首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method of continuous saturation has been used to measure the electron spin relaxation parameter T1T2 at temperatures between 10 and 50 K for a variety of S = 1/2 species including: CuA and cytochrome a of cytochrome c oxidase, the type 1 copper in several blue copper proteins, the type 2 copper in laccase, inorganic Cu(II) complexes, sulfur radicals, and low spin heme proteins. The temperature dependence and the magnitude of T1T2 for all of the species examined are accounted for by assuming that the Van Vleck Raman process dominates the electron spin-lattice relaxation. Over the entire temperature range examined, the relaxation of the type 1 coppers in six to seven times faster than that of type 2 copper, inorganic copper, and sulfur radicals, in spite of the similar g-anisotropies of these species. This result may indicate that the coupling of the phonon bath to the spin center is more effective in type 1 coppers than in the other complexes studied. The relaxation of CuA of cytochrome oxidase exhibits an unusual temperature dependence relative to the other copper complexes studied, suggesting that the protein environment of this center is different from that of the other copper centers studied and/or that CuA is influenced by a magnetic dipolar interaction with another, faster-relaxing paramagnetic site in the enzyme. A comparison of the saturation characteristics of the CuA EPR signal in native and partially reduced CO complexes of the enzyme also suggests the existence of such an interaction. The implications of these results with respect to the disposition of the metal centers in cytochrome oxidase are discussed.  相似文献   

2.
Kulik LV  Lubitz W  Messinger J 《Biochemistry》2005,44(26):9368-9374
The temperature dependence of the electron spin-lattice relaxation time T1 was measured for the S0 state of the oxygen-evolving complex (OEC) in photosystem II and for two dinuclear manganese model complexes by pulse EPR using the inversion-recovery method. For [Mn(III)Mn(IV)(mu-O)2 bipy4]ClO4, the Raman relaxation process dominates at temperatures below 50 K. In contrast, Orbach type relaxation was found for [Mn(II)Mn(III)(mu-OH)(mu-piv)2(Me3 tacn)2](ClO4)2 between 4.3 and 9 K. For the latter complex, an energy separation of 24.7-28.0 cm(-1) between the ground and the first excited electronic state was determined. In the S0 state of photosystem II, the T1 relaxation times were measured in the range of 4.3-6.5 K. A comparison with the relaxation data (rate and pre-exponential factor) of the two model complexes and of the S2 state of photosystem II indicates that the Orbach relaxation process is dominant for the S0 state and that its first excited state lies 21.7 +/- 0.4 cm(-1) above its ground state. The results are discussed with respect to the structure of the OEC in photosystem II.  相似文献   

3.
Peterson S  Ahrling KA  Styring S 《Biochemistry》1999,38(46):15223-15230
The oxygen evolving complex (OEC) of photosystem II (PSII) gives rise to manganese-derived electron paramagnetic resonance (EPR) signals in the S0 and S2 oxidation states. These signals exhibit different microwave power saturation behavior between 4 and 10 K. Below 8 K, the S0 state EPR signal is a faster relaxer than the S2 multiline signal, but above 8 K, the S0 signal is the slower relaxer of the two. The different temperature dependencies of the relaxation of the S0 and S2 ground-state Mn signals are due to differences in the spin-lattice relaxation process. The dominating spin-lattice relaxation mechanism is concluded to be a Raman mechanism in the S0 state, with a T(4.1) temperature dependence of the relaxation rate. It is proposed that the relaxation of the S2 state arises from a Raman mechanism as well, with a T(6.8) temperature dependence of the relaxation rate, although the data also fit an Orbach process. If both signals relax through a Raman mechanism, the different exponents are proposed to reflect structural differences in the proteins surrounding the Mn cluster between the S0 and S2 states. The saturation of SII(slow) from the Y(D)(ox) radical on the D2 protein was also studied, and found to vary between the S0 and the S2 states of the enzyme in a manner similar to the EPR signals from the OEC. Furthermore, we found that the S2 multiline signal in the second turnover of the enzyme is significantly more difficult to saturate than in the first turnover. This suggests differences in the OEC between the first and second cycles of the enzyme. The increased relaxation rate may be caused by the appearance of a relaxation enhancer, or it may be due to subtle structural changes as the OEC is brought into an active state.  相似文献   

4.
The electron transfer reaction between ferrocyanide ion and the blue copper protein, stellacyanin, has been investigated by means of 13C NMR line broadening of the inorganic oxidant. The temperature dependence of the ferrocyanide line broadening gives an activation energy for the electron transfer reaction of 17 +/- 3 kJ. The apparent rate constant decreases with increasing concentration of K4Fe(CN)6, a result which can be explained either by formation of a strong precursor ferrocyanide--stellacyanin [Cu(II)] complex or by increased formation of KFe(CN)3-6 ion pairs. The direct electron transfer between ferrocyanide and ferricyanide has also been studied by 13C NMR line broadening of the former species. The ferricyanide concentration dependence of the exchange line broadening yields a value for the apparent second-order rate constant at 25 degrees C of k = 1.65 . 10(3) M-1 . s-1, in agreement with previously reported values derived from 14N NMR and isotope exchange studies. This rate constant shows a linear dependence on the K+ concentration, independent of ionic strength, a result which confirms the importance of ion pair species such as KFe(CN)3-6 and KFe(CN)2-6 in the direct electron transfer mechanism. The general applications of the method are discussed, including the considerations which suggest that a wide range of electron transfer rates, from about 1 s-1 to 4 . 10(3) s-1, are, in principle, accessible to this technique. The potential utility of ferrocyanide 13C spin--lattice relaxation time measurements is decreasing the lower limit of this range is also discussed.  相似文献   

5.
The complex [Fe2S2(S2-o-xylyl)2]2- in DMF (dimethylformamide), DMSO (dimethylsulphoxide) or a 1:1 DMF/DMSO mixture, a model for the chromophore in the 2Fe-2S proteins (ferredoxins), has been reduced and studied by conventional EPR over a temperature range. The low-field feature of the spectrum, Hz, has been computer simulated in order to analyse the lineshape in terms of a convolution product of Lorentzian and Gaussian distributions. The Gaussian contribution to the linewidth and a fixed part of the Lorentzian contribution, which is a function of the solvent and the way it freezes, were measured at a low temperature (less than or equal to 100 K) and subtracted from the linewidths in the higher-temperature range (130-200 K). The variable Lorentzian contribution thus obtained was related to spin-lattice relaxation times. The spin-lattice relaxation times of the sample having 1:1 DMSO/DMF solvent were measured in the range 6 to 11 K by the saturating pulse technique and in the range 10 to 65 K by continuous saturation methods. Up to 65 K the results follow the law 1/T1 alpha T4.5, a relationship which is not readily interpreted in terms of a simple Debye model. At higher temperatures the results may be interpreted in terms either of a dominant Orbach mechanism involving excited states at approx. 900 +/- 50 cm-1 (DMSO, DMF) or 770 +/- 50 cm-1 (1:1 DMSO/DMF), or of a Raman process in which 1/T1 alpha T7.5. The former is compatible with the two-phonon process already described in some ferredoxins, especially those with little anisotropy (gy - gx approximately 0.0) which have characteristically high [J] values.  相似文献   

6.
Kawai K  Suzuki T  Oguni M 《Biophysical journal》2006,90(10):3732-3738
To investigate the glass transition behaviors of a 20% (w/w) aqueous solution of bovine serum albumin, heat capacities and enthalpy relaxation rates were measured by adiabatic calorimetry at temperatures ranging from 80 to 300 K. One series of measurements was carried out after quenching from 300 down to 80 K and another after annealing in 200-240 K. The quenched sample showed a heat capacity jump indicating a glass transition temperature T(g) = 170 K, and the annealed sample showed a smaller jump with the T(g) shifted toward the higher temperature side. The temperature dependence of the enthalpy relaxation rates for the quenched sample indicated the presence of two enthalpy relaxation effects: one at around 110 K and the other over a wide temperature range (120-190 K). The annealed sample showed three separate relaxation effects giving 1) T(g) = 110 K, 2) 135 K, and 3) temperature higher than 180 K, whereas nothing around 170 K. These effects were thought to originate, respectively, from the rearrangement motions of 1) primary hydrate water forming a direct hydrogen bond with the protein, 2) part of the internal water localized in the opening of a protein structure, and 3) the disordered region in the protein.  相似文献   

7.
The axially symmetric powder pattern 2H-nuclear magnetic resonance (NMR) lineshapes observed in the liquid crystalline phase of pure lipid or lipid/cholesterol bilayers are essentially invariant to temperature, or, equivalently, to variations in the correlation times characterizing C-2H bond reorientations. In either of these melted phases, where correlation times for C-2H bond motions are shorter than 10(-7) s, information on the molecular dynamics of the saturated hydrocarbon chain would be difficult to obtain using lineshape analyses alone, and one must resort to other methods, such as the measurement of 2H spin-lattice relaxation rates, in order to obtain dynamic information. In pure lipid bilayers, the full power of the spin-lattice relaxation technique has yet to be realized, since an important piece of information, namely the orientation dependence of the 2H spin-lattice relaxation rates is usually lost due to orientational averaging of T1 by rapid lateral diffusion. Under more favorable circumstances, such as those encountered in the lipid/cholesterol mixtures of this study, the effects of orientational averaging by lateral diffusion are nullified, due to either a marked reduction (by at least an order of magnitude) in the diffusion rate, or a marked increase in the radii of curvature of the liposomes. In either case, the angular dependence of 2H spin-lattice relaxation is accessible to experimental study, and can be used to test models of molecular dynamics in these systems. Simulations of the partially recovered lineshapes indicate that the observed T1 anisotropies are consistent with large amplitude molecular reorientation of the C-2H bond among a finite number of sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Careful experiments on the measurement of the intensity of the deuterium NMR signal for 2-H2 O in muscle and in its distillate were performed, and they showed that all 2-H2 O muscle is "NMR visible". The spin-lattice relaxation time (T1) of the water protons in the muscle and liver of mice and in egg white has been studied at six frequencies ranging from 4.5 to 6.0 MHz over the temperature range of +37 to --70 degrees C. T1 values of deuterons in 2H2 O of gastrocnemius muscle and liver of mice have been measured at three frequencies (4.5, 9.21 and 15.35 MHz) over the temperature range of +37 to --20 degrees C. Calculations on T1 for both proton and deuteron have been made and compared with the experimental data. It is suggested that the reduction of the T1 values compared to pure water and the frequency dependence of T1 are due to water molecules in the hydration layer of the macromolecules, and that the bulk of water molecules in the biological tissues and egg white undergoes relaxation like ordinary liquid water.  相似文献   

9.
Roberts MF  Cui Q  Turner CJ  Case DA  Redfield AG 《Biochemistry》2004,43(12):3637-3650
Phosphorus-spin longitudinal relaxation rates of the DNA duplex octamer [d(GGAATTCC)](2) have been measured from 0.1 to 17.6 T by means of conventional and new field-cycling NMR methods. The high-resolution field-cycling method is identical to a conventional relaxation experiment, except that after preparation the sample is moved pneumatically from its usual position at the center of the high-resolution magnet upward to a lower field above its normal position and then returned to the center for readout after it has relaxed for the programmed relaxation delay at the low field. This is the first measurement of all longitudinal relaxation rates R(1) of a nuclear species in a macromolecule over virtually the entire accessible magnetic field range. For detailed analysis, three magnetic field regions can be delineated: (i) dipolar relaxation dominates at fields below 2 T, (ii) chemical shift anisotropy (CSA) relaxation is roughly constant from 2 to 6 T, and (iii) a square-law increasing dependence is seen at fields higher than approximately 6 T due to internal motion CSA relaxation. The analysis provides a rotational correlation time (tau(r) = 4.1 +/- 0.3 ns) for the duplex at both 1.5 and 0.25 mM concentrations (of duplex) at 22 degrees C. For comparison, extraction of tau(r) in the conventional way from the ratio of T(1)/T(2) at 14 T yields 3.2 ns. The tau(r) discrepancy disappears when we exclude the contribution of internal motion from the R(1) in the ratio. The low-field dipolar relaxation provides a weighted inverse sixth power sum of the distances from the phosphorus to the protons responsible for relaxation. This average is similar for all phosphates in the octamer and similar to that in previous B-DNA structures (its inverse sixth root is about 2.40 A for two different concentrations of octamer). The CSA relaxation at intermediate field provides an estimate of the order parameter squared, S(c)(2), for each phosphorus. S(c)(2) is about 0.7-1, clearly different for different phosphate linkages in the octamer duplex. The increasing R(1) at high fields reflects CSA relaxation due to internal motions, for which a correlation time, tau(hf), can be approximately extracted with the aid of additional measurements at 14.0 and 17.6 T. We conclude that tau(hf) values are relatively large, in the range of about 150 ps. Insight into the motions leading to this correlation time was gained by a 28 ns molecular dynamics simulation of the molecule. S(2) and tau(s) (corresponding to tau(hf)) predicted by this simulation were in good agreement with the experimental values from the field-cycling data. Both the effect of Mg(2+) on the dynamic parameters extracted from (31)P relaxation rates and the field dependence of relaxation rates for several protons of the octamer were measured. High-resolution field cycling opens up the possibility of monitoring residue-specific dipolar interactions and dynamics for the phosphorus nuclei of diverse oligonucleotides.  相似文献   

10.
11.
Differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR) spectroscopy are applied to characterize the nonfreezable water molecules in fully hydrated D2O/sphingomyelin at temperatures below 0 degrees C. Upon cooling, DSC thermogram displays two thermal transitions peaked at -11 and -34 degrees C. The high-temperature exothermic transition corresponds to the freezing of the bulk D2O, and the low-temperature transition, which has not previously been reported, can be ascribed to the freezing of the phosphocholine headgroup in the lipid bilayer. The dynamics of nonfreezable water are also studied by 2H NMR T1 (spin-lattice relaxation time) and T2e (spin-spin relaxation time obtained by two pulse echo) measurements at 30.7 MHz and at temperatures down to -110 degrees C. The temperature dependence of the T1 relaxation time is characterized by a distinct minimum value of 2.1 +/- 0.1 ms at -30 degrees C. T2e is discontinuous at temperature around -70 degrees C, indicating another freezing-like event for the bound water at this temperature. Analysis of the relaxation data suggest that nonfreezable water undergoes both fast and slow motions at characteristic NMR time scales. The slow motions are affected when the lipid headgroup freezes.  相似文献   

12.
Proton nuclear magnetic resonance relaxation measurements were made over the range 4.7--220 MHz for aqueous solutions of hog kidney diamine oxidase. The values of 1/T1 give rise in two distinct dispersions, at 16 and 75 MHz, whereas 1/T2 displays a minimum at 20 MHz. The temperature dependence of relaxation rates in all cases yield apparent activation energies less than 0.6 kcal/mol. These data indicate to us that the two Cu(II) ions of diamine oxidase are intrinsically different in terms of their electronic relaxation characteristics and hence, chemical environments. Low field limits of the two electronic relaxation times are 2 and 10 ns, with one of these correlation times being frequency dependent. The value of the frequency-dependent electronic relaxation time is governed by interactions that are modulated by a process having a correlation time of 5 ps.  相似文献   

13.
Electron paramagnetic resonance (EPR) power saturation and saturation recovery methods have been used to determine the spin lattice, T1, and spin-spin, T2, relaxation times of P-700+ reaction-center chlorophyll in Photosystem I of plant chloroplasts for 10 K less than or equal to T less than or equal to 100 K. T1 was 200 mus at 100 K and increased to 900 mus at 10 K. T2 was 40 ns at 40 K and increased to 100 ns at 10 K. T1 for 40 K less than or equal to T less than or equal to 100 K is inversely proportional to temperature, which is evidence of a direct-lattice relaxation process. At T = 20 K, T1 deviates from the 1/T dependence, indicating a cross relaxation process with an unidentified paramagnetic species. The individual effects of ascorbate and ferricyanide on T1 of P-700+ were examined: T1 of P-700+ was not affected by adding 10 mM ascorbate to digitonin-treated chloroplast fragments (D144 fragments). The P-700+ relaxation time in broken chloroplasts treated with 10 mM ferricyanide was 4-times shorter than in the untreated control at 40 K. Ferricyanide appears to be relaxing the P-700+ indirectly to the lattice by a cross-relaxation process. The possibility of dipolar-spin broadening of P-700+ due to either the iron sulfur center A or plastocyanin was examined by determining the spin-packet linewidth for P-700+ when center A and plastocyanin were in either the reduced or oxidized states. Neither reduced center A nor oxidized plastocyanin was capable of broadening the spin-packet linewidth of P-700+ signal. The absence of dipolar broadening indicates that both center A and plastocyanin are located at a distance at least 3.0 nm from the P-700+ reaction center chlorophyll. This evidence supports previous hypotheses that the electron donor and acceptor to P-700 are situated on opposite sides of the chloroplast membrane. It is also shown that the ratio of photo-oxidized P-700 to photoreduced centers A and B at low temperature is 2 : 1 if P-700 is monitored at a nonsaturating microwave power.  相似文献   

14.
The temperature dependence of the time of dark recombination of charges between photooxidized bacteriochlorophyll and reduced primary quinone acceptor (tau e) in Rhodobacter sphaeroides photosynthetic reaction centers was studied in the temperature range 140-320 K. It was found that the function tau e = tau e(T) is nonmonotonous: in the temperature range from 140 to 290 K, tau e is increased from 40 to 100 ms; however, under further heating to 320 K, tau e decreased to 80 ms. The replacement of H2O by D2O in these preparations caused an acceleration of the recombination process in the range of physiological temperatures, but the nonmonotonous character of the function tau e(T) remained. The theoretical interpretation of the results was made in the framework of the theory of electron-phonon interactions with allowance for the relaxation processes.  相似文献   

15.
Whole gastrocnemius muscles were incubated in Ringer's solution enriched with H2-17O; the paired contralateral gastrocnemius muscles were incubated in a similar solution enriched with deuterons, as well. Subsequently, the longitudinal relaxation times (T1) were measured 17-O, 2-D, and 1-H, both at 8.1 MHz and at 4.3 MHz. The results indicate that: (a) the absolute values of T1 characterizing the three nuclides are different in muscle and pure water. (b) the longitudinal relaxation rates of all three have an identical frequency dependence over the range studied, (c) the ratio (T1)2D/(T1)17ois the same in muscle water and pure water, while the ratio (T1)1H/(T1)17o is 2.1 times greater in pure water than it is in muscle water, and (d) 30-49 percent substitution of 2-D for 1-H has very little effect on the spin-lattice relaxation of tissue water protons. These data suggest that muscle water is in rapid exchange between a small fraction of immobilized molecules and a large fraction of free water. The results render unlikely the possibility that hypothetical ordering of muscle water significantly contributes to its longitudinal relaxation.  相似文献   

16.
Galactosyl- and glucosylceramide, globoside, and dihydrolactosylceramide, bearing [2,2-2H2]stearic acid, have been studied at a concentration of 10 mol% in bilayers of dimyristoylphosphatidylcholine by 2H NMR. The quadrupolar splitting delta vQ of the C2 deuterons were measured at several temperatures in the range of 30-60 degrees C. Spin-lattice relaxation times T1 of C2 deuterons were determined in the same temperature range for all lipids but globoside. T1 values at 30 and 50 degrees C were unexpectedly short (6-8 ms), indicating reduced mobility of the ceramide acyl chains compared to that of the host phospholipid. At all temperatures, both delta vQ and T1 were essentially identical for the monoglycosylated species, GalCer and GlcCer, indicating that the order and dynamics of the upper portion of the fatty acyl chain are insensitive to this small change in the headgroup structure. In the case of globoside, where the glycolipid headgroup is equivalent to that of GlcCer extended by three sugar residues, values for the quadrupolar splittings associated with the acyl chain C2-position were very close to those obtained for Gal- and GlcCer. In contrast, the delta vQ values obtained for the diglycosyl species, LacCer, were significantly different at all temperatures. This different behavior of LacCer relative to that of the other glycolipids most likely originates from an orientational change of the acyl chain at the C2-position due to the absence of a 4,5 double bond in dihydrosphingosine. T1 values for the GlcCer and GalCer systems increased with temperature, indicating that the motions responsible for relaxation were in the short correlation time regime.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The dielectric behaviour of aqueous solutions of glucose, poly(ethylene glycol)s (PEGs) 200 and 600, and poly(vinyl pyrrolidone) (PVP) has been examined at different concentrations in the frequency range of 10(6)-10(-3) Hz by dielectric spectroscopy and by using differential scanning calorimetry down to 77 K from room temperature. The shape of the relaxation spectra and the temperature dependence of the relaxation rates have been critically examined along with temperature dependence of dielectric strength. In addition to the so-called primary (alpha-) relaxation process, which is responsible for the glass-transition event at T(g), another relaxation process of comparable magnitude has been found to bifurcate from the main relaxation process on the water-rich side, which continues to the sub-T(g) region, exhibiting relaxation at low frequencies. The sub-T(g) process dominates the dielectric measurements in aqueous solutions of higher PEGs, and the main relaxation process is seen as a weak process. The sub-T(g) process was not observed when water was replaced by methanol in the binary mixtures. These observations suggest that the sub-T(g) process in the aqueous mixtures is due to the reorientational motion of the 'confined' water molecules. The corresponding dielectric strength shows a noticeable change at T(g), indicating a hindered rotation of water molecules in the glassy phase. The nature of this confined water appears to be anomalous compared to most other supercooled confined liquids.  相似文献   

18.
Concentrated Aqueous Protein Systems, Proton Relaxation Times, Slow Chemical Exchange In this paper we present proton spin-lattice (T1) and spin-spin (T2) relaxation times measured vs. concentration, temperature, pulse interval (tauCPMG) as well as 1H NMR spectral measurements in a wide range of concentrations of bovine serum albumin (BSA) solutions. The anomalous relaxation behaviour of the water protons, similar to that observed in mammalian lenses, was found in the two most concentrated solutions (44% and 46%). The functional dependence of the spin-spin relaxation time vs. tauCPMG pulse interval and the values of the motional activation parameters obtained from the temperature dependencies of spin-lattice relaxation times suggest that the water molecule mobility is reduced in these systems. The slow exchange process on the T2 time scale is proposed to explain the obtained data. The proton spectral measurements support the hypothesis of a slow exchange mechanism in the highest concentrated solutions. From the analysis of the shape of the proton spectra the mean exchange times between bound and bulk water proton groups (tauex) have been estimated for the range of the highest concentrations (30%-46%). The obtained values are of the order of milliseconds assuring that the slow exchange condition is fulfilled in the most concentrated samples.  相似文献   

19.
Fast displacement photocurrents have been reported in bacteriorhodopsin model membranes by several groups of investigators since 1977. A fast component (B1) is associated with positive charge displacement in the direction opposite to that of a physiological proton translocation. A slower component (B2) of opposite polarity is associated with positive charge displacement in the same direction as the proton translocation. Using two slightly different methods for model membrane formation, we observed photosignals with or without a significant B2 component under appropriate conditions. By means of the tunable voltage clamp method of measurement (Hong, F.T., and D. Mauzerall, 1974, Proc. Natl. Acad. Sci. USA, 71:1564-1568) we demonstrated that the time course of the B1 signal is completely predictable by an equivalent circuit containing a chemical capacitance. From the equivalent circuit analysis, we obtained a first-order relaxation time constant of 12.3 +/- 0.7 microseconds at room temperature. We also found a slight temperature dependence of the B1 relaxation with an activation energy of 2.54 +/- 0.24 kcal/mol. We found no pH dependence of the B1 component in the range of 0 to 11, whereas the B2 component is diminishing in a graded manner when the pH is varied from 0 to 10. These results are diametrically different from what reported previously (Drachev, L.A., A.D. Kaulen, L.V. Khitrina, and V.P. Skulachev, 1981, Eur. J. Biochem., 117:461-470). Our results support the interpretation that the B1 component is generated by an intramolecular charge displacement accompanying the light-induced reactions of bacteriorhodopsin and that the B2 component is generated by a process of proton uptake from the intracellular aqueous phase and subsequent release into the same aqueous phase. The impact of the present results on the conventional practice of identifying photointermediates of bacteriorhodopsin by spectroscopic means is discussed.  相似文献   

20.
The dynamic properties of DNA in intact chicken erythrocyte cells, nuclei, nondigested chromatins, digested soluble chromatins, H1, H5-depleted soluble chromatins and nucleosome cores were investigated by means of single-pulse and 1H-31P cross-polarization NMR. The temperature dependence of the phosphorus chemical shift anisotropy was identical for the former three in the presence of 3 mM MgCl2, suggesting that the local higher order structure is identical for these chromatins. The intrinsic phosphorus chemical shift anisotropy of the nucleosome cores was -159 ppm. The chemical shift anisotropy of DNA in the chromatins can be further averaged by the motion of the linker DNA. The spin-lattice relaxation time in the rotating frame of the proton spins (T1p) of the nondigested chromatins was measured at various locking fields. The result was analyzed on the assumption of the isotropic motion to get a rough value of the correlation time of the motion efficient for the relaxation, which was eventually ascribed to the segmental motion of the linker DNA with restricted amplitude. The 30 nm filament structure induced by NaCl was shown to be dynamically different from that induced by MgCl2. Side-by-side compaction of 30-nm filaments was suggested to be induced in the MgCl2 concentration range higher than 0.3 mM. Biological significance of the dynamic structure was discussed in connection with the results obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号