首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, it was demonstrated that nitric oxide (NO) and cGMP are involved in the auxin response during the adventitious rooting process in cucumber (Cucumis sativus; Pagnussat et al., 2002, 2003). However, not much is known about the complex molecular network operating during the cell proliferation and morphogenesis triggered by auxins and NO in that process. Anatomical studies showed that formation of adventitious root primordia was clearly detected in indole acetic acid (IAA)- and NO-treated cucumber explants, while neither cell proliferation nor differentiation into root primordia could be observed in control explants 3 d after primary root was removed. In order to go further with signal transduction mechanisms that operate during IAA- and NO-induced adventitious root formation, experiments were designed to test the involvement of a mitogen-activated protein kinase (MAPK) cascade in that process. Cucumber explants were treated with the NO-donor sodium nitroprusside (SNP) or with SNP plus the specific NO-scavenger cPTIO. Protein extracts from those explants were assayed for protein kinase (PK) activity by using myelin basic protein (MBP) as substrate in both in vitro and in-gel assays. The activation of a PK of approximately 48 kD could be detected 1 d after NO treatment with a maximal activation after 3 d of treatment. In control explants, a PK activity was detected only after 4 d of treatment. The MBP-kinase activity was also detected in extracts from IAA-treated explants, while no signal was observed in IAA + cPTIO treatments. The PK activity could be inhibited by the cell-permeable MAPK kinase inhibitor PD098059, suggesting that the NO-dependent MBP-kinase activity is a MAPK. Furthermore, when PD098059 was administered to explants treated with SNP or IAA, it produced a delay in root emergence and a dose-dependent reduction in root number. Altogether, our results suggest that a MAPK signaling cascade is activated during the adventitious rooting process induced by IAA in a NO-mediated but cGMP-independent pathway. The activation of MAPKs is discussed in relation to the cell responses modulating mitotic process.  相似文献   

2.
3.
研究生长素、乙烯和一氧化氮(NO)对拟南芥下胚轴插条形成不定根的调节,以及生长素和乙烯信号转导成员在IAA促进不定根形成中的作用的结果表明:拟南芥切条以IAA和硝普钠(N0供体)单独处理7d后的不定根形成均受到促进,其中以50μmol·L^-1 IAAμmol·L^-1 SNP的促进作用为最强,乙烯的促进作用不明显;生长素运输和信号转导以及乙烯信号转导相关突变体对IAA促进生根作用的敏感性比野生型有所下降,特别是IAA14功能获得型的突变体。IAA和NO在促进不定根形成中有协同效应。  相似文献   

4.
A few years ago it was demonstrated that nitric oxide (NO) and cGMP are involved in the auxin response during adventitious root (AR) formation in cucumber (Cucumis sativus). More recently, a mitogen-activated protein kinase cascade was shown to be induced by IAA in a NO-dependent, but cGMP-independent, pathway. In the present study, the involvement of Ca2+ and the regulation of Ca2+-dependent protein kinase (CDPK) activity during IAA- and NO-induced AR formation was evaluated in cucumber explants. The effectiveness of several broad-spectrum Ca2+ channel inhibitors and Ca2+ chelators in affecting AR formation induced by IAA or NO was also examined. Results indicate that the explants response to IAA and NO depends on the availability of both intracellular and extracellular Ca2+ pools. Protein extracts from cucumber hypocotyls were assayed for CDPK activity by using histone IIIS or syntide 2 as substrates for in-gel or in vitro assays, respectively. The activity of a 50 kDa CDPK was detected after 1 d of either NO or IAA treatments and it extended up to the third day of treatment. This CDPK activity was affected in both extracts from NO- and IAA-treated explants in the presence of the specific NO-scavenger cPTIO, suggesting that NO is required for its maximal and sustained activity. The in-gel and the in vitro CDPK activity, as well as the NO- or IAA-induced AR formation, were inhibited by calmodulin antagonists. Furthermore, the induction of CDPK activity by NO and IAA was shown to be reliant on the activity of the enzyme guanylate cyclase.  相似文献   

5.
6.
Nitric oxide (NO) is a multifunctional molecule involved in numerous physiological processes in plants. In this study, we investigate the spatiotemporal changes in NO levels and endogenous NO‐generating system in auxin‐induced adventitious root formation. We demonstrate that NO mediates the auxin response, leading to adventitious root formation. Treatment of explants with the auxin indole‐3‐butyric acid (IBA) plus the NO donor sodium nitroprusside (SNP) together resulted in an increased number of adventitious roots compared with explants treated with SNP or IBA alone. The action of IBA was significantly reduced by the specific NO scavenger, 2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (c‐PTIO), and the nitric oxide synthase (NOS, enzyme commission 1.14.13.39) inhibitor, NG‐nitro‐l ‐arg‐methyl ester (l ‐NAME). Detection of endogenous NO by the specific probe 4,5‐diaminofluorescein diacetate and survey of NADPH–diaphorase activity (commonly employed as a marker for NOS activity) by histochemical staining revealed that during adventitious root formation, NO and NADPH–diaphorase signals were specifically located in the adventitious root primordia in the basal 2‐mm region (as zone I) of both control and IBA‐treated explants. With the development of root primordia, NO and NADPH–diaphorase signals increased gradually and were mainly distributed in the root meristem. Endogenous NO and NADPH–diaphorase activity showed overall similarities in their tissue localization. Distribution of NO and NADPH–diaphorase activity similar to that in zone I were also observed in the basal 2–4‐mm region (zone II) of IBA‐treated explants, but neither NO nor NADPH–diaphorase signals were detected in this region of the control explants. l ‐NAME and c‐PTIO inhibited the formation of adventitious roots induced by IBA and reduced both NADPH–diaphorase staining and NO fluorescence. These results show the dynamic distribution of endogenous NO in the developing root primordia and demonstrate that NO plays a vital role in IBA‐induced adventitious rooting. Also, the production of NO in this process may be catalyzed by a NOS‐like enzyme.  相似文献   

7.
8.
Hydrogen peroxide (H2O2), an active oxygen species, is widely generated in many biological systems and mediates various physiological and biochemical processes in plants. In the present study, we present a signaling network involving H2O2, nitric oxide (NO), calcium (Ca2+), cyclic guanosine monophosphate (cGMP), and the mitogen-activated protein kinase (MAPK) cascade during adventitious rooting in mung bean seedlings. Both exogenous H2O2 and the NO donor sodium nitroprussiate were capable of promoting the formation and development of adventitious roots. H2O2 and NO signaling pathways were elicited in parallel in auxin-induced adventitious rooting. Cytosolic Ca2+ was required for adventitious rooting, and Ca2+ served as a downstream component of H2O2, as well as cGMP or MAPK, signaling cascades. cGMP and MAPK cascades function downstream of H2O2 signaling and depend on auxin responses in adventitious root signaling processes.  相似文献   

9.
10.
以黄瓜品种‘新春4号’为材料,研究干旱胁迫下一氧化氮(NO)和钙离子(Ca2+)处理下黄瓜的生根指标、内源Ca2+荧光强度以及抗氧化酶(超氧化物歧化酶SOD、过氧化氢酶CAT、抗坏血酸过氧化物酶APX)活性,分析干旱条件下黄瓜不定根发生过程中NO和Ca2+之间的关系.结果表明: 200 μmol·L-1 氯化钙(CaCl2)和0.05%聚乙二醇(PEG)共处理显著提高了干旱条件下黄瓜不定根的根长和根数;添加Ca2+螯合剂(EGTA)和通道抑制剂(BAPTA/AM)处理显著降低了干旱条件下NO诱导的不定根根数和根长.干旱条件下,NO和CaCl2处理提高了黄瓜下胚轴内源Ca2+荧光强度;而NO清除剂(cPTIO)处理的Ca2+荧光强度显著低于NO处理.干旱条件下,NO和CaCl2处理显著提高了黄瓜下胚轴抗氧化酶活性;而Ca2+抑制剂或螯合剂处理显著降低了NO诱导的抗氧化酶活性.由此可见,干旱条件下Ca2+参与了NO调控黄瓜抗氧化酶活性,缓解了干旱胁迫对不定根形成产生的伤害,进而促进了不定根的发生.  相似文献   

11.
不定根发生分子调控机制的研究进展   总被引:3,自引:0,他引:3  
魏丽  蒋湘宁  裴东 《生命科学》2006,18(3):266-272
不定根发生问题,既是植物无性繁殖和工厂化育苗实践的核心问题,又是植物发育和形态建成等方面的重要理论问题。由于不定根发生过程的复杂性,到目前为止对其调控机制的了解还十分有限。大量研究证实,不定根发生与植物生长素类物质密切相关,因此现有的研究不仅围绕生长素及其信号传导途径展开,而且还涉及到基因表观遗传学调控水平。目前已经鉴定出一些与不定根发生相关的生长素信号传导因子,如NO、cGMP、microRNAs等。同时,还克隆到一些与不定根发生相关的基因,如OsPIN1、OsCKI1、NPK1、ARL1等。此外,发现DNA甲基化可以抑制DNA与蛋白(MeCP2) 的结合,从而抑制基因转录;microRNA可以使基因沉默来调控不定根的发生状况。本文围绕不定根发生的激素调控、不定根发生的基因调控、不定根发生的生长素信号传导机制、表观遗传调控等几个方面综述了近年来的研究进展。  相似文献   

12.
We have previously shown that both endogenous auxin and ethylenepromote adventitious root formation in the hypocotyls of derootedsunflower (Helianthus annuus) seedlings. Experiments here showedthat promotive effects on rooting of the ethylene precursor,1-aminocyclopropane-l-carboxylic acid (ACC) and the ethylene-releasingcompound, ethephon (2-chloro-ethylphosphonic acid), dependedon the existence of cotyledons and apical bud (major sourcesof auxin) or the presence of exogenously applied indole-3-aceticacid (IAA). Ethephon, ACC, aminoethoxyvinylglycine (an inhibitorof ethylene biosynthesis), and silver thiosulphate (STS, aninhibitor of ethylene action), applied for a length of timethat significantly influenced adventitious rooting, showed noinhibitory effect on the basipetal transport of [3H]IAA. Theseregulators also had no effect on the metabolism of [3H]IAA andendogenous IAA levels measured by gas chromatography-mass spectrometry.ACC enhanced the rooting response of hypocotyls to exogenousIAA and decreased the inhibition of rooting by IAA transportinhibitor, N-1-naphthylphthalamic acid (NPA). STS reduced therooting response of hypocotyls to exogenous IAA and increasedthe inhibition of rooting by NPA. Exogenous auxins promotedethylene production in the rooting zone of the hypocotyls. Decapitationof the cuttings or application of NPA to the hypocotyl belowthe cotyledons did not alter ethylene production in the rootingzone, but greatly reduced the number of root primordia. We concludethat auxin is a primary controller of adventitious root formationin sunflower hypocotyls, while the effect of ethylene is mediatedby auxin. Key words: Auxin, ethylene, adventitious rooting, sunflower  相似文献   

13.
14.
Several lines of evidence suggest that nitric oxide (NO) and hydrogen peroxide (H2O2) are important signal molecules involved in plant development and other physiological processes. Marigold (Tagetes erecta L. ‘Marvel’) was used to understand the role and relationship of NO and H2O2 in adventitious root development of plants. The results showed that the effects of H2O2 or NO on adventitious root organogenesis of explants were dose dependent, with maximal biological responses at 200 μM H2O2 or 50 μM NO donor sodium nitroprusside (SNP). The results also indicated the importance of both putative NO synthase (NOS)-like and nitrate reductase (NR) enzymes, which might be responsible for the production of NO in explants during rooting. Additionally, guanosine 3′, 5′ -cyclic monophosphate (cGMP) was involved in NO- induced root formation of marigold, but it was not involved in H2O2- mediated rooting process. The root number and length of explants treated with NO and H2O2 simultaneously were significantly higher than those of explants treated with H2O2 or NO alone. Moreover, NO treatments enhanced endogenous H2O2 levels in hypocotyls. Together, these results indicate that NO and H2O2 play crucial roles in the adventitious root development of marigold explants both synergistically and independently.  相似文献   

15.
Auxin and nitric oxide (NO) play fundamental roles throughout plant life. NO is a second messenger in auxin signal transduction leading to root developmental processes. The mechanisms triggered by auxin and NO that direct adventitious root (AR) formation are beginning to be unraveled. The goal of this work was to study phospholipid (PL) signaling during the auxin- and NO-induced AR formation in cucumber (Cucumis sativus) explants. Explants were labeled with 32P-inorganic phosphate and treated with the auxins indole-3-acetic acid or 1-naphthylacetic acid, or the NO donor S-nitroso N-acetyl penicillamine, in the presence or absence of the specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. PLs were separated by thin-layer chromatography and quantified. We report that the signaling PLs phosphatidic acid (PA), phosphatidylinositol phosphate, and phosphatidylinositol bisphosphate accumulated within 1 min after auxin or NO treatment. Both auxin and NO evoked similar and transient time course responses, since signaling PLs returned to control levels after 20 or 30 min of treatment. The results indicate that auxin relies on NO in inducing PA, phosphatidylinositol phosphate, and phosphatidylinositol bisphosphate accumulation. Furthermore, we demonstrate that auxin and NO trigger PA formation via phospholipase D (PLD) activity. Explants treated for 10 min with auxin or NO displayed a 200% increase in AR number compared with control explants. In addition, PLD activity was required for the auxin- and NO-induced AR formation. Finally, exogenously applied PA increased up to 300% the number of ARs. Altogether, our data support the idea that PLD-derived PA is an early signaling event during AR formation induced by auxin and NO in cucumber explants.  相似文献   

16.
The effects of some inhibitors on potassium- and IAA-induced rooting were studied adopting the root-formation bioassay in the excised cucumber ( Cucumis sativus L. ) cotyledon. 5-fluomuracil at 7 Ï 10-4 – 7 Ï10-1 mmol/L and cycloheximide at 3.5 Ï 10-4 – 1.05 Ï10-2 mmol/L significantly inhibited potassium- and IAA-induced adventitious root formation of the excised cucumber cotyledons, respectively. Na3VO4 at 0.1 – 1.0 mmol/L obviously inhibited potassium and IAA-induced adventitious rooting of the excised cucumber cotyledons, and similar inhibitory effect was found with 2,3,5-triiodobenzoic acid (TIBA) at 2 Ï 10-4 – 2 Ï 10-l mmol/L.There is a close relationship between potassium and IAA-induced adventitious rooting and the promotive effect of potassium on rooting is possibly brought about via affecting the endogenous level of IAA.  相似文献   

17.
We have studied the role of endogenous auxin on adventitious rooting in hypocotyls of derooted sunflower (Helianthus annuus L. var. Dahlgren 131) seedlings. Endogenous free and conjugated indole-3-acetic acid (IAA) were measured in three segments of hypocotyls of equal length (apical, middle, basal) by using gas chromatography-mass spectrometry with [13C6]-IAA as an internal standard. At the time original roots were excised (0 h), the free IAA level in the hypocotyls showed an acropetally decreasing gradient, but conjugated IAA level increased acropetally; i.e. free to total IAA ratio was highest in the basal portion of hypocotyls. The basal portion is the region where most of root primordia were found. Some primordia were seen in this region within 24 h after the roots were excised. The quantity of free IAA in the middle portion of the hypocotyl increased up to 15 h after excision and then decreased. In this middle region there were fewer root primordia, and they could not be seen until 72 h. In the apical portion the amount of free IAA steadily increased and no root primordia were seen by 72 h. Surgical removal of various parts of the hypocotyl tissues caused adventitious root formation in the hypocotyl regions where basipetally transported IAA could accumulate. Reduction in the basipetal flow of auxin by N-1-naphthylphthalamic acid and 2,3,5-tri-iodobenzoic acid resulted in fewer adventitious roots. The fewest root primordia were seen if the major sources of endogenous auxin were removed by decapitation of the cotyledons and apical bud. Exogenous auxins promoted rooting and were able to completely overcome the inhibitory effect of 2,3,5-tri-iodobenzoic acid. Exogenous auxins were only partially able to overcome the inhibitory effect of decapitation. We conclude that in sunflower hypocotyls endogenously produced auxin is necessary for adventitious root formation. The higher concentrations of auxin in the basal portion may be partially responsible for that portion of the hypocotyl producing the greatest number of primordia. In addition to auxins, other factors such as wound ethylene and lowered cytokinin levels caused by excision of the original root system cuttings must also be important.  相似文献   

18.
19.
Bai X  Todd CD  Desikan R  Yang Y  Hu X 《Plant physiology》2012,158(2):725-736
N-Acyl-homoserine-lactones (AHLs) are bacterial quorum-sensing signaling molecules that regulate population density. Recent evidence demonstrates their roles in plant defense responses and root development. Hydrogen peroxide (H(2)O(2)), nitric oxide (NO), and cyclic GMP (cGMP) are essential messengers that participate in various plant physiological processes, but how these messengers modulate the plant response to N-acyl-homoserine-lactone signals remains poorly understood. Here, we show that the N-3-oxo-decanoyl-homoserine-lactone (3-O-C10-HL), in contrast to its analog with an unsubstituted branch chain at the C3 position, efficiently stimulated the formation of adventitious roots and the expression of auxin-response genes in explants of mung bean (Vigna radiata) seedlings. This response was mimicked by the exogenous application of auxin, H(2)O(2), NO, or cGMP homologs but suppressed by treatment with scavengers or inhibitors of H(2)O(2), NO, or cGMP metabolism. The 3-O-C10-HL treatment enhanced auxin basipetal transport; this effect could be reversed by treatment with H(2)O(2) or NO scavengers but not by inhibitors of cGMP synthesis. Inhibiting 3-O-C10-HL-induced H(2)O(2) or NO accumulation impaired auxin- or 3-O-C10-HL-induced cGMP synthesis; however, blocking cGMP synthesis did not affect auxin- or 3-O-C10-HL-induced H(2)O(2) or NO generation. Additionally, cGMP partially rescued the inhibitory effect of H(2)O(2) or NO scavengers on 3-O-C10-HL-induced adventitious root development and auxin-response gene expression. These results suggest that 3-O-C10-HL, unlike its analog with an unmodified branch chain at the C3 position, can accelerate auxin-dependent adventitious root formation, possibly via H(2)O(2)- and NO-dependent cGMP signaling in mung bean seedlings.  相似文献   

20.
在生长素诱导下,大白菜(Brassicacampestris.Spp.Pekinensis)的下胚轴切段显示了一定的发根能力,其中,0.4—1.0mg/LIAA显著地促进大白菜不定根的发生。在生长素诱导24h后,可借助显微切片观察到下胚轴切面明显的解剖学变化首先是中柱鞘内靠近韧皮部的薄壁细胞的细胞质与细胞核变浓,染色加深,部分细胞分裂;随后是分裂的细胞团增大,逐渐形成根原基并分化出根冠。当下胚轴切段培养5天后,大量不定根穿破皮层,达到肉眼可见的程度。同一外植体中不定根的发育是不同步的,下胚轴不同部位的切段具有不同的发根能力;当下胚轴切段在培养基上反插时,提高外源IAA可修饰根发生的极性,提高蔗糖浓度能增强IAA的修饰作用;在模拟微重力效应条件下,不定根发生的极性没有明显变化,但是,增加了外植体对IAA诱导发根的敏感性。本结果为进一步研究不定根发生的分子机制建立了试验系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号