首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Q Yang  Y Guo  L Li    S W Hui 《Biophysical journal》1997,73(1):277-282
The effect of lipid headgroup and curvature-related acyl packing stress on PEG-induced phospholipid vesicle aggregation and fusion were studied by measuring vesicle and aggregate sizes using the quasi-elastic light scattering and fluorescence energy transfer techniques. The effect of the lipid headgroup was monitored by varying the relative phosphatidylcholine (PC) and phosphatidylethanolamine (PE) contents in the vesicles, and the influence of hydrocarbon chain packing stress was controlled either by the relative amount of PE and PC content in the vesicles, or by the degree of unsaturation of the acyl chains of a series of PEs, e.g., dilinoleoylphosphatidylethanolamine (dilin-PE), lysophosphatidylethanolamine (lyso-PE), and transacylated egg phosphatidylethanolamine (TPE). The PEG threshold for aggregation depends only weakly on the headgroup composition of vesicles. However, in addition to the lipid headgroup, the curvature stress of the monolayer that forms the vesicle walls plays a very important role in fusion. Highly stressed vesicles, i.e., vesicles containing PE with highly unsaturated chains, need less PEG to induce fusion. This finding applies to the fusion of both small unilamellar vesicles and large unilamellar vesicles. The effect of electrostatic charge on vesicle aggregation and fusion were studied by changing the pH of the vesicle suspension media. At pH 9, when PE headgroups are weakly charged, increasing electrostatic repulsion between headgroups on the same bilayer surface reduces curvature stress, whereas increasing electrostatic repulsion between apposing bilayer headgroups hinders intervesicle approach, both of which inhibit aggregation and fusion, as expected.  相似文献   

2.
The thickness of the lipid bilayer in vesicles made of pure phosphatidylcholines, with acyl chain lengths ranging from 10 to 24 carbons, has been determined by analysis of continuous X-ray scattering data from vesicle pellets at temperatures above the lipid phase transition temperature. Bilayer thickness was found to vary linearly with the number of carbons per acyl chain. The lines for saturated and monounsaturated acyl chains were slightly displaced but had similar slopes. For the saturated species di-12:0, di-14:0, di-16:0, and di-18:0 phosphatidylcholine the surface areas per molecule were all 65.7 to 66.5 A2, while the monounsaturated species and di-10:0 phosphatidylcholine all occupied 67.7 to 70.1 A2 per molecule.  相似文献   

3.
Plant cytokinesis requires intense membrane trafficking and remodeling to form a specific membrane structure, the cell plate that will ultimately separate the daughter cells. The nature and the role of lipids involved in the formation of the cell plate remain unclear. Plant membranes are particularly rich in sphingolipids such as glucosyl-ceramides with long (16 carbons) or very long (24 carbons) acyl chains. We reveal here that inhibition of the synthesis of sphingolipids with very long acyl chains induces defective cell plates with persistent vesicular structures and large gaps. Golgi-derived vesicles carrying material toward the cell plate display longer vesicle–vesicle contact time and their cargos accumulate at the cell plate, suggesting membrane fusion and/or recycling defects. In vitro fusion experiments between artificial vesicles show that glycosphingolipids with very long acyl chains stimulate lipid bilayer fusion. Therefore we propose that the very long acyl chains of sphingolipids are essential structural determinants for vesicle dynamics and membrane fusion during cytokinesis.  相似文献   

4.
Carbon-13 NMR longitudinal relaxation times for unilamellar vesicles of egg phosphatidyl-choline (PC) in aqueous dispersion have been measured following the incorporation of spin labelled cholesteryl palmitate. The spin label induced relaxation rates. 1/T1.5L, for fatty acyl chain carbons show that the C5 segment of the cholesteryl ester acyl chain is located near the C1 and C2 segments of the phospholipid acyl chains. A greater spin label induced enhancement of relaxation rate was observed for the inner vesicle layer than for the outer, and is attributed to a higher ester incorporation and/or tighter lipid packing in the inner layer.  相似文献   

5.
Raman spectroscopic frequency differences between selected carbon-carbon stretching modes of lipid hydrocarbon chains were determined as a function of temperature for use in monitoring lipid phase transition behavior and acyl chain disorder in both multilamellar and single-wall vesicles. Transition temperatues detected by this procedure for pure dipalmitoyl phosphatidylcholine and dimyristoyl phosphatidylcholine multilayers were observed at 39±1 °C and 23±1 °C, respectively. Although the phase transition for unilamellar vesicles of dipalmitoyl phosphatidylcholine occurred at nearly the same temperature as the multilayers, the crystal-liquid crystalline transition for the single-shell vesicles appeared to span a slightly broader temperature range, a characteristic consistent with irregularities in the packing arrangement of the hydrocarbon chains. Within the precision of the Raman spectroscopic method, however, the temperature behavior of both the multilamellar and the unilamellar dimyristoyl phosphatidylcholine assemblies appeared nearly identical. The temperature profile for the Raman frequency differences of an excess water sonicate of 25 mol percent cholesterol in dipalmitoyl phosphatidylcholine served as an example of the effect upon lipid phase transition characteristics of a bilayer component intercalated between the acyl chains. For this particular cholesterol-lipid system the phase transition was broadened over a 30 °C temperature range, in contrast to the narrow 5?4 °C range observed for pure multilayer and single-shell vesicle particles.  相似文献   

6.
The rates of exchange of [4-14C]cholesterol between lipid vesicles prepared with different phospholipids and with different sizes have been measured. The first-order rate constants were higher using vesicles prepared from phosphatidylcholines with highly branched or polyunsaturated fatty acyl chains than with saturated diacyl or di-O-alkyl chains. The rate measurements indicate that the affinity of cholesterol for phospholipid does not vary significantly on change of the type of linkage (ether or ester) in phosphatidylcholine (PC) or of the positions of the fatty acyl chains in 1,2-diacyl-PC bearing one saturated and one unsaturated chain; furthermore, egg phosphatidylglycerol and egg phosphatidylethanolamine appear to have comparable affinities for cholesterol. However, the molecular packing in the bilayer and nearest-neighbor interactions involving cholesterol appear tightened more by N-palmitoylsphingomyelin than by dipalmitoyl-PC; on incorporation of 44 mol % of these phospholipids (which have the same fatty acyl chain composition) into either small or large unilamellar vesicles prepared with egg phosphatidylglycerol, the exchange rates were strikingly slower when the donor species contained sphingomyelin compared with PC. The rate of cholesterol exchange was 100% faster with small unilamellar vesicles than with large unilamellar vesicles as donors, suggesting that the looser packing in the highly curved small vesicles facilitates cholesterol desorption. The cholesterol exchange rate did not vary with the size of the acceptor vesicles, which indicates that desorption is the rate-limiting step in the exchange process in the presence of excess acceptors.  相似文献   

7.
N Zumbulyadis  D F O'Brien 《Biochemistry》1979,18(24):5427-5432
Proton and carbon-13 nuclear magnetic resonance (1H and 13C NMR) spectra of rhodopsin-phospholipid membrane vesicles and sonicated disk membranes are presented and discussed. The presence of rhodopsin in egg phosphatidylcholine vesicles results in homogeneous broadening of the methylene and methyl resonances. This effect is enhanced with increasing rhodopsin content and decreased by increasing temperature. The proton NMR data indicate the phospholipid molecules exchange rapidly (less than 10(-3) s) between the bulk membrane lipid and the lipid in the immediate proximity of the rhodopsin. These interactions result in a reduction in either or both the frequency and amplitude of the tilting motion of the acyl chains. The 13C NMR spectra identify the acyl chains and the glycerol backbone as the major sites of protein lipid interaction. In the disk membranes the saturated sn-1 acyl chain is significantly more strongly immobilized than the polyunsaturated sn-2 acyl chain. This suggest a membrane model in which the lipid molecules preferentially solvate the protein with the sn-1 chain, which we term an edge-on orientation. The NMR data on rhodopsin-asolectin membrane vesicles demonstrate that the lipid composition is not altered during reconstitution of the membranes from purified rhodopsin and lipids in detergent.  相似文献   

8.
The role of fatty acyl chain unsaturation in promoting asymmetry in phospholipid vesicle bilayers was investigated in mixed lipid systems with differing acyl chains and a constant phosphatidylcholine headgroup. Ratios of outside to inside components were determined by nuclear magnetic resonance spectroscopy of 13C-enriched egg phosphatidylcholine. An asymmetry or disproportionation ratio is defined and used to express quantitatively how a mixture of two lipids distributes in the outer and inner vesicle surfaces. In mixed systems with 13C-enriched egg phosphatidylcholine as one component, increasing fatty acyl unsaturation in the other component results in an increasing preference of the unsaturated chains for the outer surface.  相似文献   

9.
Cytochrome b5 was incorporated into large vesicles of 1-palmitoyl-2-dibromostearoylphosphatidylcholine by mixing lipid, protein, and deoxycholate followed by removal of the detergent by gel filtration. The tryptophan fluorescence emanating from the hydrophobic membrane-binding domain was quenched more effectively when the bromine atoms were in the 6,7-positions than when they were in the 15,16-positions of the acyl chain. To more precisely define the position of the quenchable tryptophan, the experiment was repeated with lipids with the bromine atoms at the 4,5-, 6,7- or 9,10-positions. Again the 6,7 species was the most efficient quencher. The cytochrome b5 bound to these vesicles would not transfer to small unilamellar sonicated vesicles and so was in the "tight" configuration. If the cytochrome were added to the vesicles after the detergent was removed, the same order of quenching was seen but the cytochrome would transfer to other vesicles. These data indicate that the quenching of the tryptophan fluorescence is greatest when the bromines are at the 6,7-positions whether the vesicles are large or small and whether the cytochrome is in the tight or "loose" configuration and so place the tryptophan 0.7 nm below the vesicle surface in all of these membranes.  相似文献   

10.
G Anderle  R Mendelsohn 《Biochemistry》1986,25(8):2174-2179
CaATPase from rabbit skeletal muscle has been isolated, purified, delipidated, and reconstituted with retention of ATPase activity into lipid vesicles consisting respectively of 1,2-dipalmitoylphosphatidylethanolamine, 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE), 1-stearoyl-2-oleoylphosphatidylcholine (SOPC), and egg sphingomyelin. The effect of the enzyme on phospholipid order and melting characteristics were determined with Fourier-transform infrared spectroscopy. Taken together with prior data from this laboratory for 1,2-dipalmitoylphosphatidylcholine and 1,2-dioleoylphosphatidylcholine (DOPC), as well as for native sarcoplasmic reticulum (SR), three types of lipid response to protein incorporation have been observed: (1) Phospholipids with high levels of acyl chain unsaturation (DOPC or native SR) have their lipid acyl chains slightly ordered by CaATPase incorporation. The effect of protein on the gel-liquid crystal phase transition cannot be easily determined, since the cooperative melting even in these systems occurs at temperature well below 0 degrees C. (2) Phospholipids with saturated acyl chains show slightly lowered melting temperatures and reduced cooperativity of melting upon CaATPase insertion. In addition, protein induces (at most) slight disorder into the acyl chains at temperatures removed from the lipid melting point. (3) The strongest response is observed for phospholipids containing one saturated and one unsaturated chain (POPE or SOPC) or heterogeneous systems with low levels of unsaturation (egg sphingomyelin). In these cases, relatively low protein levels diminish the magnitude of or completely abolish the phospholipid phase transition. In addition, substantial disorder is introduced into the acyl chain compared with the pure lipid both above and below its transition temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We report a combined dynamic light scattering (DLS) and neutron spin-echo (NSE) study on the local bilayer undulation dynamics of phospholipid vesicles composed of 1,2-dimyristoyl-glycero-3-phosphatidylcholine (DMPC) under the influence of temperature and the additives cholesterol and trehalose. The additives affect vesicle size and self-diffusion. Mechanical properties of the membrane and corresponding bilayer undulations are tuned by changing lipid headgroup or acyl chain properties through temperature or composition. On the local length scale, changes at the lipid headgroup influence the bilayer bending rigidity κ less than changes at the lipid acyl chain: We observe a bilayer softening around the main phase transition temperature Tm of the single lipid system, and stiffening when more cholesterol is added, in concordance with literature. Surprisingly, no effect on the mechanical properties of the vesicles is observed upon the addition of trehalose.  相似文献   

12.
Nanosecond fluorescence polarization anisotropy decay is used to determine the effect of the bacteriophage M13 coat protein on lipid bilayer acyl chain dynamics and order. The fluorescent acyl chain analogues cis- and trans-parinaric acid were used to determine the rate and extent of the angular motion of acyl chains in liquid crystalline (39 degrees C) dimyristoylphosphatidylcholine bilayers free of coat protein or containing the coat protein at a protein:lipid ratio of 1:30. Subnanosecond time resolution was obtained by using synchrotron radiation as the excitation source for single photon counting detection. Previous measurements of Förster energy transfer from coat protein tryptophan to cis- or trans-parinaric acid have shown that these probes are randomly distributed in the bilayer with respect to the protein. The anisotropy decay observed for pure bilayers has the form of a rapid drop, followed by a nonzero constant region extending from roughly 3 ns to at least 12 ns. The magnitude of the anisotropy in the plateau region is simply related to the acyl chain order parameter. The effect of the M13 coat protein is to increase the acyl chain order parameter significantly while having only a small effect on the rate of angular relaxation. This behavior is rationalized in terms of a simple microscopic model. The order parameters for pure lipid and coat protein containing bilayers are compared to 2H-NMR values.  相似文献   

13.
The effects of pressure, up to 5 kbar, on multilamellar vesicles of 1,2-dipalmitoyl-sn-phosphatidylcholine perdeuterated in the acyl chains (DPPC-d62) were examined by using high-pressure NMR techniques. A deuterium probe was built, and the quadrupole splitting was measured against pressure at various temperatures. The experiments were performed on pure lipid bilayers in the liquid-crystalline state and on bilayers in the liquid-crystalline state containing the local anesthetic tetracaine. The results show that the order parameter of all segments of the acyl chains increases with pressure in the liquid-crystalline state. The more highly ordered regions of the chains are affected slightly more than the regions near the methyl ends. The addition of tetracaine increases the disorder of the chains, and pressure reverses the effect of anesthetic on the lipid as seen by the reversal of the changes in line shape and the measured order parameter.  相似文献   

14.
The mode of interaction of aqueous dispersions of phospholipid vesicles is investigated. The vesicles (average diameter 950 A) are prepared from total lipid extracts of Escherichia coli composed of phosphatidylethanolamine, phosphatidylglycerol and cardiolipin. One type of vesicle contains trans-delta 9-octadecenoate, the other type trans-delta 9-hexadecenoate as predominant acyl chain component. The vesicles show order in equilibrium disorder transitions at transition temperatures, Tt = 42 degrees C and Tt = 29 degrees C, respectively. A mixture of these vesicles is incubated at 45 degrees C and lipid transfer is studied as a function of time using the phase transition as an indicator. The system reveals the following properties: Lipids are transferred between the two vesicle types giving rise to a vesicle population where both lipid components are homogeneously mixed. Lipid transfer is asymmetric, i.e. trans-delta 9-hexadecenoate-containing lipid molecules appear more rapidly in the trans-delta 9-octadecenoate-containing vesicles than vice versa. At a given molar ratio of the two types of vesicles the rate of lipid transfer is independent of the total vesicle concentration. It is concluded that lipid exchange through the water phase by way of single molecules or micelles is the mode of communication of these negatively charged lipid vesicles.  相似文献   

15.
Sphingomyelins (SMs) are among the most common phospholipid components of plasma membranes, usually constituting a mixture of several molecular species with various fatty acyl chain moieties. In this work, we utilize atomistic molecular dynamics simulations to study the differences in structural and dynamical properties of bilayers comprised of the most common natural SM species. Keeping the sphingosine moiety unchanged, we vary the amide bonded acyl chain from 16 to 24 carbons in length and examine the effect of unsaturation by comparing lipids with saturated and monounsaturated chains. As for structural properties, we find a slight decrease in average area per lipid and a clear linear increase in bilayer thickness with increasing acyl chain length both in saturated and unsaturated systems. Increasing the acyl chain length is found to further the interdigitation across the bilayer center. This is related to the dynamics of SM molecules, as the lateral diffusion rates decrease slightly for an increasing acyl chain length. Interdigitation also plays a role in interleaflet friction, which is stronger for unsaturated chains. The effect of the cis double bond is most significant on the local order parameters and rotation rates of the chains, though unsaturation shows global effects on overall lipid packing and dynamics as well. Regarding hydrogen bonding or properties related to the lipid/water interface region, no significant effects were observed due to varying chain length or unsaturation. The significance of the findings presented is discussed.  相似文献   

16.
We employ an implementation of rapid-scan Fourier transform infrared (FT-IR) microspectroscopic imaging to acquire time-resolved images for assessing the non-repetitive reorganizational dynamics of aqueous dispersions of multilamellar lipid vesicles (MLVs) derived from distearoylphosphatidylcholine (DSPC). The spatially and temporally resolved images allow direct and simultaneous determinations of various physical and chemical properties of the MLVs, including the main thermal gel to liquid crystalline phase transition, comparisons of vesicle diffusion rates in both phases and the variation in lipid bilayer packing properties between the inner and outer lamellae defining the vesicle. Specifically, in the lipid liquid crystalline phase, the inner bilayers of the MLVs are more intermolecularly ordered than the outer regions, while the intramolecular acyl chain order/disorder parameters, reflecting the overall characteristics of the fluid phase, remain uniform across the vesicle diameter. In contrast, the lipid vesicle gel phase displays no intermolecular or intramolecular dependence as a function of distance from the MLV center.  相似文献   

17.
We determined the distribution of lecithin molecular species between vesicles and mixed micelles in cholesterol super-saturated model biles (molar taurocholate-lecithin-cholesterol ratio 67:23:10, 3 g/dl, 0.15 M NaCl, pH approximately 6-7) that contained equimolar synthetic lecithin mixtures or egg yolk or soybean lecithins. After apparent equilibration (48 h), biles were fractionated by Superose 6 gel filtration chromatography at 20 degrees C, and lecithin molecular species in the vesicle and mixed micellar fractions were quantified as benzoyl diacylglycerides by high performance liquid chromatography. With binary lecithin mixtures, vesicles were enriched with lecithins containing the most saturated sn-1 or sn-2 chains by as much as 2.4-fold whereas mixed micelles were enriched in the more unsaturated lecithins. Vesicles isolated from model biles composed of egg yolk (primarily sn-1 16:0 and 18:0 acyl chains) or soy bean (mixed saturated and unsaturated sn-1 acyl chains) lecithins were selectively enriched (6.5-76%) in lecithins with saturated sn-1 acyl chains whereas mixed micelles were enriched with lecithins composed of either sn-1 18:1, 18:2, and 18:3 unsaturated or sn-2 20:4, 22:4, and 22:6 polyunsaturated chains. Gel filtration, lipid analysis, and quasielastic light scattering revealed that apparent micellar cholesterol solubilities and metastable vesicle cholesterol/lecithin molar ratios were as much as 60% and 100% higher, respectively, in biles composed of unsaturated lecithins. Acyl chain packing constraints imposed by distinctly different particle geometries most likely explain the asymmetric distribution of lecithin molecular species between vesicles and mixed micelles in model bile as well as the variations in apparent micellar cholesterol solubilities and vesicle cholesterol/lecithin molar ratios.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Lipid asymmetry, the difference in inner and outer leaflet lipid composition, is an important feature of biomembranes. By utilizing our recently developed MβCD-catalyzed exchange method, the effect of lipid acyl chain structure upon the ability to form asymmetric membranes was investigated. Using this approach, SM was efficiently introduced into the outer leaflet of vesicles containing various phosphatidylcholines (PC), but whether the resulting vesicles were asymmetric (SM outside/PC inside) depended upon PC acyl chain structure. Vesicles exhibited asymmetry using PC with two monounsaturated chains of >14 carbons; PC with one saturated and one unsaturated chain; and PC with phytanoyl chains. Vesicles were most weakly asymmetric using PC with two 14 carbon monounsaturated chains or with two polyunsaturated chains. To define the origin of this behavior, transverse diffusion (flip-flop) of lipids in vesicles containing various PCs was compared. A correlation between asymmetry and transverse diffusion was observed, with slower transverse diffusion in vesicles containing PCs that supported lipid asymmetry. Thus, asymmetric vesicles can be prepared using a wide range of acyl chain structures, but fast transverse diffusion destroys lipid asymmetry. These properties may constrain acyl chain structure in asymmetric natural membranes to avoid short or overly polyunsaturated acyl chains.  相似文献   

19.
M Ge  J H Freed 《Biophysical journal》1993,65(5):2106-2123
The model of microscopic order and macroscopic disorder was used to stimulate electron spin resonance spectra of spin-labeled lipids, 5-PC, 10-PC, and 16-PC in multilamellar vesicles of dipalmitoylphosphatidylcholine (DPPC) containing gramicidin A' (GA) at temperatures above the gel-to-liquid crystal transition of DPPC. The simulations show that at a lower concentration of GA (i.e., molar ratios of DPPC/GA greater than 3), GA has only a slight effect on the acyl chain dynamics. The rotational diffusion rate around the axis parallel to the long hydrocarbon chain remains unchanged or increases slightly, while the rate around the perpendicular axes decreases slightly. These spectra from DPPC/GA mixtures could only be fit successfully with two or more components consistent with the well-known concept of "boundary lipids," that is, the peptide induces structural inhomogeneity in lipid bilayers. However, the spectra were significantly better fit with additional components that exhibit increased local ordering, implying decreased amplitude of rotational motion, rather than immobilized components with sharply a reduced rotational rate. The largest relative effects occur at the end of the acyl chains, where the average local order parameter St of 16-PC increases from 0.06 for pure lipid to 0.66 for 1:1 DPPC/GA. The inhomogeneity in ordering in DPPC bilayers due to GA decreases with increasing temperature. The hyperfine tensor component Azz increases for 10-PC and 16-PC when GA is incorporated into DPPC bilayers, indicating that water has deeply penetrated into the DPPC bilayers. Simulations of published electron spin resonance spectra of 14-PC in dimyristoylphosphatidylcholine/cytochrome oxidase complexes were also better fit by additional components that were more ordered, rather than immobilized. The average local order parameter in this case is found to increase from 0.11 for pure dimyristoylphosphatidylcholine to 0.61 for a lipid/protein ratio of 50. These spectra and their simulations are similar to the results obtained with 16-PC in the DPPC/GA mixtures. The relevance to studies of lipid-protein interactions for other proteins is briefly discussed.  相似文献   

20.
Phospholipid exchange between bilayer membrane vesicles.   总被引:7,自引:0,他引:7  
The turbidity of lipid vesicles, freshly prepared by sonicating purified dimyristoyllecithin (DML) in dilute KCl solutions, was measured as a function of time at various temperatures. A sharp maximum in the rate of increase of turbidity is found just above the crystal:liquid-crystal phase transition temperature (Tm). The initial rate of turbidity increase is first order with respect to DML concentration. Electron and light microscopy reveal large vesicles which are not present before incubation or after incubation at temperatures far from the Tm. When temperature, rather than time, is the independent variable, a sharp drop in turbidity is seen at the Tm. The magnitude of this drop and the temperature at which it occurs were used to measure the rate of lipid transfer between vesicles composed of different lipids. A mixture of DML vesicles and dipalmitoyllecithin (DPL) vesicles exhibits sharp drops in turbidity at 24 and 41 degrees, the corresponding Tm's. With time, the magnitude of the transition at 24 degrees decreases while that which was originally at 41 degrees moves to lower temperatures and increases in magnitude. At equilibrium there is a single transition at 32.5 degrees characteristic of vesicles composed of equimolar DPL and DML. The rate at which equilibrium is approached increases at around 24 degrees and again around 41 degrees. These observations indicate that vesicles are in equilibrium with monomolecular lipid, the concentration of the latter being higher the shorter the lipid acyl group or the smaller the vesicle. DML molecules are therefore lost from small vesicles to large vesicles (DML system) or lost from DML vesicles to DML-DPL vesicles (mixed system). When DML vesicles containing a few percent brain gangliosides were studied, different behavior was observed; the initial rate of increase of turbidity becomes second order in lipid concentration, and the rate constant increases with increasing concentrations of KCl. The kinetic order, coupled with the fact that electrolyte reduces intervesicle electrostatic repulsion, argues that in this situation the mechanism of vesicle growth requires vesicle collision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号