulation in the inhibition of de novo purine synthesis by methotrexate (MTX) in human MCF-7 breast cancer cells. Previous studies have shown that cytotoxic concentrations of MTX that inhibit dihydrofolate reductase produce only minimal depletion of the reduced folate cofactor, 10-formyltetrahydrofolate, required for purine synthesis. At the same time, de novo purine synthesis is totally inhibited. In these studies, we show that 10 microM MTX causes inhibition of purine synthesis at the step of phosphoribosylaminoimidazolecarboxamide (AICAR) transformylase, as reflected in a 2-3-fold expansion of the intracellular AICAR pool. The inhibition of purine synthesis coincides with the rapid intracellular accumulation of H2PteGlu, a known inhibitor of AICAR transformylase. When the generation of H2PteGlu is blocked by pretreatment with 50 microM 5-fluorodeoxyuridine (FdUrd), an inhibitor of thymidylate synthase, MTX no longer causes inhibition of purine synthesis. Intermediate levels of H2PteGlu produced in the presence of lower (0.1-10 microM) concentrations of FdUrd led to proportional inhibition of purine biosynthesis, and the exogenous addition of H2PteGlu to breast cells in culture re-established the block in purine synthesis in the presence of FdUrd and MTX. The early phases of inhibition of purine biosynthesis could be ascribed only to H2PteGlu accumulation. MTX polyglutamates, also known to inhibit AICAR transformylase, were present in breast cells only after 6 h of incubation with the parent compounds and were not formed in cells preincubated with FdUrd. The lipid-soluble antifolate trimetrexate, which does not form polyglutamates, produced modest 10-formyltetrahydrofolate depletion, but caused marked H2PteGlu accumulation and a parallel inhibition of purine biosynthesis. This evidence leads to the conclusion that MTX and the lipid-soluble analog trimetrexate cause inhibition of purine biosynthesis through the accumulation of H2PteGlu behind the blocked dihydrofolate reductase reaction.  相似文献   

8.
The dairy starter bacterium Lactococcus lactis is able to synthesize folate and accumulates >90% of the produced folate intracellularly, predominantly in the polyglutamyl form. Approximately 10% of the produced folate is released into the environment. Overexpression of folC in L. lactis led to an increase in the length of the polyglutamyl tail from the predominant 4, 5, and 6 glutamate residues in wild-type cells to a maximum of 12 glutamate residues in the folate synthetase overproducer and resulted in a complete retention of folate in the cells. Overexpression of folKE, encoding the bifunctional protein 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase and GTP-cyclohydrolase I, resulted in reduction of the average polyglutamyl tail length, leading to enhanced excretion of folate. By simultaneous overexpression of folKE and folC, encoding the enzyme folate synthetase or polyglutamyl folate synthetase, the average polyglutamyl tail length was increased, again resulting in normal wild-type distribution of folate. The production of bioavailable monoglutamyl folate and almost complete release of folate from the bacterium was achieved by expressing the gene for gamma-glutamyl hydrolase from human or rat origin. These engineering studies clearly establish the role of the polyglutamyl tail length in intracellular retention of the folate produced. Also, the potential application of engineered food microbes producing folates with different tail lengths is discussed.  相似文献   

9.
The dairy starter bacterium Lactococcus lactis is able to synthesize folate and accumulates >90% of the produced folate intracellularly, predominantly in the polyglutamyl form. Approximately 10% of the produced folate is released into the environment. Overexpression of folC in L. lactis led to an increase in the length of the polyglutamyl tail from the predominant 4, 5, and 6 glutamate residues in wild-type cells to a maximum of 12 glutamate residues in the folate synthetase overproducer and resulted in a complete retention of folate in the cells. Overexpression of folKE, encoding the bifunctional protein 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase and GTP-cyclohydrolase I, resulted in reduction of the average polyglutamyl tail length, leading to enhanced excretion of folate. By simultaneous overexpression of folKE and folC, encoding the enzyme folate synthetase or polyglutamyl folate synthetase, the average polyglutamyl tail length was increased, again resulting in normal wild-type distribution of folate. The production of bioavailable monoglutamyl folate and almost complete release of folate from the bacterium was achieved by expressing the gene for γ-glutamyl hydrolase from human or rat origin. These engineering studies clearly establish the role of the polyglutamyl tail length in intracellular retention of the folate produced. Also, the potential application of engineered food microbes producing folates with different tail lengths is discussed.  相似文献   

10.
M W McBurney  G F Whitmore 《Cell》1974,2(3):173-182
This article describes the selection of auxotrophic mutants of Chinese Hamster Ovary (CHO) cells and the genetic and biochemical characterization of two mutant lines. AUXB1 is auxotrophic for glycine, adenosine, and thymidine (GAT-), whereas AUXB3 requires only glycine and adenosine (GA-). These mutants do not complement since hybrid cells formed between them are also auxotrophic. Experiments concerned with the reversion of AUXB1 to prototrophy suggest that a single genetic lesion is responsible for the multiple auxotrophy. Biochemical analysis indicates that the multiple auxotrophy of both AUXB1 and AUXB3 is a result of low levels of intracellular folates in mutant cells. Phenotypic reversion to complete or partial prototrophy can be accomplished by growing these cells in high concentrations of folic or folinic acids. However, neither the folate transport nor the dihydrofolate reductase are defective in mutant cells. Chromatographic analysis of intracellular folate derivatives indicates that while folates extracted from wild type cells exist almost exclusively as polyglutamyl derivates (primarily pentaglutamates), AUXB1 cells contain primarily folate derivates in monoglutamyl form and AUXB3 cells contain mono-, di-, and perhaps some triglutamates. This observation suggests that the enzyme responsible for linking glutamate residues onto intracellular folate derivates is the site of the biochemical lesion in the mutant cells. Our results also suggest that a possible function of polyglutamyl residues is to aid cellular retention of folates.  相似文献   

11.
Folylpoly-gamma-glutamate synthetase (FPGS) is the enzyme responsible for metabolic trapping of reduced folate cofactors in cells for use in nucleotide and amino acid biosynthesis. There are two isoforms of FPGS expressed in mouse tissues, one is expressed in differentiated tissue, principally liver and kidney, and the other in all rapidly proliferating cell types. The present study sought the functional difference that would explain the evolution of two mouse FPGS species. Recombinant cytosolic mouse isozymes were compared with respect to steady state kinetics, chain length of polyglutamate derivatives formed, and end-product inhibition by the major reduced folylpentaglutamate cofactors. Both isoforms were equally effective in catalyzing the addition of a mole of glutamic acid to reduced folate monoglutamate substrates. Each isoform was also capable of forming long chain polyglutamate derivatives of the model folate, 5,10-dideazatetrahydrofolate. In contrast, the FPGS isoform derived from rapidly proliferating tissue was much more sensitive to inhibition by (6R)-5,10-CH(2)-H(4)PteGlu(5) and (6S)-H(4)PteGlu(5) than the isoform expressed in differentiated tissues, as demonstrated by 13- and 6-fold lower inhibition constants (K(i)), respectively. Interestingly, each isozyme was equally sensitive to inhibition by (6R)-10-CHO-H(4)PteGlu(5). We drew the conclusion that the decreased sensitivity of the FPGS expressed in mouse liver and kidney to feedback inhibition by 5,10-CH(2)-H(4)PteGlu(5-6) and H(4)PteGlu(5-6) may have evolved to permit accumulation of a larger folate cofactor pool than that found within rapidly proliferating tissue.  相似文献   

12.
Tomsho JW  Moran RG  Coward JK 《Biochemistry》2008,47(34):9040-9050
Folylpoly-gamma-glutamate synthetase (FPGS, EC 6.3.2.17) is an ATP-dependent ligase that catalyzes formation of poly-gamma-glutamate derivatives of reduced folates and antifolates such as methotrexate and 5,10-dideaza-5,6,7,8-tetrahydrofolate (DDAH 4PteGlu 1). While the chemical mechanism of the reaction catalyzed by FPGS is known, it is unknown whether single or multiple glutamate residues are added following each folate binding event. A very sensitive high-performance liquid chromatography method has been used to analyze the multiple ligation reactions onto radiolabeled DDAH 4PteGlu 1 catalyzed by FPGS to distinguish between distributive or processive mechanisms of catalysis. Reaction time courses, substrate trapping, and pulse-chase experiments were used to assess folate release during multiple glutamate additions. Together, the results of these experiments indicate that hFPGS can catalyze the processive addition of approximately four glutamate residues to DDAH 4PteGlu 1. The degree of processivity was determined to be dependent on the concentration of the folate substrate, thus suggesting a mechanism for the regulation of folate polyglutamate synthesis in cells.  相似文献   

13.
Streptomyces griseus synthesizes proline for osmoregulation under salt stress. Uptake of exogenous [14C]proline and internal synthesis of proline were quantified in cells growing at salt concentrations from 0 to 1 M NaCl. Externally supplied proline accounted for an increased proportion of the intracellular pool of free proline as salt concentration was increased, but neither the concentration nor the composition of the internal amino acid pool was substantially altered by supply of exogenous proline. Uptake of exogenous proline significantly increased the specific growth yield of S. griseus growing under salt stress; the increased yield was proportional to reductions in proline synthesis.  相似文献   

14.
Streptomyces griseus synthesizes proline for osmoregulation under salt stress. Uptake of exogenous [14C]proline and internal synthesis of proline were quantified in cells growing at salt concentrations from 0 to 1 M NaCl. Externally supplied proline accounted for an increased proportion of the intracellular pool of free proline as salt concentration was increased, but neither the concentration nor the composition of the internal amino acid pool was substantially altered by supply of exogenous proline. Uptake of exogenous proline significantly increased the specific growth yield of S. griseus growing under salt stress; the increased yield was proportional to reductions in proline synthesis.  相似文献   

15.
1. The concentrations of folate-dependent enzymes in Neurospora crassa Lindegren A wild type (FGSC no. 853), Ser-l mutant, strain H605a (FGSC no. 118), and for mutant, strain C-24 (FGSC no. 9), were compared during exponential growth on defined minimal media. Both mutants were partially lacking in serine hydroxymethyltransferase, but contained higher concentrations of 10-formyltetrahydrofolate synthetase than did the wild type. Mycelia of the mutants contained higher concentrations of these enzymes when growth media were supplemented with 1mM-glycine. In the wild-type, this glycine supplement also increased the specific activities of 5,10-methylenetetrahydrofolate dehydrogenase and 5,10-methylenetetrahydrofolate reductase. 5. During growth, total folate and polyglutamyl folate concentrations were greatest in the wild-type. Methylfolates were not detected in mutant Ser-l, and were only present in the for mutant after growth in glycine-supplemented media. Exogenous glycine increased folate concentration threefold in the wild type, mainly owing to increases in unsubstituted polyglutamyl derivatives. 3. Feeding experiments using 14C-labelled substrates showed that C1 units were generated from formate, glycine and serine in the wild type. Greater incorporation of 14C occurred when mycelia were cultured in glycine-supplemented media. Formate and serine were precursors of C1 units in the mutants, but the ability to cleave glycine was slight or lacking.  相似文献   

16.
The conversion of methotrexate to poly-gamma-glutamyl derivatives in Ehrlich ascites carcinoma cells which are characterized by different pools of endogenous folates is described. The cells in which folate pool was high (the 5-fluorodeoxy-uridine-resistant cell line) the ability to convert methotrexate to its polyglutamate derivatives was much lower than in the cells in which folate pool was smaller (the parental cell line). When the cellular folate pool was reduced by treatment of the cells with lysolecithin, a similar methotrexate polyglutamate concentration in both cell lines was observed. These data suggest that cellular folate pool has a regulatory effect on methotrexate polyglutamate synthesis.  相似文献   

17.
Enhanced inhibition of thymidylate synthase by methotrexate polyglutamates   总被引:15,自引:0,他引:15  
We have studied the effects of methotrexate (MTX-Glu1) and the polyglutamate derivatives of methotrexate (MTXPGs) with 2, 3, 4, and 5 glutamyl residues on the catalytic activity of thymidylate synthase purified from MCF-7 human breast cancer cells and on the kinetics of the ternary complex formation by 5-fluoro-2'-deoxyuridine 5'-monophosphate, folate cofactor, and thymidylate synthase. MTX-Glu1 exhibited uncompetitive inhibition of thymidylate synthase when reaction kinetics were analyzed by either double reciprocal plots or a computerized mathematical model based on nonlinear least-squares curve fitting. The Ki for MTX-Glu1 inhibition was 13 microM and the I50 was 22 microM, irrespective of the degree of polyglutamation of the folate. In contrast, the polyglutamated derivatives of MTX all acted as noncompetitive inhibitors. The MTXPGs had 75-300-fold greater potency than MTX-Glu1 as inhibitors of thymidylate synthase catalytic activity, with Ki values from 0.17 to 0.047 microM for MTX-Glu2 to MTX-Glu5, respectively. Neither MTX-Glu1 nor MTXPGs promoted the formation of a charcoal-stable ternary complex with thymidylate synthase and 5-fluoro-2'-deoxyuridine 5'-monophosphate. CH2-H4PteGlu5 (where PteGlu represents pteroylglutamic acid) was found to be 40-fold more potent than CH2-H4PteGlu1 in participating in the formation of a ternary complex, and 10 microM MTX-Glu5 significantly inhibited the formation of a ternary complex containing this folate as cofactor. The inhibition was determined to be due to a reduction in the kon. The potency of this inhibition was markedly greater in the presence of CH2-H4PteGlu1 as compared to CH2-H4PteGlu5. This finding suggests that the degree of interference with complex formation in intact cells would depend on the state of polyglutamation of available folate cofactor. Ternary complex formation with H2PteGlu5 as the folate cofactor was also investigated, and a 50% reduction in complex formation was found in the presence of a 2 microM concentration of MTX-Glu5. These findings have significant implications regarding the mechanism of action of MTX-Glu1 and contribute to an understanding of the complex interactions of MTX-Glu1 and 5-fluorouracil.  相似文献   

18.
We have studied the roles of 5,10-methylenetetrahydrofolate (5,10-methylene-H4PteGlu) depletion and dihydrofolate (H2PteGlu) accumulation in the inhibition of de novo thymidylate synthesis by methotrexate (MTX) in human MCF-7 breast cancer cells. Using both a high pressure liquid chromatography system and a modification of the 5-fluoro-2'-deoxyuridine-5'-monophosphate radioenzymatic binding assay, we determined that the 5,10-methylene-H4PteGlu pool is 50-60% depleted in human MCF-7 breast cancer cells following exposure to 1 micron MTX for up to 21 h. Similar alterations in the 5,10-methylene-H4PteGlu pools were obtained when human promyelocytic HL-60 leukemia cells and normal human myeloid precursor cells were incubated with 1 micron MTX. The H2PteGlu pools within the MCF-7 cells increased significantly after 15 min of 1 micron MTX exposure, reaching maximal levels by 60 min. Thymidylate synthesis, as measured by labeled deoxyuridine incorporation into DNA, decreased to less than 20% of control activity within 30 min of 1 micron MTX exposure. The inhibition of thymidylate synthesis coincided temporally with the rapid intracellular accumulation of H2PteGlu, a known inhibitor of thymidylate synthase. Furthermore, inhibition of this pathway was associated in a log-linear fashion with the intracellular level of dihydrofolate. These studies provide further evidence that depletion of the thymidylate synthase substrate 5,10-methylene-H4PteGlu is inadequate to account completely for diminished thymidylate synthesis resulting from MTX treatment. Our findings suggest that acute inhibition of de novo thymidylate synthesis is a multifactorial process consisting of partial substrate depletion and direct enzymatic inhibition by H2PteGlu polyglutamates.  相似文献   

19.
Various folate coenzymes and their polyglutamyl derivatives involved in 1-carbon metabolism are modulated as a result of altered physiological states and also vary with respect to growth conditions. We studied the metabolic changes in folic acid and their conjugated polyglutamyl derivatives in Lactobacillus casei cells grown in the presence of D20. A 40% decrease in methyltetrahydrofolyl polyglutamate derivatives was observed in the cells grown in media prepared with D20-depleted water (D20 content, 8-10 ppm). Chromatographic analysis of folates showed significant alterations in the formyl- and methyltetrahydrofolate derivatives and their polyglutamylation profiles. Higher amounts of oxidized folates were also present in the cells grown in D20-depleted conditions. No significant changes were observed in folates and their polyglutamate derivatives when the cells were grown in the presence of 300, 450 and 600 ppm D20. The altered folate homoestasis is attributed to changes in the metabolic adaptation of cells to D20-depleted environment.  相似文献   

20.
Abstract. Folate deficiency will induce abnormal deoxynucleoside triphosphate (dNTP) metabolism because folate-derived one-carbon groups are essential for de novo synthesis of purines and the pyrimidine, thymidylate. Under conditions of methionine deprivation, a functional folate deficiency for deoxynucleoside triphosphate synthesis is induced as a result of the irreversible diversion of available folates toward endogenous methionine resynthesis from homocysteine. The purpose of the present study was to examine the effect of nutritional folate and/or methionine deprivation in vitro on intracellular dNTP pools as related to DNA synthesis activity and cell cycle progression. Primary cultures of mitogen-stimulated rat splenic T-cells were incubated in complete RPMI 1640 medium or in custom-prepared RPMI 1640 medium lacking in folic acid and/or methionine. Parallel cultures, initiated from the same cell suspension, were analysed for deoxyribonucleotide pool levels and for cell proliferation. The distribution of cells within the cell cycle was quantified by dual parameter flow cytometric bromodeoxyuridine/propidium iodide DNA analysis which allows more accurate definition of DNA synthesizing S-phase cells than the traditional DNA-specific staining with propidium iodide alone. Relative to cells cultured in complete RPMI 1640 media, the cells cultured in media deficient in folate, methionine or in both nutrients manifested increases in the deoxythymidylate pool and an apparent depletion of the deoxyguanosine triphosphate pool. Both adenosine triphosphate and nicotinamide adenine diphosphate levels were significantly reduced with single or combined deficiencies of folate and methionine. These nucleotide pool alterations were associated with a decrease in the proportion of cells actively synthesizing DNA and an increase in cells in G2+ M phase of the cell cycle. Folate deprivation in the presence of adequate methionine produced a moderate decrease in DNA synthesizing cells over the 68 h incubation. However, methionine deprivation, in the presence or absence of folate, severely compromised DNA synthesis activity. These results are consistent with the established ‘methyl trap’ diversion of available folates towards the resynthesis of methionine from homocysteine and away from nucleotide synthesis. The data confirm the metabolic interdependence of folic acid and methionine and emphasize the pivotal role of methionine on the availability of folate one-carbon groups for deoxynucleotide synthesis. The decrease in DNA synthesis activity under nutrient conditions that negatively affect nucleotide biosynthesis suggest a possible role for abnormal dNTP metabolism in the regulation of cell cycle progression and DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号