共查询到20条相似文献,搜索用时 15 毫秒
1.
Ayyalasomayajula A Vande Geest JP Simon BR 《Journal of biomechanical engineering》2010,132(10):104502
Abdominal aortic aneurysm (AAA) is the gradual weakening and dilation of the infrarenal aorta. This disease is progressive, asymptomatic, and can eventually lead to rupture--a catastrophic event leading to massive internal bleeding and possibly death. The mechanical environment present in AAA is currently thought to be important in disease initiation, progression, and diagnosis. In this study, we utilize porohyperelastic (PHE) finite element models (FEMs) to investigate how such modeling can be used to better understand the local biomechanical environment in AAA. A 3D hypothetical AAA was constructed with a preferential anterior bulge assuming both the intraluminal thrombus (ILT) and the AAA wall act as porous materials. A parametric study was performed to investigate how physiologically meaningful variations in AAA wall and ILT hydraulic permeabilities affect luminal interstitial fluid velocities and wall stresses within an AAA. A corresponding hyperelastic (HE) simulation was also run in order to be able to compare stress values between PHE and HE simulations. The effect of AAA size on local interstitial fluid velocity was also investigated by simulating maximum diameters (5.5 cm, 4.5 cm, and 3.5 cm) at the baseline values of ILT and AAA wall permeability. Finally, a cyclic PHE simulation was utilized to study the variation in local fluid velocities as a result of a physiologic pulsatile blood pressure. While the ILT hydraulic permeability was found to have minimal affect on interstitial velocities, our simulations demonstrated a 28% increase and a 20% decrease in luminal interstitial fluid velocity as a result of a 1 standard deviation increase and decrease in AAA wall hydraulic permeability, respectively. Peak interstitial velocities in all simulations occurred on the luminal surface adjacent to the region of maximum diameter. These values increased with increasing AAA size. PHE simulations resulted in 19.4%, 40.1%, and 81.0% increases in peak maximum principal wall stresses in comparison to HE simulations for maximum diameters of 35 mm, 45 mm, and 55 mm, respectively. The pulsatile AAA PHE FEM demonstrated a complex interstitial fluid velocity field the direction of which alternated in to and out of the luminal layer of the ILT. The biomechanical environment within both the aneurysmal wall and the ILT is involved in AAA pathogenesis and rupture. Assuming these tissues to be porohyperelastic materials may provide additional insight into the complex solid and fluid forces acting on the cells responsible for aneurysmal remodeling and weakening. 相似文献
2.
Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method 总被引:1,自引:0,他引:1 下载免费PDF全文
To relate the subcellular molecular events to organ level physiology in heart, we have developed a three-dimensional finite-element-based simulation program incorporating the cellular mechanisms of excitation-contraction coupling and its propagation, and simulated the fluid-structure interaction involved in the contraction and relaxation of the human left ventricle. The FitzHugh-Nagumo model and four-state model representing the cross-bridge kinetics were adopted for cellular model. Both ventricular wall and blood in the cavity were modeled by finite element mesh. An arbitrary Lagrangian Eulerian finite element method with automatic mesh updating has been formulated for large domain changes, and a strong coupling strategy has been taken. Using electrical analog of pulmonary circulation and left atrium as a preload and the windkessel model as an afterload, dynamics of ventricular filling as well as ejection was simulated. We successfully reproduced the biphasic filling flow consisting of early rapid filling and atrial contraction similar to that reported in clinical observation. Furthermore, fluid-structure analysis enabled us to analyze the wave propagation velocity of filling flow. This simulator can be a powerful tool for establishing a link between molecular abnormality and the clinical disorder at the macroscopic level. 相似文献
3.
Shahrokh Zeinali-Davarani Azadeh Sheidaei 《Computer methods in biomechanics and biomedical engineering》2013,16(9):803-817
Despite rapid expansion of our knowledge of vascular adaptation, developing patient-specific models of diseased arteries is still an open problem. In this study, we extend existing finite element models of stress-mediated growth and remodelling of arteries to incorporate a medical image-based geometry of a healthy aorta and, then, simulate abdominal aortic aneurysm. Degradation of elastin initiates a local dilatation of the aorta while stress-mediated turnover of collagen and smooth muscle compensates the loss of elastin. Stress distributions and expansion rates during the aneurysm growth are studied for multiple spatial distribution functions of elastin degradation and kinetic parameters. Temporal variations of the degradation function are also investigated with either direct time-dependent degradation or stretch-induced degradation as possible biochemical and biomechanical mechanisms for elastin degradation. The results show that this computational model has the capability to capture the complexities of aneurysm progression due to variations of geometry, extent of damage and stress-mediated turnover as a step towards patient-specific modelling. 相似文献
4.
Visualization and finite element analysis of pulsatile flow in models of the abdominal aortic aneurysm 总被引:5,自引:0,他引:5
Pulsatile flows in glass models simulating fusiform and lateral saccular aneurysms were investigated by a flow visualization method. When resting fluid starts to flow, the initial fluid motion is practically irrotational. After a short period of time, the flow began to separate from the proximal wall of the aneurysm. Then the separation bubble or vortex grew rapidly in size and filled the whole area of the aneurysm circumferentially. During this period of time, the center of the vortex moved from the proximal end to the distal point of the aneurysm. The transient reversal flow, for instance, which may occur at the end of the ejection period, passed between the wall of the aneurysm and the centrally located vortex. When the rate and pulsatile frequency of flow were high, the vortex broke down into highly disturbed flow (or turbulence) at the distal portion of the aneurysm. The same effect was observed when the length of the aneurysm was increased. A reduction in pulsatile amplitude made the flow pattern close to that in steady flow. A finite element analysis was made to obtain velocity and pressure fields in pulsatile flow through a tube with an axisymmetric expansion. Calculations were performed with the pulsatile flows used in the visualization experiment in order to study the effects of change in the pulsatile wave form by keeping the time-mean Reynolds number and Womersley's parameter unchanged. Calculated instantaneous patterns of velocity field and stream lines agreed well with the experimental results. The appearance and disappearance of the vortex in the dilated portion and its development resulted in complex distributions of pressure and shear fields. Locally minimum and maximum values of wall shear stress occurred at points just upstream and downstream of the distal end of the expansion when the flow rate reached its peak. 相似文献
5.
Numerical predictions of blood flow patterns and hemodynamic stresses in Abdominal Aortic Aneurysms (AAAs) are performed in a two-aneurysm, axisymmetric, rigid wall model using the spectral element method. Homogeneous, Newtonian blood flow is simulated under steady conditions for the range of Reynolds numbers 10 < or =Re < or =2265. Flow hemodynamics are quantified by calculating the distributions of wall pressure (p(w)), wall shear stress (tau(w)), Wall Shear Stress Gradient (WSSG). A correlation between maximum values of hemodynamic stresses and Reynolds number is established, and the spatial distribution of WSSG is considered as a hemodynamic force that may cause damage to the arterial wall at an intermediate stage of AAA growth. The temporal distribution of hemodynamic stresses in pulsatile flow and their physical implications in AAA rupture are discussed in Part II of this paper. 相似文献
6.
Zeinali-Davarani S Sheidaei A Baek S 《Computer methods in biomechanics and biomedical engineering》2011,14(9):803-817
Despite rapid expansion of our knowledge of vascular adaptation, developing patient-specific models of diseased arteries is still an open problem. In this study, we extend existing finite element models of stress-mediated growth and remodelling of arteries to incorporate a medical image-based geometry of a healthy aorta and, then, simulate abdominal aortic aneurysm. Degradation of elastin initiates a local dilatation of the aorta while stress-mediated turnover of collagen and smooth muscle compensates the loss of elastin. Stress distributions and expansion rates during the aneurysm growth are studied for multiple spatial distribution functions of elastin degradation and kinetic parameters. Temporal variations of the degradation function are also investigated with either direct time-dependent degradation or stretch-induced degradation as possible biochemical and biomechanical mechanisms for elastin degradation. The results show that this computational model has the capability to capture the complexities of aneurysm progression due to variations of geometry, extent of damage and stress-mediated turnover as a step towards patient-specific modelling. 相似文献
7.
In continuing the investigation of AAA hemodynamics, unsteady flow-induced stresses are presented for pulsatile blood flow through the double-aneurysm model described in Part I. Physiologically realistic aortic blood flow is simulated under pulsatile conditions for the range of time-average Reynolds numbers 50< or =Re(m) < or =300. Hemodynamic disturbance is evaluated for a modified set of indicator functions which include wall pressure (p(w)), wall shear stress (tau(w)), Wall Shear Stress Gradient (WSSG), time-average wall shear stress (tau(w)*), and time-average Wall Shear Stress Gradient WSSG*. At peak flow, the highest shear stress and WSSG levels are obtained at the distal end of both aneurysms, in a pattern similar to that of steady flow. The maximum values of wall shear stresses and wall shear stress gradients are evaluated as a function of the time-average Reynolds number resulting in a fourth order polynomial correlation. A comparison between numerical predictions for steady and pulsatile flow is presented, illustrating the importance of considering time-dependent flow for the evaluation of hemodynamic indicators. 相似文献
8.
Numerical predictions of blood flow patterns and hemodynamic stresses in Abdominal Aortic Aneurysms (AAAs) are performed in a two-aneurysm, axisymmetric, rigid wall model using the spectral element method. Physiologically realistic aortic blood flow is simulated under pulsatile conditions for the range of time-averaged Reynolds numbers 50< or =Re(m)< or =300, corresponding to a range of peak Reynolds numbers 262.5< or =Re(peak) < or = 1575. The vortex dynamics induced by pulsatile flow in AAAs is characterized by a sequence of five different flow phases in one period of the flow cycle. Hemodynamic disturbance is evaluated for a modified set of indicator functions, which include wall pressure (p(w)), wall shear stress (tau(w)), and Wall Shear Stress Gradient (WSSG). At peak flow, the highest shear stress and WSSG levels are obtained downstream of both aneurysms, in a pattern similar to that of steady flow. Maximum values of wall shear stresses and wall shear stress gradients obtained at peak flow are evaluated as a function of the time-average Reynolds number resulting in a fourth order polynomial correlation. A comparison between predictions for steady and pulsatile flow is presented, illustrating the importance of considering time-dependent flow for the evaluation of hemodynamic indicators. 相似文献
9.
10.
11.
Our knowledge of how geometry influences abdominal aortic aneurysm (AAA) biomechanics is still developing. Both iliac bifurcation angle and proximal neck angle could impact the haemodynamics and stresses within AAA. Recent comparisons of the morphology of ruptured and intact AAA show that cases with large iliac bifurcation angles are less likely to rupture than those with smaller angles. We aimed to perform fluid-structure interaction (FSI) simulations on a range of idealised AAA geometries to conclusively determine the influence of proximal neck and iliac bifurcation angle on AAA wall stress and haemodynamics.Peak wall shear stress (WSS) and time-averaged WSS (TAWSS) in the AAA sac region only increased when the proximal neck angle exceeded 30°. Both peak WSS (p < 0.0001) and peak von Mises wall stress (p = 0.027) increased with iliac bifurcation angle, whereas endothelial cell activation potential (ECAP) decreased with iliac bifurcation angle (p < 0.001) and increased with increasing neck angle.These observations may be important as AAAs have been shown to expand, develop thrombus and rupture in areas of low WSS. Here we show that AAAs with larger iliac bifurcation angles have higher WSS, potentially reducing the likelihood of rupture. Furthermore, ECAP was lower in AAA geometries with larger iliac bifurcation angles, implying less likelihood of thrombus development and wall degeneration. Therefore our findings could help explain the clinical observation of lower rupture rates associated with AAAs with large iliac bifurcation angles. 相似文献
12.
In stress analysis of membrane-like biological structures, the geometry constructed from in vivo image, which often corresponds to a deformed state, is routinely taken as the initial stress-free geometry. In this paper, we show that this limitation can be completely removed using an inverse elastostatic approach, namely, a method for finding the initial geometry of an elastic body from a given deformed state. We demonstrate the utility of the inverse approach using a patient-specific abdominal aortic aneurysm model, and identify the scope of error in stress estimation in the conventional approach within a realistic range of material parameter variations. 相似文献
13.
A. Maier M. W. Gee C. Reeps H.-H. Eckstein W. A. Wall 《Biomechanics and modeling in mechanobiology》2010,9(5):511-521
As a degenerative and inflammatory desease of elderly patients, about 80% of abdominal aortic aneurysms (AAA) show considerable
wall calcification. Effect of calcifications on computational wall stress analyses of AAAs has been rarely treated in literature
so far. Calcifications are heterogeneously distributed, non-fibrous, stiff plaques which are most commonly found near the
luminal surface in between the intima and the media layer of the vessel wall. In this study, we therefore investigate the
influence of calcifications as separate AAA constituents on finite element simulation results. Thus, three AAAs are reconstructed
with regard to intraluminal thrombus (ILT), calcifications and vessel wall. Each patient-specific AAA is simulated twice,
once including all three AAA constituents and once neglecting calcifications as it is still common in literature. Parameters
for constitutive modeling of calcifications are thereby taken from experiments performed by the authors, showing that calcifications
exhibit an almost linear stress–strain behavior with a Young’s modulus E ≥ 40 MPa. Simulation results show that calcifications exhibit significant load-bearing effects and reduce stress in adjacent
vessel wall. Average stress within the vessel wall is reduced by 9.7 to 59.2%. For two out of three AAAs, peak wall stress
decreases when taking calcifications into consideration (8.9 and 28.9%). For one AAA, simulated peak wall stress increases
by 5.5% due to stress peaks near calcification borders. However, such stress singularities due to sudden stiffness jumps are
physiologically doubtful. It can further be observed that large calcifications are mostly situated in concavely shaped regions
of the AAA wall. We deduce that AAA shape is influenced by existent calcifications, thus crucial errors occur if they are
neglected in computational wall stress analyses. A general increase in rupture risk for calcified AAAs is doubted. 相似文献
14.
James H Leung Andrew R Wright Nick Cheshire Jeremy Crane Simon A Thom Alun D Hughes Yun Xu 《Biomedical engineering online》2006,5(1):33-15
Background
Abdominal aortic aneurysm (AAA) is a dilatation of the aortic wall, which can rupture, if left untreated. Previous work has shown that, maximum diameter is not a reliable determinant of AAA rupture. However, it is currently the most widely accepted indicator. Wall stress may be a better indicator and promising patient specific results from structural models using static pressure, have been published. Since flow and pressure inside AAA are non-uniform, the dynamic interaction between the pulsatile flow and wall may influence the predicted wall stress. The purpose of the present study was to compare static and dynamic wall stress analysis of patient specific AAAs. 相似文献15.
Background
Abdominal aortic aneurysm (AAA) is a prevalent disease which is of significant concern because of the morbidity associated with the continuing expansion of the abdominal aorta and its ultimate rupture. The transient interaction between blood flow and the wall contributes to wall stress which, if it exceeds the failure strength of the dilated arterial wall, will lead to aneurysm rupture. Utilizing a computational approach, the biomechanical environment of virtual AAAs can be evaluated to study the affects of asymmetry and wall thickness on this stress, two parameters that contribute to increased risk of aneurysm rupture. 相似文献16.
Throop Alexis Bukac Martina Zakerzadeh Rana 《Biomechanics and modeling in mechanobiology》2022,21(6):1761-1779
Biomechanics and Modeling in Mechanobiology - In this study, the biomechanical role of intraluminal thrombus (ILT) in an abdominal aortic aneurysm (AAA) is investigated. The implications of ILT in... 相似文献
17.
The object of this work has been to develop a mechanical and numerical model of the eye submitted to vibrations, and in particular, to calculate the influence of intraocular pressure (IOP) on the eye resonance frequencies. Our mechanical model of the eye relies upon the theory of the mechanics of continuous media. The numerical model results from a model analysis of the vibrations of the eye using a finite element method (FEM) for discretization. The eye can be schematically represented as a prestressed shell, filled by an inviscid barotropic compressible fluid, which leads us to formulate and solve a problem of vibrations of a coupled fluid-structure system. The corneoscleral shell has been modeled as a thin and thick shell, taking into account material nonlinearities in the thick case. Numerical results obtained for the attached eye demonstrate a fair sensitivity of the resonance frequencies to the variations of the IOP; thus, founding the interest of the surveillance of the resonance frequency of the eye. 相似文献
18.
Numerical analysis of the aortic valve has mainly been focused on the closing behaviour during the diastolic phase rather than the kinematic opening and closing behaviour during the systolic phase of the cardiac cycle. Moreover, the fluid-structure interaction in the aortic valve system is most frequently ignored in numerical modelling. The effect of this interaction on the valve's behaviour during systolic functioning is investigated. The large differences in material properties of fluid and structure and the finite motion of the leaflets complicate blood-valve interaction modelling. This has impeded numerical analyses of valves operating under physiological conditions. A numerical method, known as the Lagrange multiplier based fictitious domain method, is used to describe the large leaflet motion within the computational fluid domain. This method is applied to a three-dimensional finite element model of a stented aortic valve. The model provides both the mechanical behaviour of the valve and the blood flow through it. Results show that during systole the leaflets of the stented valve appear to be moving with the fluid in an essentially kinematical process governed by the fluid motion. 相似文献
19.
Yonghui Qiao Yujie Zeng Ying Ding Jianren Fan 《Computer methods in biomechanics and biomedical engineering》2019,22(6):620-630
The behavior of blood cells and vessel compliance significantly influence hemodynamic parameters, which are closely related to the development of aortic dissection. Here the two-phase non-Newtonian model and the fluid-structure interaction (FSI) method are coupled to simulate blood flow in a patient-specific dissected aorta. Moreover, three-element Windkessel model is applied to reproduce physiological pressure waves. Important hemodynamic indicators, such as the spatial distribution of red blood cells (RBCs) and vessel wall displacement, which greatly influence the hemodynamic characteristics are analyzed. Results show that the proximal false lumen near the entry tear appears to be a vortex zone with a relatively lower volume fraction of RBCs, a low time-averaged wall shear stress (TAWSS) and a high oscillatory shear index (OSI), providing a suitable physical environment for the formation of atherosclerosis. The highest TAWSS is located in the narrow area of the distal true lumen which might cause further dilation. TAWSS distributions in the FSI model and the rigid wall model show similar trend, while there is a significant difference for the OSI distributions. We suggest that an integrated model is essential to simulate blood flow in a more realistic physiological environment with the ultimate aim of guiding clinical treatment. 相似文献