首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supercoiled state corresponds to the active form for plasmid applications. The relaxed circular form of plasmids is often inactive or poorly active. To obtain significant amounts of almost fully supercoiled DNA, we modified the standard protocol of a commercially available Qiagen plasmid purification kit. Our changes led to isolation of almost 100% of the plasmids in the supercoiled state. The modified protocol was used to purify different plasmids with consistent results. The purified plasmids maintain supercoiled state for about two months. The modified protocol is very advantageous because it allows easy DNA production with high degree of supercoiled form at low cost.  相似文献   

2.
A simple procedure for large-scale purification of plasmid DNA   总被引:3,自引:0,他引:3  
J Gómez-Márquez  M Freire  F Segade 《Gene》1987,54(2-3):255-259
We report a simple, rapid and reliable procedure for large-scale purification of plasmid DNA from non-amplified bacterial cultures. It is a modification of the boiling method of Holmes and Quigley [Anal. Biochem. 114 (1981) 193-197] and involves gel-filtration chromatography using Sephacryl S-1000 for final purification of plasmid DNA. This method does not require CsCl gradients and the recovered plasmids are free of RNA and chromosomal DNA, are supercoiled, retain their biological activity, and are suitable for restriction analysis.  相似文献   

3.
The preparation of high quality plasmid DNA is a necessary requirement for most molecular biology applications. We compared four different large plasmid preparation protocols, which were based on either a liquid-phase approach (Triton lysis) or purification of alkaline lysis bacterial extracts followed by supercoiled plasmid purification on affinity columns. Two host Escherichia coli strains, JM 109 and INValphaF', were used to grow the test plasmids for comparison of product plasmid DNA produced from the four different plasmid isolation methods. While the DNA grown in E. coli strain JM109, prepared by liquid-phase Triton lysis was appropriately restricted by 12 restriction enzymes, this was not the case for any of the JM109-grown DNA purified by any of the affinity column solid-phase approaches. In contrast to this, when the plasmid DNA was grown in E. coli strain INValphaF', most restriction enzymes cut DNA appropriately, irregardless of the plasmid preparation protocol used. It seems that an impurity commonly eluted with the DNA from all three of the solid-phase DNA columns had an equal effect on the above enzymes using the common host strain JM109, but not strain INValphaF'.  相似文献   

4.
The success and validity of gene therapy and DNA vaccination in in vivo experiments and human clinical trials depend on the ability to produce large amounts of plasmid DNA according to defined specifications. A new method is described for the purification of a cystic fibrosis plasmid vector (pCF1-CFTR) of clinical grade, which includes an ammonium sulfate precipitation followed by hydrophobic interaction chromatography (HIC) using a Sepharose gel derivatized with 1,4-butanediol-diglycidylether. The use of HIC took advantage of the more hydrophobic character of single-stranded nucleic acid impurities as compared with double-stranded plasmid DNA. RNA, denatured genomic and plasmid DNAs, with large stretches of single strands, and lipopolysaccharides (LPS) that are more hydrophobic than supercoiled plasmid, were retained and separated from nonbinding plasmid DNA in a 14-cm HIC column. Anion-exchange HPLC analysis proved that >70% of the loaded plasmid was recovered after HIC. RNA and denatured plasmid in the final plasmid preparation were undetectable by agarose electrophoresis. Other impurities, such as host genomic DNA and LPS, were reduced to residual values with the HIC column (<6 ng/microg pDNA and 0.048 EU/microg pDNA, respectively). The total reduction in LPS load in the combined ammonium acetate precipitation and HIC was 400,000-fold. Host proteins were not detected in the final preparation by bicinchoninic acid (BCA) assay and sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with silver staining. Plasmid identity was confirmed by restriction analysis and biological activity by transformation experiments. The process presented constitutes an advance over existing methodologies, is scaleable, and meets quality standards because it does not require the use of additives that usually pose a challenge to validation and raise regulatory concerns.  相似文献   

5.
Gene therapy and DNA vaccination applications have increased the demand for highly purified plasmid DNA (pDNA) in the last years. One of the main problems related to the scale-up of pDNA purification is the degradation of the supercoiled (sc) isoforms during cell culture and multi-stage purification. In this work, a systematic study of the stability of two model plasmids (3,697 and 6,050 bp) during a mid-scale production process, which includes fermentation, alkaline lysis, isopropanol and ammonium sulphate precipitation and hydrophobic interaction chromatography, was performed. Results indicate that by extending cell culture (up to 26 h) and cell lysis (up to 2 h) it is possible to significantly reduce the amounts of RNA, without significantly compromising the yields of the sc pDNA isoform, a feature that could be conveniently exploited for downstream processing purposes. The stability of pDNA upon storage of E. coli pellets at different temperatures indicates that, differently from RNA, pDNA is remarkably stable when stored in cell pellets (>3 weeks at 4°C, >12 weeks at −20°C) prior to processing. With alkaline lysates, however, storage at −20°C is mandatory to avoid sc pDNA degradation within the first 8 weeks. Furthermore, the subsequent purification steps could be carried out at room temperature without significant pDNA degradation. Since the unit operations and process conditions studied in this work are similar to those generally used for plasmid DNA production, the results presented here may contribute to improve the current knowledge on plasmid stability and process optimization. Authors Freitas and Azzoni contributed equally to this work.  相似文献   

6.
A rapid and universal tandem-purification strategy for recombinant proteins   总被引:1,自引:0,他引:1  
A major goal in the production of therapeutic proteins, subunit vaccines, as well as recombinant proteins needed for structure determination and structural proteomics is their recovery in a pure and functional state using the simplest purification procedures. Here, we report the design and use of a novel tandem (His)(6)-calmodulin (HiCaM) fusion tag that combines two distinct purification strategies, namely, immobilized metal affinity (IMAC) and hydrophobic interaction chromatography (HIC), in a simple two-step procedure. Two model constructs were generated by fusing the HiCaM purification tag to the N terminus of either the enhanced green fluorescent protein (eGFP) or the human tumor suppressor protein p53. These fusion constructs were abundantly expressed in Escherichia coli and rapidly purified from cleared lysates by tandem IMAC/HIC to near homogeneity under native conditions. Cleavage at a thrombin recognition site between the HiCaM-tag and the constructs readily produced untagged, functional versions of eGFP and human p53 that were >97% pure. The HiCaM purification strategy is rapid, makes use of widely available, high-capacity, and inexpensive matrices, and therefore represents an excellent approach for large-scale purification of recombinant proteins as well as small-scale protein array designs.  相似文献   

7.
Gene therapy and DNA vaccination cover a variety of applications using viral and non-viral vectors as vehicles of choice for treatment of genetic or acquired diseases. Recently, most therapeutic applications have been performed with non-viral biological agents preparations highly enriched in supercoiled plasmid molecules and it has been concluded that this isoform is more efficient at gene transfection than open circular isoform. This work describes for the first time a new strategy that uses lysine-chromatography to efficiently eliminate Escherichia coli impurities as well as other ineffective plasmid isoforms present in a complex clarified lysate to purify and obtain pharmaceutical-grade supercoiled plasmid DNA. The quality control tests indicated that the levels of impurities in the final plasmid product were below the generally accepted specifications. Furthermore, the delivery of the purified product to eukaryotic cells, the cell uptake and transfection efficiency were also analyzed. The results showed that the transfection efficiency reached with the application of the supercoiled plasmid conformation, purified with lysine-agarose, was higher than the values achieved for other plasmid topologies. Therefore, this study presents a new enabling technology to obtain the completely purified non-viral vector, able to act with good efficiency as gene therapy delivery vehicle in several diseases like cancer.  相似文献   

8.
Human clinical trial of gene therapy with nonviral vectors demands large amounts of pharmaceutical-grade plasmid DNA. Since standard molecular biology methods cannot be used for this purpose, there is a need for the development of processing methodologies for the large-scale production and purification of plasmids. This work describes several studies that were undertaken during the development of process flow-sheets for the downstream processing of supercoiled plasmids. Anion-exchange HPLC was used as a routine technique for monitoring plasmid purity in process streams. The use of RNase or high temperatures during alkaline lysis was proved unnecessary. Instead, RNA could be completely removed by performing sequentially clarification with a chaotropic salt, concentration with PEG, and ion-exchange and size-exclusion chromatography. Also, clarification of streams by precipitation was independent of the chaotropic salt used. Furthermore, by proceeding directly from cell lysis to chromatography it was possible to obtain plasmid with purity/quality identical to that of the one obtained when clarification and concentration were included in the process. This strategy has the advantage of increasing the overall process yield to 38%. The plasmid thus purified was depleted of RNA, chromosomal DNA, and proteins. Additionally, no animal-derived enzymes, alcohols, or toxic solvents were used, rendering validation potentially easier. The results described in this report also indicate that downstream processing times and costs can be considerably reduced without affecting plasmid purity.  相似文献   

9.
目的:建立质粒pVAX1-PENK的大规模制备2--艺。方法:对大肠杆菌工程菌DH5α-pVAX1-PENK进行补料发酵,利用自行发明的连续碱裂解过程对菌体进行裂解,经超滤浓缩后,用Sepharnse 6 Fast Flow层析柱分离DNA与RNA,再经Plasmidselect Xtra层析柱分离超螺旋质粒DNA与开环或线性质粒DNA,最后经Source 15Q层析柱精制质粒DNA。结果:发酵获得质粒pVAX1-PENK的产率为182mg/L,经碱裂解及层析分离后,最终制备的质粒DNA超螺旋比例大于98%,总回收率为60.5%,纯度(D260nm/D280nm)为1.8~2.0。结论:建立的质粒DNA生产工艺可以制备大量高纯度的质粒DNA,并避免了使用动物源性的酶及有毒试剂。  相似文献   

10.
Plasmid DNA purification development has been driven by the increased need for large quantities of highly purified, sterile plasmid DNA for clinical studies. Detailed characterization and development of the terminal sterile filtration process step is often limited due to time constraints and the scarcity of sufficient quantities of purified plasmid. However, the large size of the plasmid molecule and variations in conformation can lead to significant yield losses if this process step is not optimized. In this work, the gradual pore-plugging model of flow decay was found to be valid for plasmid DNA by using an ultra scaledown apparatus (1-4 cm(2) filter area). Filtration capacity was found to be insensitive to pressure. Multiple filter types were screened and both source and composition of materials were found to affect filter capacity dramatically. The filter capacity for plasmid was improved by increasing plasmid concentrations as well as by modifying buffer conditions to reduce the apparent size of the plasmid. Filtration capacities varied over a greater than 2 log range when plasmids with sizes ranging from 5.5 to 11 kb and supercoiled plasmid content of 55-95% were explored. Larger plasmids and feeds with lower supercoiled contents led to reduced capacities. These results can be used to define conditions for scale-up of plasmid sterile filtration, as evidenced by processing a 30 g lot using a filtration area of 1,000 cm(2), with a 96% yield, based on filtration capacity data from 4 cm(2) test filters.  相似文献   

11.
Use of plasmid DNA (pDNA) in the emerging gene therapy requires pure DNA in large quantities requiring production of safe DNA on large scale. While a number of kit-based DNA purification techniques have become popular, large scale cost effective purification of DNA remains a technological challenge. Most traditional, as well as newly developed methods for DNA purification are expensive, tedious, use toxic reagents, and/or generally not amenable for scaled up production. Our attempts to develop a scalable adsorptive separation technology resulted in successful use of indigenously developed rigid cross-linked cellulose beads for single step purification of pDNA from alkaline cell lysates. This mode of purification employs a combination of intra-particle interactions that could give a product plasmid DNA free from chromosomal DNA, RNA and host proteins in a single scalable chromatographic step. The technology can be employed as a batch adsorption step on small scale, or on a large scale column chromatography. A high copy number 9.8 kb plasmid (from an Escherichia coli strain) was purified in yields of 77 and 52%, respectively in batch and column modes. The product obtained was homogeneous supercoiled plasmid with no RNA and protein contamination confirmed by quantitative analysis, agarose gel electrophoresis and SDS-PAGE.  相似文献   

12.
Separation of the different plasmid isoforms is a major challenge in purifying plasmid DNA. We describe a new type of biochemical interaction that occurs in the presence of high concentrations of lyotropic salt and results in the selective adsorption of supercoiled plasmid DNA to aromatic thioether ligands. Under well-defined conditions, these ligands are capable of separating supercoiled plasmid DNA (ccc) from its isoform, i.e. open circular (oc) form. Integrated in a process, preceded by group separation and followed by anion-exchange chromatography, this new purification method may facilitate the production of highly purified supercoiled plasmid DNA for use in gene therapy and DNA vaccine applications.  相似文献   

13.
The demand for efficient production methods of plasmid DNA (pDNA) has increased vastly in response to rapid advances in the use of pDNA in gene therapy and in vaccines since the advantageous safety concerns associated with non-viral over viral vectors.A prerequisite for the success of plasmid-based therapies is the development of cost-effective and generic production processes of pDNA. However, to satisfy strict regulatory guidelines, the material must be available as highly purified, homogeneous preparations of supercoiled circular covalently closed (ccc) pDNA. Large-scale production of pDNA for therapeutic use is a relatively new field in bioprocessing. The shift from small-scale plasmid production for cell transfection to large-scale production sets new constraints on the bacterial fermentation, processing of bacterial lysate and final purification and formulation of the plasmid DNA. The choice of bacterial strain used for plasmid cultivation affects the plasmid yield, the proportion of different isoforms and the amount of endotoxins in the starting material. The choice of bacterial strain will be greatly influenced by the production and purification procedures of pDNA. Master and working cell banks need to be characterised and established. Alkaline lysis of the bacteria damages the pDNA, resulting in a reduced recovery of ccc pDNA and an increase in partially denaturated ccc pDNA and open circular (oc) forms. Shear stress in these processes needs to be tightly controlled, and buffer composition and pH need to be optimised. To obtain a homogeneous plasmid DNA preparation, different pDNA purification strategies aim at capturing ccc pDNA and eliminating the oc isoform. A highly purified final product corresponding to the stringent recommendations set forth by health and regulatory authorities can be achieved by (i). different chromatography techniques integrated with ultra/diafiltration to achieve optimal purification results; (ii). the formulation of the final pDNA product, that requires a detailed study of the plasmid structure; and (iii). the development of sensitive analytical methods to detect different impurities (proteins, RNA, chromosomal DNA, and endotoxins). We present here a revue of the whole process to obtain such a plasmid DNA, and report an example of RNAse-free purification of ccc pDNA that could be used for gene therapy.  相似文献   

14.
Protein complexes are responsible for key biological processes, but methods to produce recombinant protein complexes for biochemical and biophysical studies are limited. We have developed a second generation Escherichia coli polycistronic expression system which improves on the modularity of our original pST39 polycistronic system. This pST44 expression system simplifies the construction of polycis-tronic plasmids, particularly of variant plasmids expressing deletion or point mutations in any subunit. To facilitate purification of the expressed complex, we have prepared a suite of 72 plasmids which allows individual subunits to be tagged at the N- or C-terminus with six permanent or cleavable peptide affinity tags. We demonstrate these new features in a detailed deletion analysis of a three protein yeast Piccolo NuA4 histone acetyltransferase complex, and in the affinity purification of a human Piccolo NuA4 complex. We also utilize the modular design to show that the order of expression of the three subunits along the polycistronic plasmid does not affect the reconstitution of the yeast Piccolo complex in E. coli.  相似文献   

15.
Interest in producing large quantities of supercoiled plasmid DNA has recently increased as a result of the rapid evolution of gene therapy and DNA vaccines. Owing to the commercial interest in these approaches, the development of production and purification strategies for gene-therapy vectors has been performed in pharmaceutical companies within a confidential environment. Consequently, the information on large-scale plasmid purification is scarce and usually not available to the scientific community. This article reviews downstream operations for the large-scale purification of plasmid DNA, describing their principles and the strategy used to attain a final product that meets specifications.  相似文献   

16.
In recent years, the market for therapeutic monoclonal antibodies (mAb) has grown exponentially, and with this there has been a desire to reduce the costs associated with production and purification of these high-value biological products. A typical mAb purification process involves three adsorption/chromatography steps [protein A, ion exchange (IEX), and hydrophobic interaction (HIC)], along with ultrafiltration, nanofiltration, and microfiltration. With the development of membrane adsorption/chromatography as a viable alternative to traditional pack bed systems, the opportunity exists to complete the entire downstream purification process using only membrane operations. In this study, the process simulation tool SuperPro Designer was used to evaluate the application of recently developed ultra-high capacity electrospun nanofibrous adsorption membranes as a replacement for conventional chromatographic media in the downstream mAb production process. The simulation showed that nanofibrous adsorption membranes in place of the three packed bed chromatography steps reduced the required volume of protein A, IEX, and HIC adsorptive medium by 25, 80, and 80%, respectively. In addition, the membrane-only process reduced the downstream processing time by 50%, decreased the number of labor hours associated with the purification steps by 40%, generated 40% less aqueous waste, and reduced the overall downstream process operating expenses per unit product by 23%. There were also significant savings in facility construction costs and the price of fixed equipment required for separations. With these savings not only is the membrane-only process economically competitive with the traditional packed bed operations, but it offers the possibility of moving toward more disposable process.  相似文献   

17.
The topological structure of plasmid DNA can be characterized by capillary gel electrophoresis (CGE analysis)-an important tool for quality control and stability assessments in DNA storage or application. Hence, a large-scale manufacturing process was developed that allows the removal of undesired open circular (oc) or linear plasmid topologies, bacterial genomic DNA, RNA, proteins as well as lipopolysaccharides (endotoxins) and results in obtaining supercoiled (covalently closed circular, ccc) plasmid DNA in a pure form without using any animal-derived substances. Using CGE, the development and in-line monitoring for pharmaceutical plasmid production starting from fermentation control throughout the whole manufacturing process including the formulated and filled product can be performed the first time in a way conforming to good manufacturing practices (GMP). Plasmid stability data were obtained from analysis of shear effects influencing the plasmid quality in DNA drug delivery formulation and application (e.g. gene gun or jet injection). The physical stability of plasmid DNA is for the first time evaluated in DNA storage experiments on the level of different plasmid forms.  相似文献   

18.
Aggregation, incorrect folding and low stability are common obstacles for protein structure determination, and are often discovered at a very late state of protein production. In many cases, however, the reasons for failure to obtain diffracting crystals remain entirely unknown. We report on the contribution of systematic biophysical characterization to the success in structural determination of human proteins of unknown fold. Routine analysis using dynamic light scattering (DLS), differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR) was employed to evaluate fold and stability of 263 purified protein samples (98 different human proteins). We found that FTIR-monitored temperature scanning may be used to detect incorrect folding and discovered a positive correlation between unfolding enthalpy measured with DSC and the size of small, globular proteins that may be used to estimate the quality of protein preparations. Furthermore, our work establishes that the risk of aggregation during concentration of proteins may be reduced through DLS monitoring. In summary, our study demonstrates that biophysical characterization provides an ideal tool to facilitate quality management for structural biology and many other areas of biological research.  相似文献   

19.
We sought to establish a single anion-exchange HPLC method for the separation of linear, open circular and supercoiled plasmid topoisomers using purified topoisomeric forms of three plasmids (3.0, 5.5 and 7.6 kb). However, finding one condition proved elusive as the topoisomer elution order was determined to depend on salt gradient slope. The observed change in selectivity increased with plasmid size and was most pronounced for the linear form. Indeed, the elution order of the linear 7.6 kb plasmid was reversed relative to the supercoiled form. This observation may have implications for methods used in quality control of plasmid DNA.  相似文献   

20.
A 40 base, mainly duplex DNA segment, with the following sequence pAATTCCACATGTGGAATTGTGAGCGGATAACAATTTGTT (3') GGTGTACACCTTAACACTCGCCTATTGTTAAACACCTTAAp (5') has been synthesized by combination of chemical and enzymatic methods. It consists of a wild-type lactose operator sequence (boxed) bracketed by "linker" sequences which permit excision of the segment from plasmid vehicles by the EcoRI restriction endonuclease. This segment has been ligated into the pMB9 plasmid and the resulting operator plasmids used to transform E. coli K-12. Among the transformant products were strains carrying plasmids with one, two, three, or four operator segments in tandem. Derepression of the lactose operon effected by these plasmids in vivo as well as the lifetimes of complexes formed between repressor and these plasmids in vitro increase with increasing numbers of operators per plasmid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号