首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An inulin fructotransferase (DFA I-producing) [EC 2.4.1.200] from Arthrobacter pascens a62-1 was purified and the properties of the enzyme were investigated. The enzyme was purified from culture supernatant of the microorganism 58.5 fold with a yield of 8.32% using Super Q Toyopearl chromatography and butyl Toyopearl chromatography. It showed maximum activity at pH 5.5 and 45 °C and was stable up to 75 °C. This heat stability was highest in the inulin fructotransferases (DFA I-producing) reported until now. The molecular mass of the enzyme was estimated to be 37,000 by SDS-PAGE and 60,000 by gel filtration, and was considered to be a dimer. The N-terminal amino acid sequence (20 amino acid residues) was determined as Ala-Asn-Thr-Val-Tyr-Asp-Val-Thr-Thr-Trp-Ser-Gly-Ala-Thr-Ile-Ser-Pro-Tyr-Val-Asp.  相似文献   

2.
Inulin fructotransferase (IFTase, EC 2.4.1.93) of Arthrobacter sp. A-6 was purified from a cell extract of the recombinant Escherichia coli DH5 /pDFE cells carrying the IFTase gene using heat treatment followed by gel filtration. The enzyme was purified 45-fold to apparent homogeneity with a recovery of 79%. SDS-PAGE yielded a single protein band of M r 46.5 kDa. The recombinant IFTase had a similar thermostability as the original enzyme from Arthrobacter sp. A-6.  相似文献   

3.
The chemolithoautotroph, Arthrobacter sp.15b oxidizes arsenite to arsenate using a membrane bound arsenite oxidase. The enzyme arsenite oxidase is purified to its homogeneity and identified using MALDI-TOF MS analysis. Upon further characterization, it was observed that the enzyme is a heterodimer showing native molecular mass as ~100 kDa and appeared as two subunits of ~85 kDa LSU and 14 kDa SSU on SDS–PAGE. The V max and K m values of the enzyme was found to be 2.45 μM (AsIII)/min/mg) and 26 μM, respectively. The purified enzyme could withstand wide range of pH and temperature changes. The enzyme, however, gets deactivated in the presence of 1 mM of DEPC suggesting the involvement of histidine at the binding site of the enzyme. The peptide analysis of large sub unit of the enzyme showed close match with the arsenite oxidases of Burkholderia sp. YI019A and arsenite oxidase, Mo-pterin containing subunit of Alcaligenes faecalis. The small subunit, however, differed from other arsenite oxidases and matched only with 2Fe–2S binding protein of Anaplasma phagocytophilum. This indicates that Rieske subunits containing the iron–sulfur clusters present in the large as well as small subunits of the enzyme are integral part of the protein.  相似文献   

4.
A method for the extraction of the high molecular weight plasmid AO 1 from the gram-positive soil bacterium Arthrobacter oxidans is presented.Following digestion of this DNA with the restriction endonucleases Accl, Bam HI, Eco RI and Hind III, an average molecular mass of 157.8 kb was estimated. This value is in good agreement with the 160 kb size determined previously by electron microscopy (Brandsch et al. 1982).Using the same method, no plasmid DNA was found in strains of the genus Arthrobacter which do not degrade nicotine, e.g., A. albidus, A. globiformis and A. auricans.Abbreviations EDTA ethylenediaminetetraacetic acid - Kb kilobasepairs - SDS sodium dodecyl sulfate - Tris Tris-(hydroxymethyl)-aminomethan  相似文献   

5.
Zhao M  Mu W  Jiang B  Zhou L  Zhang T  Lu Z  Jin Z  Yang R 《Bioresource technology》2011,102(2):1757-1764
The soil bacterium Arthrobacter aurescens SK 8.001 produces inulin fructotransferase (IFTase), and liquid chromatography-mass spectrometry (LC-MS) and carbon-13 nuclear magnetic resonance (13C NMR) analysis demonstrated that the main product of the enzyme was difructose anhydride III (DFA III). The IFTase was purified by ethanol precipitation, DEAE Sepharose Fast Flow, and Superdex 200 10/300 GL gel chromatography. Its molecular mass was estimated to be 40 kDa by SDS-PAGE and 35 kDa by gel filtration. The enzyme showed maximum activity at pH 5.5 and 60-70 °C, and retained 86.5% of its initial activity after incubation at 60 °C for 4 h. Chemical modification results suggested that a tryptophan residue is essential to enzyme activity. The N-terminal amino acid sequence was determined as AEGAKASPLNSPNVYDVT. The kinetic values, Km and Vmax, were estimated to be 0.52 mM and 0.3 μmol/ml min. Nystose was observed to be the smallest substrate for the produced IFTase. This IFTase provides a promising way to utilize inulin for the production of DFA III.  相似文献   

6.
An Arthrobacter ureafaciens mutant (M1057) capable of producing neuraminidase constitutively was isolated by NTG mutagenesis from A. ureafaciens KMS 3663. Four molecular species (L, M1, M2, and S) of neuraminidase isozymes were homogeneously purified from the mutant and parent strains by means of DEAE-cellulose, affinity chromatography, ammonium sulfate precipitation, chromatofocusing, and Ultrogel AcA44 gel filtration. The molecular weights of L, M1, M2, and S isozymes were shown to be approximately 88,000, 66,000, 66,000, and 52,000, respectively. The optimal pHs and Km values of these isozymes for N-acetylneuraminosyl-alpha,(2-6)-lactose were 4.5-5.5 and 0.6-0.8 mM. Neuraminidase L, M1, M2, and S were able to hydrolyze oligosaccharides, glycoproteins and gangliosides containing alpha,(2-3)-, alpha,(2-6)-, and alpha,(2-8)-linked N-acetylneuraminic acid. Among these isozymes isolated, isozyme S was most active on colominic acid.  相似文献   

7.
A novel inulinolytic microorganism, Xanthomonas sp. produced an endoinulinase, to be used for inulooligosaccharide (IOS) formation from inulin, at an activity of 11 units ml–1 (1.2 mg protein ml–1). The endoinulinase was optimally active at 45°C and pH 6.0. Batchwise production of IOS was carried out by the partially purified endoinulinase with a maximum yield of about 86% on a total sugar basis with 10 g inulin l–1. The major IOS components were DP (degree of polymerization) 5 and 6 with trace amount of smaller oligosaccharides.  相似文献   

8.
Cyclohexanone monooxygenase (CHMO), a type of Baeyer-Villiger oxidation, catalyzes the oxidation of cyclohexanone into ɛ-caprolactone, which has been utilized as a building block in organic synthesis. A bacterium that is capable of growth on cyclohexanone as a sole carbon source was recently isolated and was identified as Arthrobacter sp. L661. The strain is believed to harbor a CHMO gene (chnB), considering the high degradablity of cyclohexanone. In order to characterize the CHMO, a chnB gene was cloned from Arthrobacter sp. L661. The deduced amino acids of the chnB gene evidenced the highest degree of homology (90% identity) with the CHMO of Arthrobacter sp. BP2 (accession no. AY123972). The CHMO of L661 was shown to be functionally expressed in Escherichia coli cells, purified via affinity chromatography, and characterized. The specific activity of the purified enzyme was 24.75 μmol/min/mg protein. The optimum pH was 7.0 and the enzyme maintained over 70% of its activity for up to 24 h in a pH range of 6.0 to 8.0 at 4°C. The CHMO of L661 readily oxidized cyclobutanone and cyclopentanone whereas less activity was detected with those of Arthrobacter sp. BP2, Rhodococcus sp. Phi1, and Rhodococcus sp. Phi2, thereby suggesting that the CHMO of L661 evidenced the different substrate specificities compared with other CHMOs. These results can provide us with useful information for the development of biocatalysts applicable to commercial organic syntheses, especially because only a few CHMO genes have been identified thus far.  相似文献   

9.
NAD-specific glutamate dehydrogenase (NAD-GluDH; EC 1.4.1.2) was purified to homogeneity from Sporosarcina ureae DSM 320; the native enzyme (M r 250,000±25,000) is composed of subunits identical in molecular mass (M r 42,000±3,000), suggesting a hexameric structure. In cell-free extracts and in its purified form, the enzyme was heat-stable, retaining 50% activity after 15 min incubation at temperatures up to 82°C. When exposed to low temperatures at pH values between 7.0 and 9.0. cell-free extracts and purified preparations lost enzyme activity rapidly and irreversibly. The addition of substrates, glycerol, or sodium chloride improved the stability of the enzyme with respect to cold lability and heat stability.Abbreviation NAD-GluDH nicotinamide-adenine-dinucleotide-specific glutamate dehydrogenase  相似文献   

10.
The land snail, Helix pomatia, is known to deposit eggs that contain the galactose homopolymer, galactogen. Selective enrichment for galactogen utilizing bacteria in a Helix pomatia habitat resulted in the isolation of a new strain of Arthrobacter. The strain's ability to metabolize galactogen was confirmed by the release of 14CO2 from (1C)-galactogen. The new isolate was able to utilize galactogen, galactose and glucose but not glycogen as sole carbon sources. The type strain A. globiformis ATCC 8010 utilized glucose and galactose, but not galactogen, as carbon sources.  相似文献   

11.
A microorganism producing levan fructotransferase was isolated from sugar-disclosed soil and it was identified as Arthrobacter ureafaciens. The major product from levan by enzyme reaction was identified as di-D-fructofuranose 2,6':6,2' dianhydride by mass spectrometry, nuclear magnetic resonance, and chemical analyses. Small amounts of several oligosaccharides and free fructose were also formed by enzyme reaction. An extracellular enzyme that produces di-D-fructofuranose 2,6':6,2' dianhydride from levan was purified from the culture broth of A. ureafaciens K2032. The enzyme had optimum activity around pH 5.8 and 45 degrees C and had a dimeric form in solution. The N-terminal amino acid residues of the purified enzyme were SAPGSLRAVYHMTPPSGXLXDPQ. The enzyme has narrow substrate range and converts the levan to di-D-fructofuranose 2,6':6,2' dianhydride with around 62.5% conversion yield.  相似文献   

12.
Homoserine lactone (HSL) is a ubiquitous product of metabolism. It is generated by all known biota during the editing of certain mischarged aminoacyl-tRNA reactions, and is also released as a product of quorum signal degradation by bacterial species expressing acyl-HSL acylases. Little is known about its environmental fate over long or short periods of time. The mammalian enzyme paraoxonase, which has no known homologs in bacteria, has been reported to degrade HSL via a lactonase mechanism. Certain strains of Variovorax and Arthrobacter utilize HSL as a sole source of nitrogen, but not as a sole source of carbon or energy. In this study, the enrichment and isolation of four strains of soil bacteria capable of utilizing HSL as a carbon and energy source are described. Phylogenetic analysis of these isolates indicates that three are distinct members of the genus Arthrobacter, whereas the fourth clusters within the non-clinical Burkholderia. The optimal pH for growth of the isolates ranged from 6.0 to 6.5, at which their HSL-dependent doubling times ranged from 1.4 to 4 h. The biodegradation of HSL by these 4 isolates far outpaced its chemical decay. HSL degradation by soil bacteria has implications for the consortial mineralization of acyl-homoserine lactones by bacteria associated with quorum sensing populations.  相似文献   

13.
Sixteen named strains of Arthrobacter and two strains of Brevibacterium were investigated by nucleic acid hybridisation. The Arthrobacter strains show homology values ranging between 11 and 55% to the type strain A. globiformis DSM 20124 (ATCC 8010), indicating only a low to moderate relationship. Two strains of A. globiformis, DSM 20124 and DSM 20125, exhibit only poor relationship to one another (30%). Among all the Arthrobacter strains the homology data range between 10 to 70% demonstrating separate status of almost all species. Only A. polychromogenes DSM 20136 was found to be a subspecies of A. oxydans DSM 20119. The type strain of A. citreus, DSM 20133 shows a remarkable lack of homology to four other strains of A. citreus, deposited as ATCC 15170, ATCC 17775, ATCC 21040 and ATCC 21348 (11–13%) which themselves can be separated into two groups according to the homology data (24–31%). Each of the two strains of Brevibacterium share high genetic relatedness with one of these A. citreus groups (71 and 73%, respectively). According to the DNA-DNA homology data, most of the species of Arthrobacter can actually be ranged taxonomically as species.Abbreviation DSM German Collection of Microorganisms, Menzinger Strasse 67, D-8000 Munich 19, FRG - ATCC American Type Culture Collection, Rockville, Maryland, U.S.A. - CCM Czechoslovak Collection of Microorganisms, J. E. Purkyne University, Tr. Obracu miru 10, Brno, CSSR - NCIB National Collection of Industrial Bacteria Aberdeen, Scotland  相似文献   

14.
Alanine dehydrogenase in Arthrobacter fluorescens exhibited an allosteric behaviour and two K m values for ammonium were estimated. In batch cultures at different ammonium concentrations and in continuous culture following an NH4 + pulse, the level of ADH activity seems to be regulated by the ammonium concentration, high activities being observed when extracellular ammonium was in excess. The response to the growth rate of an ammonium-limited chemostat culture of A. fluorescens seems to indicate that alanine dehydrogenase and glutamine synthetase activities were inversely related. High activities of glutamate oxaloacetate transaminase and glutamate pyruvate transaminase have been found in crude extract of ammonium-limited cultures. From the results obtained in batch cultures grown at different glucose concentrations and in carbon-limited chemostat culture it appeared that the limitation by glucose influenced alanine dehydrogenase activity negatively. No glutamate dehydrogenase activity and no glutamate synthase activity could be detected with either NADH or NADPH as coenzymes.Abbreviations ADH alanine dehydrogenase - GS glutamine synthetase - GDH glutamate dehydrogenase - GOGAT glutamine oxoglutarate aminotransferase - GOT glutamate oxaloacetate transaminase - GPT glutamate pyruvate transaminase  相似文献   

15.
Arthrobacter sp. lipase (ABL, MTCC no. 5125) is being recognized as an efficient enzyme for the resolution of drugs and their intermediates. The immobilization of ABL on various matrices for its enantioselectivity, stability, and reusability has been studied. Immobilization by covalent bonding on sepharose and silica afforded a maximum of 380 and 40 IU/g activity, respectively, whereas sol–gel entrapment provided a maximum of 150 IU/g activity in dry powder. The immobilized enzyme displayed excellent stability in the pH range of 4–10 and even at higher temperature, i.e., 50–60°C, compared to free enzyme, which is unstable under extreme conditions. The resolution of racemic auxiliaries like 1-phenyl ethanol and an intermediate of antidepressant drug fluoxetine, i.e., ethyl 3-hydroxy-3-phenylpropanoate alkyl acylates, provided exclusively R-(+) products (∼99% ee, E=646 and 473), compared to cell free extract/whole cells which gave a product with ∼96% ee (E=106 and 150). The repeated use (ten times) of covalently immobilized and entrapped ABL resulted in no loss in activity, thus demonstrating its prospects for commercial applications.  相似文献   

16.
17.
Arthrobacter oxydans CECT386 is a Gram-positive bacterium able to use either phenylacetic acid or phenylacetaldehyde as the sole carbon and energy source for aerobic growth. Genes responsible for the catabolism of these compounds have been located at two chromosomal regions and were organized in one isolated paaN gene and two putative paa operons, one consisting of the paaD, paaF, tetR and prot genes, and one consisting of the paaG, paaH, paaI, paaJ, paaK and paaB genes. The identity of the paaF and paaN genes was supported by functional complementation experiments. A comparison with the paa catabolic genes and/or gene clusters of other bacteria that degrade these aromatic compounds is presented. The results of this study broaden the knowledge regarding the range of metabolic potential of this strain and eventually make it attractive for environmental applications.  相似文献   

18.
An Arthrobacter sp. was isolated that, when induced by fructosyl-valine, expressed a fructosyl-amine oxidase (FAOD) that was specific for -glycated amino acids. The N-terminal amino acid sequence of the purified oxidase was determined and used to design oligonucleotides to amplify the gene by inverse PCR. Expression of the gene in Escherichia coli produced 0.23 units FAOD per mg protein, over 30-fold greater than native expression levels, with properties almost indistinguishable from the native enzyme. The presence of FAOD was confirmed in other Arthrobacter ssp.Revisions requested 8 September 2004; Revisions received 4 November 2004  相似文献   

19.
In Arthrobacter oxydans, Klebsiella aerogenes and Sporosarcina ureae, growth with urea as a nitrogen source turned out to be more sensitive to inhibition by EDTA than that with ammonia. The inhibition was overcome by added nickel chloride, but not by other divalent metal ions tested. In A. oxydans the uptake of 63Ni was paralleled by an increase in urease (urea amidohydrolase, EC 3.5.1.5) activity under certain conditions. Following growth with radioactive nickel, urease from this strain was enriched by heat treatment and acetone fractionation. Copurification of 63Ni and urease was observed during subsequent Sephadex gel chromatography. Almost the entire labelling was detected together with the purified enzyme after focusing on polyacrylamide gel. The relative molecular mass of the purified urease was estimated to be 242,000. The pH optimum was 7.6, the K m-value 12.5 mmol/l and the temperature optimum 40°C; heat stability was observed up to 65°C. In presence of 10 mmol/l EDTA the protein-nickel binding remained intact at pH 7; at pH 5 and below, nickel was irreversibly removed with concommitant loss of enzyme activity. The results demonstrated that nickel ions are required for active urease formation in the bacterial strains studied, and that urease from A. oxydans is a nickel-containing enzyme.Dedicated to Professor Dr. H.-G. Schlegel on the occasion of his 60th birthday  相似文献   

20.
trans-Stilbene degradation was examined by the reaction using resting cells of microorganisms isolated through the enrichment culture using trans-stilbene. The strain SL3, showing the highest trans-stilbene-degrading activity, was identified as Arthrobacter sp. One of the reaction products was identified to be cis,cis-muconic acid. Arthrobacter sp. SL3 cells also transformed benzaldehyde, benzoic acid and catechol into cis,cis-muconic acid, suggesting that one benzene ring of trans-stilbene was converted into cis,cis-muconic acid via benzaldehyde formed by its Cα=Cβ bond cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号