首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
BALB/c mice and Lewis rats were immunized with human myelin basic protein and its N- and C-terminal fragments. Mouse X mouse fusions produced seven monoclonal antibodies, all of the IgG class and directed against the N-terminal fragment. Five of the antibodies seemed to be against the same epitope, between amino acid residues 92 and 118. One antibody bound between residues 45 and 91, and the remaining antibody reacted with both peptides 1-44 and 45-91. Three monoclonal antibodies, all of the IgM class, were obtained by rat X rat hybridization. Two monoclonal antibodies, raised against whole myelin basic protein and the C-terminal fragment, respectively, each bound to peptide 118-178. The remaining antibody, raised against the N-terminal fragment, bound to peptide 45-91. These monoclonal antibodies are of interest for use in clinical radioimmunoassays and for immunohistochemical investigation of the structural relationships of the myelin sheath.  相似文献   

3.
G DasGupta  J White  P Cheung  E Reisler 《Biochemistry》1990,29(36):8503-8508
The role of the N-terminal segment of actin in myosin-induced polymerization of G-actin was studied by using peptide antibodies directed against the first seven N-terminal residues of alpha-skeletal actin. Light scattering, fluorescence, and analytical ultracentrifugation experiments showed that the Fab fragments of these antibodies inhibited the polymerization of G-actin by myosin subfragment 1 (S-1) by inhibiting the binding of these proteins to each other. Fluorescence measurements using actin labeled with pyrenyliodoacetamide revealed that Fab inhibited the initial step in the binding of S-1 to G-actin. It is deduced from these results and from other literature data that the initial contact between G-actin and S-1 involves residues 1-7 on actin and residues 633-642 on the S-1 heavy chain. This interaction appears to be of major importance for the binding of S-1 and G-actin. The presence of additional myosin contact sites on G-actin was indicated by concentration-dependent recovery of S-1 binding to G-actin without displacement of Fab. The reduced Fab inhibition of S-1 binding to polymerizing and polymerized actin is consistent with the tightening of acto-S-1 binding at these sites or the creation of new sites upon formation of F-actin.  相似文献   

4.
cDNA of fragments of gene VP35 of the Ebola virus (EV) were expressed in vector pQE30 for the purpose of isolation of recombinant fragments of protein VP35. Five short affinity-purified fragments of the EV VP35 protein were analyzed, by using the methods of IEA and immunoblotting, with polyclonal antiviral sera (PAS) against EV and with hybrid monoclonal antibodies (Mabs) IC6 and 6F7 specific to EV VP35 protein. All fragments of protein VP35 with an intact N-terminal region and removed C-terminal region were found to interact effectively with PAS and with Mabs IC6 and 6F7. Rec86N, the smallest of the above fragments, comprised the initial 86 amino acid residues of the VP35 N-terminal region. A removal of 36 amino acid residues from the N-terminal region of Rec310N, the largest recombinant fragment, resulted in a loss of interaction with Mabs IC6 and 6F7, while the interaction with polyclonal antibodies remained intact. The obtained results show that the initial 86 amino acid residues of the N-terminal region of EV VP35 are of the key importance in forming the antigenic structure of VP35 and that they contain multiple B-cell epitopes. Finally, the initial 36 amino acids of VP35 predetermine the shaping-up of two antigenic determinants for Mabs IC6 and 6F7.  相似文献   

5.
Tang TK  Wu MP  Chen ST  Hou MH  Hong MH  Pan FM  Yu HM  Chen JH  Yao CW  Wang AH 《Proteomics》2005,5(4):925-937
Severe acute respiratory syndrome (SARS) is a serious health threat and its early diagnosis is important for infection control and potential treatment of the disease. Diagnostic tools require rapid and accurate methods, of which a capture ELISA method may be useful. Toward this goal, we have prepared and characterized soluble full-length nucleocapsid proteins (N protein) from SARS and 229E human coronaviruses. N proteins form oligomers, mostly as dimers at low concentration. These two N proteins degrade rapidly upon storage and the major degraded N protein is the C-terminal fragment of amino acid (aa) 169-422. Taken together with other data, we suggest that N protein is a two-domain protein, with the N-terminal aa 50-150 as the RNA-binding domain and the C-terminal aa 169-422 as the dimerization domain. Polyclonal antibodies against the SARS N protein have been produced and the strong binding sites of the anti-nucleocapsid protein (NP) antibodies produced were mapped to aa 1-20, aa 150-170 and aa 390-410. These sites are generally consistent with those mapped by sera obtained from SARS patients. The SARS anti-NP antibody was able to clearly detect SARS virus grown in Vero E6 cells and did not cross-react with the NP from the human coronavirus 229E. We have predicted several antigenic sites (15-20 amino acids) of S, M and N proteins and produced antibodies against those peptides, some of which could be recognized by sera obtained from SARS patients. Antibodies against the NP peptides could detect the cognate N protein clearly. Further refinement of these antibodies, particularly large-scale production of monoclonal antibodies, could lead to the development of useful diagnostic kits for diseases associated with SARS and other human coronaviruses.  相似文献   

6.
Rabbit, mouse, and guanaco cytochromes c differ from each other by only two amino acid residues. The identification is described of all of the antigenic determinants of mouse and guanaco cytochrome c that elicit an antibody response in rabbits, and those of the rabbit and guanaco proteins that elicity antibodies in the mouse. All except one of these sites center around single amino acid residue differences between the antigen and the host cytochrome c. The corresponding antibody popylations bind only to the areas of the protein in which the substitutions occur. Such antigenic determinants manifested in rabbits by quanaco and mouse cytochromes c are centered around residues 62 and 89, and residues 44 and 89, respectively. Similarly, the mouse recognizes sites containing residues 44 and 62 in guanaco cytochrome c, and residues 44 and 89 in rabbit cytochrome c. In none of these instances has a change in sequence failed to produce an antibody response. Each of these determinants appears to elicit and bind to its antibody, independently of other determinants present on the protein. In addition, two different autoantigenic responses have been detected. The antibodies produced against the determinant formed by glutamyl residue 62 of the guanaco protein in both rabbits and mice, the cytochromes c of which carry an aspartyl residue in that position, also bind to the aspartyl-containing region but with lower affinity. However, mouse and rabbit cytochrome c also elicit antibodies to the area of residue 62 in rabbits and mice, respectively, and these antibodies still bind more strongly to the glutamyl-than to the aspartyl-containing determinant. This last response occurs only when there are residue substitutions elsewhere in the molecule, because mice and rabbits fail to respond to their own cytochrome c. Antibodies produced in mice against the change from alanyl to valyl residue 44 by rabbit and guanaco cytochromes c also bind to the alanyl-containing determinant, except less tightly than to the valyl region. Conversely, antibodies raised in rabbits against the change from valyl to alanyl residue 44 only bind to this region when it carries an alanine. It is suggested that antigenic determinants that arise as a result of amino acid residue substitutions between the immunizing and the corresponding host protein, without a change in the spatial arrangement of the polypeptide backbone, be termed topographic determinants.  相似文献   

7.
The calcium-stabilized antigenic determinants on bovine prothrombin were localized to the NH2-terminal 1-42 residues using conformation-specific antibodies. Polyclonal antibodies to the bovine prothrombin-Ca(II) complex were raised in rabbits, and purified antibody subpopulations were isolated by sequential immunoabsorption and affinity chromatography. Anti-prothrombin-Ca(II) antibodies, characterized by their absolute specificity for the prothrombin-metal complex (Tai, M. M., Furie, B. C., and Furie, B. (1980) J. Biol. Chem. 255, 2790-2795), bound to prothrombin, fragment 1, reduced and carboxymethylated fragment 1, and CNBr fragment (1-72) in solution. However, these antibodies do not bind significantly to the gamma-carboxyglutamic acid-rich fragment (1-39), CNBr fragment (73-156), or prethrombin 1. To obviate the complex analysis of possible reasons for the lack of antibody binding to small peptides in solution, conformation-specific antibodies directed against defined regions of the whole prothrombin molecule were isolated. The influence of calcium ions on the binding of these site-specific antibody subpopulations to 125I-labeled prothrombin fragment 1 was evaluated. Anti-(1-39)N, anti-(1-42)N, anti-(1-72)N, and anti-(reduced and carboxymethylated fragment 1)N showed enhanced binding to prothrombin fragment 1 in the presence of Ca(II), indicating the presence of calcium-stabilized antigenic determinants within each of these regions on fragment 1. In contrast, calcium ions had no effect on the interaction of anti-des-(1-42)prothrombin, anti-prethrombin 1, anti-(43-72)N, and anti-(73-156)N antibodies with prothrombin fragment 1. These results indicate that the metal-induced conformational transition, monitored immunochemically, is localized to the NH2-terminal, gamma-carboxyglutamic acid-rich region of prothrombin between residues 1-42.  相似文献   

8.
Seven populations of site-specific antibodies were isolated from each of three sera of rabbits immunized against glutaraldehyde-polymerized horse cytochrome c. The antibodies were separated using an immunoadsorption scheme which employed the following cytochromes c: horse, beef, guanaco, rabbit, mouse testicular, pigeon, and the cyanogen-bromide cleaved fragment of the rabbit protein containing residues 1 to 65. The monovalent, antigen-binding fragments of the antibodies (Fab') gave 1:1 stoichiometries with native horse cytochrome c in fluorescence quenching assays. Cross-reactivities with heterologous cytochromes c using fluorescence quenching and a modified Farr assay demonstrated that the antigenic determinants are situated around residues 44, 60, and 89/92, four of the six amino acid sequence positions where horse and rabbit cytochromes c differ. The remaining two differences occur at residues 47 and 62. The apparent lack of immunogenicity of these two substitutions may result from the presence of the more immunogenic residues 44 and 60 nearby. Of the seven antibody populations isolated, four were shown to bind in the region of residues 89 and 92. Since several cytochromes c have amino acid sequence differences from the horse protein at either of these two residue positions, it was possible to fractionate the antibodies directed against this complex site on the basis of subtle specificity differences between them. Two antibody populations bind in the region of residue 44. One of these is specific for proline at that position, while the other antibody population also binds to cytochrome c containing glutamic acid at position 44. The remaining antibody population binds in the region of the lysine residue at position 60. Each of the seven site-specific antibody populations binds effectively to any cytochrome c having a suitable amino acid sequence in the antigenic determinant regardless of any residue differences from the immunogen outside of that area. It was also demonstrated that these seven antibody populations represent the totality of the antibodies elicited in rabbits against horse cytochrome c, since the immunoadsorbants bound all the antibodies specific for the native protein. Furthermore, the rabbit antisera contained no other antibody population that could bind to the conformationally disturbed, cyanogen bromide-cleaved fragment of horse cytochrome c containing residues 1 to 65, making it appear that there were no antibodies elicited against a "processed" form of cytochrome c.  相似文献   

9.
The antigenic regions of the type II regulatory subunit of cAMP-dependent kinase from bovine heart have been correlated with the previously established domain structure of the molecule. Immunoblotting with both serum and monoclonal antibodies of fragments generated by limited proteolysis or chemical cleavage of the R-subunit established that the major antigenic sites were confined to the amino-terminal portion of the polypeptide chain (residues 1-145). Radioimmunoassays using two different antisera suggested that one or more of the high affinity serum antibody recognition sites were further restricted to residues 91-145. This amino-terminal portion of the R-subunit includes the hinge region which is particularly sensitive to proteolysis, allowing the R-subunit to be cleaved readily into a COOH-terminal domain which retains the cAMP-binding sites and an NH2-terminal fragment which appears to be the major site for interaction of the R-subunits in the native dimer. Monoclonal antibodies that recognized determinants on both sides of this hinge region were characterized and their specific recognition sites localized. Accessibility of antigenic sites in the holoenzyme in contrast to free R2 was compared. Although cAMP did tend to slightly increase the affinity of the holoenzyme for one of the monoclonal antibodies, all of the antigenic sites clearly were exposed and accessible in the holoenzyme. Furthermore, despite the presumed close proximity of antigenic sites to interaction sites between the R- and C-subunits, in no case did binding of antibody to the holoenzyme promote dissociation of the complex. The fact that the monoclonal antibodies would precipitate holoenzyme as well as free R2 was used to ascertain the importance of specific amino acid residues in the interaction of the R- and C-subunits. cAMP-binding domains were isolated following limited proteolysis with chymotrypsin and thermolysin. These fragments differed by only three amino acid residues at the NH2-terminal end. U of these fragments in conjunction with immunoadsorption established that the chymotryptic fragment, which contained the Asp-Arg-Arg preceding the site of autophosphorylation, was capable of forming a stable complex with the C-subunit. In contrast, the thermolytic fragment which differed by only those three residues no longer complexed with the C-subunit, indicating that the arginine residues not only contribute to the specificity of the phosphorylation site but also are an essential component for energetically stabilizing the holoenzyme complex.  相似文献   

10.
The structure-function peculiarities of human, porcine, rabbit, and rat lactate dehydrogenase (LDH) isoenzymes have been studied using antipeptide antibodies (AB) against the M4-isoform of porcine LDH. Antipeptide AB were raised against the hypervariable (40% homology) N-terminal fragment (residues 1-32), and the highly conservative fragment 180-214 containing histidine in the enzyme active center. Whereas antipeptide AB against the fragment of the active center of porcine LDH M4-isoform selectively inhibited the catalytic activities of LDH isoenzymes from various sources, antipeptide AB directed against the N-end were without effect. The ability of antipeptide AB to specifically interact with various isoforms of LDH suggests that sequences 1-32 and 180-214 are immunochemically identical only in the case of human and porcine M4 isoenzymes; the relatedness of the amino acid sequence to the common antigenic determinant required the absence in the given sequence of essential amino acid substituents. Chemical modification of porcine M4-isoform by diethylpyrocarbonate and the use of specific AB revealed that histidine-195 located in the active center of LDH is not directly involved in the binding to AB.  相似文献   

11.
To minimize ovarian dysfunction subsequent to immunization with zona pellucida (ZP) glycoproteins, synthetic peptides encompassing the antigenic B cell epitopes as immunogens have been proposed. In this study, attempts have been made to clone and express a recombinant chimeric protein encompassing the epitopes corresponding to bonnet monkey (Macaca radiata) ZP glycoprotein-1 (bmZP1, amino acid residues 132-147), ZP glycoprotein-2 (bmZP2, amino acid residues 86-113), and ZP glycoprotein-3 (bmZP3, amino acid residues 324-347). The above chimeric recombinant protein (r-bmZP123) was expressed as a polyhistidine fusion protein in Escherichia coli. Immunoblot with murine monoclonal antibody, MA-813, generated against recombinant bmZP1 revealed a major band of approximately 10 kDa. The r-bmZP123 was purified on nickel-nitrilotriacetic acid resin under denaturing conditions. The female rabbits immunized with purified r-bmZP123 conjugated to diphtheria toxoid (DT) generated antibodies that reacted with r-bmZP123 and DT in an ELISA. In addition, the immune sera also reacted with E. coli expressed recombinant bmZP1, bmZP2, and bmZP3. In an indirect immunofluorescence assay, the antibodies against r-bmZP123 recognized native ZP of bonnet monkey as well as human. The immune sera also inhibited, in vitro, the binding of human spermatozoa to the human zona in the hemizona assay (HZA). These studies, for the first time, demonstrate the feasibility of assembling multiple epitopes of different ZP glycoproteins as a recombinant protein that elicit antibodies which are reactive with native zona and also inhibit, in vitro, human sperm-oocyte binding.  相似文献   

12.
Y Paterson 《Biochemistry》1985,24(4):1048-1055
Two regions of rodent cytochrome c, one within the first four residues of the molecule, which is N-acetylated, and one at a beta bend around residue 44, are known to be immunogenic and antigenic in rabbits. Using sequential peptide synthesis, we have determined the residues required for linear synthetic peptides within these sequences to bind to antibody raised in rabbits to intact rat cytochrome c. The residues that were important in binding the N-terminal peptides were N-acetylglycine at position 1 and valine at position 3. The smallest peptide sequence around residue 44 that would bind to antibodies was Gln-Ala-Ala-Gly-Phe. A theoretical conformational analysis of these peptides showed that the amino-terminal tetrapeptide adopts a wide statistical ensemble of conformational states and that the addition of residues beyond 41 and 45 in the other sequence does not appear to stabilize longer peptides in the native beta-bend conformation. Thus, the antigenicity conferred by Phe-46 and Gln-42 in this peptide is most likely due to the direct interaction of the side chains of these residues with the antibody binding site. The demonstration here that native conformation is not essential for antigenic peptides to bind to antibodies raised against the whole protein indicates that the association energy between antigen and antibody can be sufficient to induce conformation in conformationally flexible peptides. This supports the concept that anti-protein and anti-peptide antibodies may invoke conformational changes in cross-reactive protein antigens and may explain why longer peptides, which may adopt stable nonnative secondary structure, often do not bind to antibodies raised to the whole molecule.  相似文献   

13.
P Utaisincharoen  B Baker  A T Tu 《Biochemistry》1991,30(33):8211-8216
The interaction of myotoxin alpha with intact sarcoplasmic reticulum (SR) components was investigated, and two SR proteins were identified that associated with myotoxin a. One of the proteins has an apparent molecular weight similar to the Ca(2+)-ATPase, the major SR protein responsible for calcium loading. Ca(2+)-ATPase was purified, and its interaction with myotoxin a was studied. Evidence for specific binding of myotoxin a to Ca(2+)-ATPase was established by isolating chemically cross-linked myotoxin a-Ca(2+)-ATPase complexes and further proving their association with anti-myotoxin a antibodies. The binding region of myotoxin a was further delineated by cleaving the protein with cyanogen bromide (CNBr) into two fragments, a larger N-terminal fragment of 28 residues and a smaller C-terminal fragment of 14 residues. Competition experiments with 125I-myotoxin a showed that the C-terminal fragment competed better against 125I-myotoxin a than the N-terminal fragment for SR protein binding. Two overlapping peptides covering the sequence of the N-terminal fragment were synthesized to clarify the interaction of the N-terminal fragment of myotoxin a with SR proteins. A 16-residue peptide corresponding to residues 1-16 competed strongly with 125I-myotoxin a, while a second peptide (residues 13-28) did not.  相似文献   

14.
A panel of 16 monoclonal antibodies recognizing M protein (M1) of influenza virus was generated. Competition analyses resulted in localization of 14 monoclonal antibodies to three antigenic sites. Three monoclonal antibodies localized to site 1B recognized a peptide synthesized to M1 (residues 220 to 236) with enzyme-linked immunosorbent assay titers equivalent to or greater than that seen with purified M1; therefore, site 1B is located near the C terminus of M1. Sites 2 and 3 localize to the N-terminal half of M1. Antigenic variation of M proteins was seen when the monoclonal antibodies were tested against 14 strains of type A influenza viruses. Several monoclonal antibodies showed specific recognition of A/PR/8/34 and A/USSR/90/77 M proteins and little or no reactivity for all other strains tested. Immunofluorescence analysis with the monoclonal antibodies showed migration of M protein to the nucleus during the replicative cycle and demonstrated association of M protein with actin filaments in the cytoplasm. Use of a vaccinia virus recombinant containing the M-protein gene demonstrated migration of M protein to the nucleus in the absence of synthesis of gene products from other influenza virus RNA segments.  相似文献   

15.
Immunogenicity for laboratory animals (rabbits and mice) of the whole hepatitis C virus envelope proteins and their conserved as well as hypervariable HVR1 sites has been investigated. Rabbit immune responses to HCV envelope proteins (both single E2 and E1E2 heterodimer) were shown to be much more efficient than murine immune responses. Rabbit immunization with E2 protein caused formation of antibodies to several highly conserved linear B-epitopes of this protein as well as to the N-terminal fragment of the hypervariable region HVR1. Epitopes in the CR2 region were determined for the first time. There was cross-reactivity between the N-terminal fragment of the protein E2 hypervariable region HVR1 and the octapeptide fragment of the protein E1 conserved region CR1, which shared four identical amino acid residues.  相似文献   

16.
The binding of caldesmon and its actin-binding fragments to actin was studied by using peptide antibodies directed against two actin sites implicated in actomyosin interactions. Antibodies against residues 1-7 on skeletal alpha-actin strongly inhibited the binding of caldesmon to actin and perturbed to a smaller extent the interaction between actin and the actin binding fragments. Carbodiimide coupling of ethylenediamine to the NH2-terminal acidic residues on actin inhibited the binding of caldesmon and its fragments to actin to a similar extent as the (residues 1-7) antibodies. Antibodies against residues 18-28 showed only limited competition with caldesmon for the binding to actin. These results lead to the following conclusions. (i) The NH2-terminal residues on actin play an important role in the binding of caldesmon to actin, (ii) residues 18-28 on actin do not form a major caldesmon interaction site, and (iii) the actin-binding fragments do not contain the full actin-binding interface. These conclusions and other literature data suggest that caldesmon regulates the actomyosin ATPase by competing with myosin.ATP for the NH2-terminal segment on actin.  相似文献   

17.
The cytoskeletal protein talin plays a key role in activating integrins and in coupling them to the actin cytoskeleton. Its N-terminal globular head, which binds beta integrins, is linked to an extended rod having a C-terminal actin binding site and several vinculin binding sites (VBSs). The NMR structure of residues 755-889 of the rod (containing a VBS) is shown to be an amphipathic four-helix bundle with a left-handed topology. A talin peptide corresponding to the VBS binds the vinculin head; the X-ray crystallographic structure of this complex shows that the residues which interact with vinculin are buried in the hydrophobic core of the talin fragment. NMR shows that the interaction involves a major structural change in the talin fragment, including unfolding of one of its helices, making the VBS accessible to vinculin. Interestingly, the talin 755-889 fragment binds more than one vinculin head molecule, suggesting that the talin rod may contain additional as yet unrecognized VBSs.  相似文献   

18.
Sera from rabbits were infected with Vibrio vulnificus containing an antibody against major outer membrane protein (MOMP). MOMP of V. vulnificus ATCC 27562 were isolated and purified by Sarkosyl and TritonX-100 dual treatment. Molecular size of MOMP was identified as 36-kDa on 13% SDS-PAGE. The sequence of the first 26 amino acid residues from the N-terminal end of the protein is AELYNQDGTSLDMGGRAEARLSMKDG , which is a perfect match with OmpU of V. vulnificus CMCP6 and YJ016. MOMP specific IgM and IgG were investigated in groups of mice. The group of mice immunized with MOMP and Alum showed higher levels of IgG2b than the group immunized with only MOMP. Vaccination with MOMP resulted in protective antibodies in the mouse infection experiment.  相似文献   

19.
Packer LE  Song B  Raleigh DP  McKnight CJ 《Biochemistry》2011,50(18):3706-3712
Villin-type headpiece domains are ~70 residue motifs that reside at the C-terminus of a variety of actin-associated proteins. Villin headpiece (HP67) is a commonly used model system for both experimental and computational studies of protein folding. HP67 is made up of two subdomains that form a tightly packed interface. The isolated C-terminal subdomain of HP67 (HP35) is one of the smallest autonomously folding proteins known. The N-terminal subdomain requires the presence of the C-terminal subdomain to fold. In the structure of HP67, a conserved salt bridge connects N- and C-terminal subdomains. This buried salt bridge between residues E39 and K70 is unusual in a small protein domain. We used mutational analysis, monitored by CD and NMR, and functional assays to determine the role of this buried salt bridge. First, the two residues in the salt bridge were replaced with strictly hydrophobic amino acids, E39M/K70M. Second, the two residues in the salt bridge were swapped, E39K/K70E. Any change from the wild-type salt bridge residues results in unfolding of the N-terminal subdomain, even when the mutations were made in a stabilized variant of HP67. The C-terminal subdomain remains folded in all mutants and is stabilized by some of the mutations. Using actin sedimentation assays, we find that a folded N-terminal domain is essential for specific actin binding. Therefore, the buried salt bridge is required for the specific folding of the N-terminal domain which confers actin-binding activity to villin-type headpiece domains, even though the residues required for this specific interaction destabilize the C-terminal subdomain.  相似文献   

20.
K Sutoh  I Mabuchi 《Biochemistry》1986,25(20):6186-6192
An antibody was raised against the N-terminal 18 residues of rabbit skeletal muscle actin. By the use of this antibody as the N-terminal probe of actin and the fluorescent label at Cys-374 as its C-terminal probe, binding sites of depactin (an actin-depolymerizing protein from starfish oocytes) were identified in the actin sequence according to the method of Sutoh [Sutoh, K. (1982) Biochemistry 21, 3654-3661]. Cross-linking of the one-to-one complex of actin and depactin with 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide (EDC) generated two types of cross-linked products with slightly different apparent molecular weights, denoted as 60KU and 60KL. By the use of the N-terminal probe, it was unequivocally revealed that the C-terminal actin segment of residues 357-375 participated in cross-linking with depactin to form 60KL. On the other hand, by the use of the C-terminal probe it was revealed that the N-terminal actin segment of residues 1-12 participated in cross-linking with depactin to form 60KU. Since EDC cross-links Lys residue with Asp or Glu residue only when they are in direct contact, the result indicates that some of the N-terminal residues 1-12 and the C-terminal residues 357-375 of actin participate in binding depactin. The introduction of the N-terminal probe (the antibody recognizing the actin N-terminus) has increased the flexibility of the mapping method for locating binding sites of actin-binding proteins in the actin sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号