首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lin-4 gene encodes a small RNA that is required to translationally repress lin-14 toward the end of the first larval stage of Caenorhabditis elegans development. To determine if the timing of LIN-14 protein down-regulation depends on the temporal profile of lin-4 RNA level, we analyzed the stage-specificity of lin-4 RNA expression during wild-type development and examined the phenotypes of transgenic worms that overexpress lin-4 RNA during the first larval stage. We found that lin-4 RNA first becomes detectable at approximately 12 h of wild-type larval development and rapidly accumulates to nearly maximum levels by 16 h. This profile of lin-4 RNA accumulation corresponded to the timing of LIN-14 protein down-regulation. Transgenic strains that express elevated levels of lin-4 RNA prior to 12 h of development display reduced levels of LIN-14 protein and precocious phenotypes consistent with abnormally early loss of lin-14 activity. These results indicate that the temporal profile of lin-4 RNA accumulation specifies the timing of LIN-14 down-regulation and thereby controls the timing of postembryonic developmental events.  相似文献   

2.
Morita K  Han M 《The EMBO journal》2006,25(24):5794-5804
The timing of postembryonic developmental programs in Caenorhabditis elegans is regulated by a set of so-called heterochronic genes, including lin-28 that specifies second larval programs. lin-66 mutations described herein cause delays in vulval and seam cell differentiation, indicating a role for lin-66 in timing regulation. A mutation in daf-12/nuclear receptor or alg-1/argonaute dramatically enhances the retarded phenotypes of the lin-66 mutants, and these phenotypes are suppressed by a lin-28 null allele. We further show that the LIN-28 protein level is upregulated in the lin-66 mutants and that this regulation is mediated by the 3'UTR of lin-28. We have also identified a potential daf-12-response element within lin-28 3'UTR and show that two microRNA (miRNA) (lin-4 and let-7)-binding sites mediate redundant inhibitory activities that are likely lin-66-independent. Quantitative PCR data suggest that the lin-28 mRNA level is affected by lin-14 and miRNA regulation, but not by daf-12 and lin-66 regulation. These results suggest that lin-28 expression is regulated by multiple independent mechanisms including LIN-14-mediated upregulation of mRNA level, miRNAs-mediated RNA degradation, LIN-66-mediated translational inhibition and DAF-12-involved translation promotion.  相似文献   

3.
4.
The Wee1 protein tyrosine kinase is a key regulator of cell cycle progression. Wee1 activity is necessary for the control of the first embryonic cell cycle following the fertilization of meiotically mature Xenopus oocytes. Wee1 mRNA is present in immature oocytes, but Wee1 protein does not accumulate in immature oocytes or during the early stages of progesterone-stimulated maturation. This delay in Wee1 translation is critical since premature Wee1 protein accumulation has been shown to inhibit oocyte maturation. In this study we provide evidence that Wee1 protein accumulation is regulated at the level of mRNA translation. This translational control is directed by sequences within the Wee1 mRNA 3'-untranslated region (3' UTR). Specifically, cytoplasmic polyadenylation element (CPE) sequences within the Wee1 3' UTR are necessary for full translational repression in immature oocytes. Our data further indicate that while CPE-independent mechanisms may regulate the levels of Wee1 protein accumulation during progesterone-stimulated oocyte maturation, the timing of Wee1 mRNA translational induction is directed through a CPE-dependent mechanism.  相似文献   

5.
Li J  Greenwald I 《Current biology : CB》2010,20(20):1875-1879
Studies of C. elegans vulval development have illuminated mechanisms underlying cell fate specification and elucidated intercellular signaling pathways [1]. The vulval precursor cells (VPCs) are spatially patterned during the L3 stage by the EGFR-Ras-MAPK-mediated inductive signal and the LIN-12/Notch-mediated lateral signal. The pattern is both precise and robust [2] because of crosstalk between these pathways [3]. Signaling is also regulated temporally, because constitutive activation of the spatial patterning pathways does not alter the timing of VPC fate specification [4, 5]. The heterochronic genes, including the microRNA lin-4 and its target lin-14, constitute a temporal control mechanism used in different contexts [6-8]. We find that lin-4 specifically controls the activity of LIN-12/Notch through lin-14, but not other known targets, and that persistent lin-14 blocks LIN-12 activity without interfering with the key events of LIN-12/Notch signal transduction. In the L2 stage, there is sufficient lin-14 activity to inhibit constitutive lin-12. Our results suggest that lin-4 and lin-14 contribute to spatial patterning through temporal gating of LIN-12. We propose that in the L2 stage, lin-14 sets a high threshold for LIN-12 activation to help prevent premature activation of LIN-12 by ligands expressed in other cells in the vicinity, thereby contributing to the precision and robustness of VPC fate patterning.  相似文献   

6.
7.
In animals, microRNAs (miRNAs), typically, pair to sites of partial complementarity in the 3′-untranslated regions (3′UTRs) of target genes. Regulation by miRNAs often results in down-regulation of target mRNA and protein expression by mechanisms that are yet to be fully elucidated. Additionally, changes in environmental conditions have been shown to influence miRNA function in some cell culture systems. Here, we report the effect of nutrient deprivation on regulation of an endogenous miRNA target in developing worms. In Caenorhabditis elegans, the lin-4 miRNA recognizes multiple sites in the lin-14 3′UTR and directs mRNA degradation and translational repression, but it is unclear how these processes are coupled. In this study, we demonstrate that nutrient deprivation results in loss of lin-14 mRNA, but not protein, repression. In worms removed from feeding conditions, lin-14 mRNA reaccumulates despite the continued expression of lin-4 miRNA. The relative increase in lin-14 mRNA levels during nutrient deprivation is less pronounced in genetic mutants lacking lin-4 miRNA or the lin-14 3′UTR target sites. In conclusion, regulation of lin-14 at the mRNA and protein levels can be uncoupled by changes in culture conditions, indicating that miRNA function can be modulated by environment in multicellular organisms. The awareness that endogenous miRNA pathways can be sensitive to environment is an important consideration for elucidating the mechanism used by miRNAs to regulate target mRNA and protein expression.  相似文献   

8.
9.
The heterochronic gene lin-28 is a regulator of developmental timing in the nematode Caenorhabditis elegans. It must be expressed in the first larval stage and downregulated by the second stage for normal development. This downregulation is mediated in part by lin-4, a 21-nt microRNA. If downregulation fails due to a mutation in a short sequence in the lin-28 3' UTR that is complementary to lin-4, then a variety of somatic cell lineages fail to progress normally in development. Here, we report that Lin-28 homologues exist in diverse animals, including Drosophila, Xenopus, mouse, and human. These homologues are characterized by the LIN-28 protein's unusual pairing of RNA-binding motifs: a cold shock domain (CSD) and a pair of retroviral-type CCHC zinc knuckles. Conservation of LIN-28 proteins shows them to be distinct from the other conserved family of CSD-containing proteins of animals, the Y-box proteins. Importantly, the LIN-28 proteins of Drosophila, Xenopus, and mouse each appear to be expressed and downregulated during development, consistent with a conserved role for this regulator of developmental timing. In addition, the extremely long 3' UTRs of mouse and human Lin-28 genes show extensive regions of sequence identity that contain sites complementary to the mammalian homologues of C. elegans lin-4 and let-7 microRNAs, suggesting that microRNA regulation is a conserved feature of the Lin-28 gene in diverse animals.  相似文献   

10.
11.
12.
In 1993 when Ambros and co-workers [1] discovered that a mysterious Caenorhabditis elegans gene, lin-4, does not encode a protein, but acts in the form of a small RNA and represses the expression of its target gene, lin-14, through base-pairing with its 3 0 untranslated region (3 0 UTR), nobody would imagine that 20 years later,  相似文献   

13.
Reinhart BJ  Ruvkun G 《Genetics》2001,157(1):199-209
The Caenorhabditis elegans heterochronic gene lin-14 specifies the temporal sequence of postembryonic developmental events. lin-14, which encodes differentially spliced LIN-14A and LIN-14B1/B2 protein isoforms, acts at distinct times during the first larval stage to specify first and second larval stage-specific cell lineages. Proposed models for the molecular basis of these two lin-14 gene activities have included the production of functionally distinct isoforms and the generation of a temporal gradient of LIN-14 protein. We report here that loss of the LIN-14B1/B2 isoforms alone affects one of the two lin-14 temporal patterning functions, the specification of second larval stage lineages. A temporal expression difference between LIN-14A and LIN-14B1/B2 is not responsible for the stage-specific phenotype: protein levels of all LIN-14 isoforms are high in early first larval stage animals and decrease during the first larval stage. However, LIN-14A can partially substitute for LIN-14B1/B2 when expressed at a higher-than-normal level in the late L1 stage. These data indicate that LIN-14B1/B2 isoforms do not provide a distinct function of the lin-14 locus in developmental timing but rather may contribute to an overall level of LIN-14 protein that is the critical determinant of temporal cell fate.  相似文献   

14.
Kwon CS  Chung W 《FEBS letters》1999,462(1-2):161-166
The 5' untranslated region (UTR) of cucumber mosaic virus (CMV) RNA 4 confers a highly competitive translational advantage on a heterologous luciferase open reading frame. Here we investigated whether secondary structure in the 5' UTR contributes to this translational advantage. Stabilization of the 5' UTR RNA secondary structure inhibited competitive translational activity. Alteration of a potential single-stranded loop to a stem by substitution mutations greatly inhibited the competitive translational activity. Tobacco plants infected with wild type virus showed a 2.5-fold higher accumulation of maximal coat protein than did plants infected with a loop-mutant virus. Amplification of viral RNA in these plants could not explain the difference in accumulation of coat protein. Phylogenetic comparison showed that potential single-stranded loops of 12-23 nucleotides in length exist widely in subgroups of CMV.  相似文献   

15.
Tomato bushy stunt virus is a (+)-strand RNA virus that is neither 5'-capped nor 3'-polyadenylated. Translation of viral proteins is instead mediated by an RNA element, the 3'-cap-independent translational enhancer (3'CITE), which is located in its 3' untranslated region (UTR). The 3'CITE is proposed to recruit the translational machinery to the viral message, while a long-distance RNA-RNA interaction between the 3'CITE and 5' UTR is thought to deliver the 43S ribosomal subunit to the 5' end of the viral mRNA. Here we provide the first evidence that the 5' UTR and 3'CITE interact physically. Mutational analysis showed that formation of this RNA-RNA interaction in vitro correlates well with efficient translation in vivo, thus supporting its functional relevance. Other analyses of the 3'CITE confirmed an overall Y-shaped RNA secondary structure and demonstrated the importance of numerous minor structural features for efficient translation of viral mRNAs. Functional studies on the role of the 5' UTR revealed that despite the absence of a cap structure, 43S subunits load at the very 5' end and scan in a 3' direction. These results indicate that the 5'-3' RNA-RNA interaction is likely disrupted by scanning ribosomal subunits and suggest a dynamic model for the interaction of mRNA termini during active translation.  相似文献   

16.
17.
《The Journal of cell biology》1995,129(4):1023-1032
Previous studies in transgenic mice have established the importance of the 3' untranslated region (UTR) of the spermatid-specific protamine-1 (Prm-1) mRNA in its translational control during male germ cell development. To clone genes that mediate the translational repression or activation of the Prm-1 mRNA, we screened cDNA expression libraries made with RNA from pachytene spermatocytes and round spermatids, with an RNA probe corresponding to the 3' UTR of Prm-1. We obtained six independent clones that encode Spnr, a spermatid perinuclear RNA- binding protein. Spnr is a 71-kD protein that contains two previously described RNA binding domains. The Spnr mRNA is expressed at high levels in the testis, ovary, and brain, and is present in multiple forms in those tissues. Immunolocalization of the Spnr protein within the testis shows that it is expressed exclusively in postmeiotic germ cells and that it is localized to the manchette, a spermatid-specific microtubular array. Although the Spnr protein is expressed too late to be directly involved in the translational repression of Prm-1 specifically, we suggest that the Spnr protein may be involved in other aspects of spermatid RNA metabolism, such as RNA transport or translational activation.  相似文献   

18.
We report that the competitive translational activity of alfalfa mosaic virus coat protein mRNA (CP RNA), a nonadenylated mRNA, is determined in part by the 3' untranslated region (UTR). Competitive translation was characterized both in vitro, with cotranslation assays, and in vivo, with microinjected Xenopus laevis oocytes. In wheat germ extracts, coat protein synthesis was constant when a fixed amount of full-length CP RNA was cotranslated with increasing concentrations of competitor globin mRNA. However, translation of CP RNA lacking the 3' UTR decreased significantly under competitive conditions. RNA stabilities were equivalent. In X. laevis oocytes, which are translationally saturated and are an inherently competitive translational environment, full-length CP RNA assembled into large polysomes and coat protein synthesis was readily detectable. Alternatively, CP RNA lacking the 3' UTR sedimented as small polysomes, and little coat protein was detected. Again, RNA stabilities were equivalent. Site-directed mutagenesis was used to localize RNA sequences or structures required for competitive translation. Since the CP RNA 3' UTR has an unusually large number of AUG nucleotide triplets, two AUG-containing sites were altered in full-length RNA prior to oocyte injections. Nucleotide substitutions at the sequence GAUG, 20 nucleotides downstream of the coat protein termination codon, specifically reduced full-length CP RNA translation, while similar substitutions at the next AUG triplet had little effect on translation. The competitive influence of the 3' UTR could be explained by RNA-protein interactions that affect translation initiation or by ribosome reinitiation at downstream AUG codons, which would increase the number of ribosomes committed to coat protein synthesis.  相似文献   

19.
lin-28 is a conserved regulator of cell fate succession in animals. In Caenorhabditis elegans, it is a component of the heterochronic gene pathway that governs larval developmental timing, while its vertebrate homologs promote pluripotency and control differentiation in diverse tissues. The RNA binding protein encoded by lin-28 can directly inhibit let-7 microRNA processing by a novel mechanism that is conserved from worms to humans. We found that C. elegans LIN-28 protein can interact with four distinct let-7 family pre-microRNAs, but in vivo inhibits the premature accumulation of only let-7. Surprisingly, however, lin-28 does not require let-7 or its relatives for its characteristic promotion of second larval stage cell fates. In other words, we find that the premature accumulation of mature let-7 does not account for lin-28's precocious phenotype. To explain let-7's role in lin-28 activity, we provide evidence that lin-28 acts in two steps: first, the let-7-independent positive regulation of hbl-1 through its 3'UTR to control L2 stage-specific cell fates; and second, a let-7-dependent step that controls subsequent fates via repression of lin-41. Our evidence also indicates that let-7 functions one stage earlier in C. elegans development than previously thought. Importantly, lin-28's two-step mechanism resembles that of the heterochronic gene lin-14, and the overlap of their activities suggests a clockwork mechanism for developmental timing. Furthermore, this model explains the previous observation that mammalian Lin28 has two genetically separable activities. Thus, lin-28's two-step mechanism may be an essential feature of its evolutionarily conserved role in cell fate succession.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号