首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
J. L. Oud  F. Schuring 《Genetica》1987,74(3):211-217
With the help of Computer Aided Karyotyping procedures, Ag-NOR staining and C-banding techniques, the karyotype of Pyrrhopappus carolinianus (Asteraceae, Lactuceae) has been studied. The species has 2n=12 chromosomes. Silver staining reveals that the two shortest pairs of chromosomes possess NOR's. On the basis of chromosome length and centromere position, only the longest chromosome pair and the satellite chromosomes can be identified. Two types of C-banding can be obtained, dependent on the temperature of the hydrochloric acid hydrolysis of the root tips. Hydrolysis at 60°C results exclusively in centromeric bands, whereas a treatment at room temperature reveals a pattern of intercalary bands. A computer assisted analysis of the intercalary banding pattern resulted in the construction of schematic representation of the average C-banding pattern. This banding pattern allows an easy identification of each of the chromosome pairs.  相似文献   

2.
萝卜蚜和豆蚜染色体C-带带型比较与分析   总被引:3,自引:1,他引:2  
本研究利用C-带技术,显示出萝卜蚜和豆蚜的染色体C-带带型,并进行了初步分析。萝卜蚜与豆蚜的染色体在组型上只有第4对染色体稍有区别;在带型上两者有很明显的差异。萝卜蚜有2对散漫着丝粒染色体,豆蚜没有该种染色体。豆蚜的第4对染色体在端部缺少-C带带纹。萝卜蚜的第2对染色体与豆蚜的第2对染色体带型相似。根据萝卜蚜和豆蚜的C-带带型,讨论了二者在进化中的亲缘关系。  相似文献   

3.
J Z Wei  W F Campbell  R R Wang 《Génome》1995,38(6):1262-1270
Ten accessions of Russian wildrye, Psathyrostachys juncea (Fisch.) Nevski (2n = 2x = 14; NsNs), collected from different geographical regions were analyzed using the C-banding technique. C-banding pattern polymorphisms were observed at all levels, i.e., within homologous chromosome pairs of the same plant, among different individuals within accessions, between different accessions of the same geographic area, and among accessions of different origins. The seven homologous groups varied in the level of C-banding pattern polymorphism; chromosomes A, B, E, and F were more variable than chromosomes C, D, and G. The polymorphisms did not hamper chromosome identification in Ps. juncea, because each chromosome pair of the Ns genome had a different basic C-banding pattern and karyotypic character. A standard C-banded karyotype of Ps. juncea is proposed based on the overall karyotypes and C-bands in the 10 accessions. The C-bands on the Ns-genome chromosomes were designated according to the rules of nomenclature used in wheat. A deletion-translocation heterozygote of Russian wildrye was identified based on the karyotype and C-banding patterns established. The chromosome F pair consisted of a chromosome having the distal segment in the long arm deleted and a translocated chromosome having the distal segment of long arm replaced by the distal segment of the long arm of chromosome E. The chromosome E pair had a normal chromosome E and a translocated chromosome having the short arm and the proximal segment of the long arm of chromosome E and the distal segment of the long arm of chromosome F.  相似文献   

4.
5.
INTRoDUCTIoNlYho1iumrePensL,whiteclover,isaneconomicallyimportantplantspeciesintemperatepastures.Asbrieflyreportedby[1],ithas16pairsofchromosomes(2n=32).Asyet,nodetailedcytologicalexaminationofthisspecies,suchasC-banding,hasbeenrep0rted.Inthelastdecade,thetechnique0fC-bandinghasbeenusedt0examinehighlyrepeatedsequencesinplantchrom0s0mesandhasprovidedausefultoolf0rtheanalysis0fcyt0geneticstructureincr0pplants[2-71.Inplants,thechr0m0s0mall0calizationofhighlyrepeatedDNAsequencesbyinsituhybr…  相似文献   

6.
黑斑蛙核型、C-带及Ag-NORs 研究   总被引:6,自引:0,他引:6  
本文采用外周血淋巴细胞培养法制备染色体标本,观察黑斑蛙的染色体标本,研究黑斑蛙的核型,C-带和Ag-NORs。研究结果表明:(1)黑斑蛙淋巴细胞染色体数目为2n=26,其中有5对大染色体和8对小染色体,核型是二型性核型;(2)分别对雌雄个体的中期分裂相进行观察,在第11号染色体长臂中部有明显的次缢痕,但变异核型次缢痕在第8号染色体长臂的中部;(3)在第5号染色体长臂上有一条明显的近端粒C-带;(4)第11号染色体是一对具有银染核仁形成区的同源染色体,且雌雄个体的银染位置相同。  相似文献   

7.
Cytogenetic characterization of D. polymorpha was carried out using banding techniques such as C-banding, fluorochrome CMA3 and silver nitrate treatment. The diploid chromosome number of both investigated D. polymorpha forms (typical and albinotic) was the same 2n = 32 (NF = 56). The karyotype consisted of 5 pairs of metacentric, 7 pairs of submetacentric and four pairs of subtelo-acrocentric chromosomes. Ag-NORs were located in the telomeric position on the largest subtelo-acrocentric chromosome pair. C banding patterns indicate many sites of constitutive heterochromatin mainly located in the telomeric regions and interstitially in some chromosomes. CMA3-sites were observed in almost all chromosomes; apart from the Ag-NORs sites, they were located terminally on the chromosome arms and interstitially on three chromosome pairs. Sixteen chromosomes could be counted at the diakinesis stage of meiosis. No differences in banding chromosome patterns were found neither between both analyzed forms of D. polymorpha nor between males and females.  相似文献   

8.
Japanese hop (Humulus japonicus Siebold & Zucc.) was karyotyped by chromosome measurements, fluorescence in situ hybridization with rDNA and telomeric probes, and C-banding/DAPI. The karyotype of this species consists of sex chromosomes (XX in female and XY1Y2 in male plants) and 14 autosomes difficult to distinguish by morphology. The chromosome complement also shows a rather monotonous terminal distribution of telomeric repeats, with the exception of a pair of autosomes possessing an additional cluster of telomeric sequences located within the shorter arm. Using C-banding/DAPI staining and 5S and 45S rDNA probes we constructed a fluorescent karyotype that can be used to distinguish all autosome pairs of this species except for the 2 largest autosome pairs, lacking rDNA signals and having similar size and DAPI-banding patterns. Sex chromosomes of H. japonicus display a unique banding pattern and different DAPI fluorescence intensity. The X chromosome possesses only one brightly stained AT-rich terminal segment, the Y1 has 2 such segments, and the Y2 is completely devoid of DAPI signal. After C-banding/DAPI, both Y chromosomes can be easily distinguished from the rest of the chromosome complement by the increased fluorescence of their arms. We discuss the utility of these methods for studying karyotype and sex chromosome evolution in hops.  相似文献   

9.
10.
Karyotypes of Tago's brown frog Rana tagoi from the Chausu mountains in Minamishinshu of Nagano Prefecture were examined by conventional Giemsa staining, C-banding and late replication (LR)-banding. Chromosome number was 2n = 28 in all cases. The 28 chromosomes consisted of four pairs (1-4) of large biarmed chromosomes, two pairs (5-6) of telocentric chromosomes and eight pairs (7-14) of small biarmed chromosomes. Chromosome pair 11 had a secondary constriction on the long arm. In females, the C-band on the long arm of chromosome pair 6 was detected in both homologs, but was absent from the arms of the homologs of chromosome pairs 5 and 9. In males, C-bands were found in the long arms of both homologs of chromosome pairs 5 and 6, were present only in one homolog of chromosome pair 5 for certain male specimens and found in only one homolog of chromosome pair 9. Specimens of R. tagoi (2n = 28) should thus have two pairs of telocentric chromosomes to provide the same number of chromosome arms, these originating quite likely from chromosome pair 1 in the 26-chromosome specimens by centric fission. Heteromorphic sex chromosomes of the XX-XY type in R. tagoi (2n = 28) in the Chausu mountains were identified. Karyotypes of tail-tip cells from a hybrid tadpole between female R. tagoi (2n = 26) from the Hinohara village in Tokyo and male R. tagoi (2n = 28) from the Chausu mountain population were examined by squash preparation. Chromosome number was 2n = 27 in all tadpoles. The 27 chromosomes consisted of one chromosome set of R. tagoi (2n = 28) and one of R. tagoi (2n = 26).  相似文献   

11.
Somatic chromosomes of Trichobilharzia szidati Neuhaus, 1952 are described from larval stages dissected from snoils, air-dried on slides and stained with Giemsa and C-banding technique, used for the first time in Trichobilharzia sp. The karyotype consisted of 7 autosomal pairs and 1 pair of sex chromosomes, ZZ in the male and ZW in the female, where Z and W chromosomes are of different sizes and both are classified as submetaceatric. C-banding aided in identification of chromosomes Nos 4, satellited 6 and 8. No heterochromatin was observed in the W chromosome. The results were not in agreement with those previously reported and represent new findings. The possible explanation for this fact is given.  相似文献   

12.
Karyotypic and cytogenetic characteristics of catfish Harttia carvalhoi (Paraíba do Sul River basin, S?o Paulo State, Brazil) were investigated using differential staining techniques (C-banding, Ag-staining) and fluorescent in situ hybridization (FISH) with 18S and 5S rDNA probes. The diploid chromosome number of females was 2n = 52 and their karyotype was composed of nine pairs of metacentric, nine pairs of submetacentric, four pairs of subtelocentric and four pairs of acrocentric chromosomes. The diploid chromosome number of males was invariably 2n = 53 and their karyotype consisted of one large unpaired metacentric, eight pairs of metacentric, nine pairs of submetacentric, four pairs of subtelocentric, four pairs of acrocentric plus two middle-sized acrocentric chromosomes. The differences between female and male karyotypes indicated the presence of a sex chromosome system of XX/XY1Y2 type, where the X is the largest metacentric and Y1 and Y2 are the two additional middle-sized acrocentric chromosomes of the male karyotype. The major rDNA sites as revealed by FISH with an 18S rDNA probe were located in the pericentromeric region of the largest pair of acrocentric chromosomes. FISH with a 5S rDNA probe revealed two sites: an interstitial site located in the largest pair of acrocentric chromosomes, and a pericentromeric site in a smaller metacentric pair of chromosomes. Translocations or centric fusions in the ancestral 2n = 54 karyotype is hypothesized for the origin of such multiple sex chromosome systems where females are fixed translocation homozygotes whereas males are fixed translocation heterozygotes. The available cytogenetic data for representatives of the genus Harttia examined so far indicate large kayotype diversity.  相似文献   

13.
Karyotypes of Diplomystes composensis and Diplomystes nahuelbutaensis were the same diploid number (n= 56).The chromosome formula for D. composensis was 16 metacentric + 24 submetacentric + 8 subtelocentric + 8 telocentric chromosomes and for D. nahuelbutaensis was 14 metacentric + 26 submetacentric + 8 subtelocentric +8 telocentric chromosomes. In contrast, the differences in the chromosomal C-banding patterns between these species was large. For instance, chromosome pairs 5,6, and 7 of D. nahuelbutaensis showed heterochromatic centromeres and pairs 23, 24, 27, and 28 were entirely heterochromotic. Diplomystes composensis showed conspicuous C-banded blocks in pairs 7, 24, and 25 (chromosome pair 7 had one heterochromatic arm, chromosome pair 24 was entirely heterochromatic, and chromosome pair 25 had heterochromatin close to centromere). Comparison with other ostariophysan karyotypes (e.g. gymnotiforms, characiforms, and cypriniforms), does not allow any conclusions about the ploesiomorphic catfish condition, because the karyotypes of the outgroups are too variable. A synapomorphy shared by characiforms, gymnotiforms, and diplomystid catfishes is the presence of more metacentric to submetacentric than substelocentric to telocentric chromosomes. Cypriniforms are more primitive because they have more subtelocentric to telocentric than metacentric to submetacentric chromosomes.  相似文献   

14.
In Cephalotascus sinensis (Rehd. et Wils. ) Li the somatic chromosome number was found to be of 2n=24. Eleven pairs of chromosomes possessed their centromeres at median or median-submedian regions. The shortest pair of chromosomes was the SAT chromosome which possessed their centromeres at the submedian regions. The sex chromosomes were demonstrated by the Giemsa C-banding technique. The sexual determination mechanism of female was WZ type (2n=24=22A+WZ), and that of male was ZZ type (2n=24=22A +ZZ).  相似文献   

15.
达乌尔黄鼠显带染色体的研究   总被引:1,自引:0,他引:1  
达乌尔黄鼠分布在我国北方及蒙古和苏联等区域,对牧草及农田危害甚大。有关达乌尔黄鼠的核型国内外已有报道(Lyapunova等,1970;蔡有余等,1985;马继霞等,1985)。签于其染色体的一些特征,达乌尔黄鼠有可能成为染色体工程及检测环境诱变剂等方面的实验材料。虽然苏联Lyapunova等(1978,1980)对黄鼠属某些种的G-带和C-带进行过比较研究,我国蔡有余等(1985)对达乌尔黄鼠的C-带和Ag-NOR进行了观察,但无法对其染色体进行逐个地准确识别,特别是对Χ染体色的正确识别。为此,我们对达乌尔黄鼠的显带染色体进行了较详细的研究。  相似文献   

16.
Karyotype, sex chromosome system and cytogenetics characteristics of an unidentified species of the genus Apareiodon originating from Piquiri River (Paraná State, Brazil) were investigated using differential staining techniques (C-banding and Ag-staining) and fluorescent in situ hybridization (FISH) with 5S and 18S rDNA probes. The diploid chromosome number was 2n = 54 with 25 pairs of meta- (m) to submetacentric (sm) and 2 pairs of subtelocentric (st) chromosomes. The major ribosomal rDNA sites as revealed by Ag-staining and FISH with 18S rDNA probe were found in distal region of longer arm of st chromosome pair 26, while minor 5S sites were observed in the interstitial sites on chromosome pairs 2 (smaller cluster) and 7 (larger one). The C-positive heterochromatin had pericentromeric and telomeric distribution. The heteromorphic sex chromosome system consisted of male ZZ (pair 21) and female middle-sized m/st Z/W chromosomes. The pericentric inversion of heterochromatinized short arm of ancestral Z followed by multiplication of heterochromatin segments is hypothesized for origin of W chromosome. The observed karyotype and chromosomal markers corresponded to those found in other species of the genus.  相似文献   

17.
This paper describes the karyotype analysis of Haemulon aurolineatum, Haemulon bonariensis and Haemulon plumierii, by Giemsa staining, C-banding, Ag-staining and fluorescent in situ hybridization (FISH), to locate the 18S and 5S rRNA genes. Diploid modal count in the three species was 2n = 48 acrocentric elements. Except for pair 24, which exhibited an unmistakable secondary constriction in all three species, it was not possible to classify them as homologous to each other because differences in chromosome size were too slight between adjacent pairs within a size-graded series. Ag-NOR clusters were located in pair 24 in the three species with signal located on the secondary constriction of these chromosomes. C-banding demonstrated that the three species share the same distribution pattern of the constitutive heterochromatin with centromeric heterochromatic blocks in the 23 chromosome pairs and a pericentromeric block in pair 24 which is coincident with the NORs. FISH experiments showed that 18S rDNA sequences were located coincident with the Ag-NOR site in the three species; however, differences in both the number and chromosome distribution of 5S-rDNA cluster were detected among them. Our data suggest that chromosome evolution of Haemulon has been preserved from major changes in the karyotypic macrostructure, whereas microstructural changes have occurred.  相似文献   

18.
The present study provides specific cytogenetic information on prometaphase chromosomes of the alpaca (Lama pacos, fam. Camelidae, 2n = 74) that forms a basis for future work on karyotype standardization and gene mapping of the species, as well as for comparative studies and future genetic improvement programs within the family Camelidae. Based on the centromeric index (CI) measurements, alpaca chromosomes have been classified into four groups: group A, subtelocentrics, from pair 1 to 10; group B, telocentrics, from pair 11 to 20; group C, submetacentrics, from pair 21 to 29; group D, metacentrics, from pair 30 to 36 plus sex chromosomes. For each chromosome pair, the following data are provided: relative chromosome length, centromeric index, conventional Giemsa staining, sequential QFQ/C-banding, GTG- and RBG-banding patterns with corresponding ideograms, RBA-banding and sequential RBA/silver staining for NOR localization. The overall number of RBG-bands revealed was 391. Nucleolus organizer-bearing chromosomes were identified as pairs 6, 28, 31, 32, 33 and 34. Comparative ZOO-FISH analysis with camel (Camelus dromedarius) X and Y painting probes was also carried out to validate X-Y chromosome identification of alpaca and to confirm close homologies between the sex chromosomes of these two species.  相似文献   

19.
By using the Giemsa C-banding technique, chromosome bandingpatterns on the somatic chromosomes of eight important pulsecrops, pea, lentil, guar (cluster bean), chick pea, pigeon pea,mung bean (green gram), urd (black gram) and cowpea have beenstudied. Each species has a characteristic C-banding pattern.The significance of such banding patterns which correlate withthe position of pachytene knobs, in chromosome identification,and in assigning relationships at the cytological level in thepulses of genus Vigna is stressed. Chromosome banding, Giemsa C-banding, pulse crops, Pisum sativum L., garden pea, Lens culinaris Medik, lentil, Cyamopsis tetragonoloba (L.) Taub., guar, Cicer arietinum L., chick pea, gram, Cajanus cajan (L.) Millsp., pigeon pea, Vigna radiata (L.) Wilczek, mung bean, Vigna mungo (L.) Hepper, urd, Vigna unguiculata (L.) Walp, cowpea  相似文献   

20.
Diagnostic markers for eight Thinopyrum distichum addition chromosomes in Triticum turgidum were established using C-banding, in situ hybridization, and restriction fragment length polymorphism analysis. The C-band karyotype conclusively identified individual Th. distichum chromosomes and distinguished them from chromosomes of T. turgidum. Also, TaqI and BamHI restriction fragments containing 5S and 18S-5.8S-26S rRNA sequences were identified as positive markers specific to Th. distichum chromosomes. Simultaneous fluorescence in situ hybridization showed both 5S and 18S-5.8S-26S ribosomal RNA genes to be located on chromosome IV. Thinopyrum distichum chromosome VII carried only a 18S-5.8S-26S rRNA locus and chromosome pair II carried only a 5S rRNA locus. The arrangement of these loci on Th. distichum chromosome IV was different from that on wheat chromosome pair 1B. Two other unidentified Th. distichum chromosome pairs also carried 5S rRNA loci. The homoeologous relationship between Th. distichum chromosomes IV and VII and chromosomes of other members of the Triticeae was discussed by comparing results obtained using these physical and molecular markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号