首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ebertz SL  McGann LE 《Cryobiology》2004,49(2):169-180
A human corneal equivalent is being developed with applications in pharmaceutical testing and biomedical research, but the distribution of this engineered tissue, depends on successful cryopreservation. Cryopreservation of tissues depends on the presence of cryoprotectants, their addition and removal, and exposure to conditions during freezing and thawing, all of which depend on cellular membrane permeabilities to water and cryoprotectant. This study defines the permeability properties that define the rate of water and cryoprotectant movement across the plasma membrane of isolated human corneal endothelial, keratocyte, and epithelial cells. Cells were transferred from isotonic conditions (300 mosm/kg) to 0.5, 1, or 2 M dimethyl sulfoxide and propylene glycol solutions at constant temperature, and cell volumes monitored using an electronic particle counter. Histograms describing cell volume changes over time after cryoprotectant exposure allowed calculation of hydraulic conductivity (Lp), cryoprotectant permeability (Ps), and the reflection coefficient (sigma). Experimental values for Lp and Ps at 4, 13, 22, and 37 degrees C were used to determine the Arrhenius activation energy (Ea). Defining the permeability parameters and temperature dependencies allows simulation of responses of human corneal cells to addition and removal of cryoprotectants and to freezing conditions, allowing amount of supercooling, intracellular electrolyte concentration, and intracellular cryoprotectant concentration to be calculated. Simulations also show that the constituent cells in the bioengineered cornea respond differently to addition and removal of cryoprotectants and to freezing. This study has defined the requirements during cryopreservation for the corneal cells; future work will define the matrix requirements which will allow the development of a cryopreservation protocol.  相似文献   

2.
Recent evidence suggests an interaction between immune, enteric neural and fibroblasts in the regulation of intestinal function. Earlier, we have reported that lipopolysaccharide (LPS) induced cell proliferation, collagen synthesis and production of proinflammatory mediators in lamina propria fibroblasts. In this report, we investigated the change in transepithelial resistance (TER) as a marker of epithelial barrier function by lipopolysaccharide (LPS) and its modulation by human small intestinal lamina propria fibroblasts (HSILPF). Epithelial cells incubated with LPS alone did not show any change in the TER at any concentration or prolonged exposure. However, co-cultivation of epithelial cells with lamina propria fibroblasts which had been exposed to LPS resulted in a rapid decrease in TER by 2 hr. The decrease in the TER was continued till 8 hr followed by returning to the basal level by 24 hr. The supernatant of LPS-treated HSILPF was less effective in causing a fall in the TER than HSILPF itself. The fall in TER was accompanied by loosening of tight junctions as depicted by increased penetration of horse radish peroxidase (HRP) across the epithelial cells from the apical to the basal side. Increased incorporation of 3[H]thymidine (tritiated thymidine) in epithelial cells was observed at 48 hr in the presence of LPS-treated HSILPF. The decrease in TER during the early time period in epithelial cells was abrogated to 70% by incubating the LPS-treated HSILPF and the conditioned medium of LPS-treated HSILPF with anti-TNFalpha antibody, and not with antibody to other cytokines like IL1alpha, IL1beta, IL6 and IL8. Overall, these results suggest that TNFalpha produced by HSILPF in response to LPS as a soluble form cause a decrease in the TER and loosening of tight junctions, and such early changes in the epithelial barrier may contribute to local inflammation in the gut.  相似文献   

3.
Occludin is an integral membrane protein that is tyrosine phosphorylated when localized at tight junctions. When Ca(2+) was depleted from the culture medium, occludin tyrosine phosphorylation was diminished from Madin-Darby canine kidney epithelial cells in 2 min. This dephosphorylation was correlated with a significant reduction in transepithelial electrical resistance (TER), indicating a global loss of the tight junction barrier function. Reconstitution of Ca(2+) resulted in a robust tyrosine rephosphorylation of occludin that was temporally associated with an increase in TER. Moreover, we demonstrate in this study that occludin was colocalized with the nonreceptor tyrosine kinase c-Yes at cell junction areas and formed an immunoprecipitable complex with c-Yes in vivo. This complex dissociated when the cells were incubated in medium without Ca(2+) or treated with a c-Yes inhibitor, CGP77675. In the presence of CGP77675 after Ca(2+) repletion, occludin tyrosine phosphorylation was completely abolished and both tight junction formation and the increase of the TER were inhibited. Our study thus provides strong evidence that occludin tyrosine phosphorylation is tightly linked to tight junction formation in epithelial cells, and that the nonreceptor tyrosine kinase c-Yes is involved in the regulation of this process.  相似文献   

4.
Vitrification media: toxicity,permeability, and dielectric properties   总被引:9,自引:0,他引:9  
The aim of this study was to select a cryoprotectant for use in attempts to preserve tissues and organs by vitrification. The first step was to select a cell line with which to compare the toxicity of a range of commonly used cryoprotectants. An immortal vascular endothelial cell (ECV304) was exposed to vitrifying concentrations of four cryoprotectants: dimethyl sulfoxide (Me(2)SO; 45% w/w); 2,3 butanediol (BD; 32%); 1,2-propanediol (PD; 45%); and ethanediol (ED; 45%). Three times of exposure (1, 3, and 9 min) and two temperatures (22 and 2-4 degrees C) were studied. After removal of the cryoprotectant, the ability of the cells to adhere and divide in culture over a 2-day period was measured and expressed as a Cell Survival Index (CSI). There was no measurable loss of cells after exposure to the four cryoprotectants but 3-min exposure to BD, PD, or Me(2)SO at room temperature completely destroyed the ability of the cells to adhere and divide in culture. In contrast, exposure to all four cryoprotectants at 2-4 degrees C for up to 9 min permitted the retention of significant cell function, the CSIs, as a proportion of control, being 76.3+/-7.0% for BD, 63.6+/-7.1% for PD, 37.0+/-4.1 for Me(2)SO, and 33.2+/-3.0 for ED. The permeability properties of the cells for these four cryoprotectants was also measured at each temperature. Permeability to water was high, L(p) approximately equal 10(-7) cm/s/atm at 2-4 degrees C with all the cryoprotectants, but there were substantial differences in solute permeability: BD and PD were the most permeable at 2-4 degrees C (P(s)=4.1 and 3.0 x 10(-6) cm/s, respectively). Equilibration of intracellular cryoprotectant concentration was rapid, due in part to high water permeability; the cells were approximately 80% of their physiological volume after 10 min. Treatment at 2-4 degrees C with BD was the least damaging, but PD was not significantly worse. Exposure to vitrifying concentrations of ED and Me(2)SO, even at 2-4 degrees C, was severely damaging. Segments of rabbit carotid artery were treated with vitrifying concentrations of each of the two most favorable cryoprotectants, BD and PD, for 9 min. It was shown that each cryoprotectant reduced smooth muscle maximum contractility to a similar extent and abolished the acetylcholine response. However, vital staining revealed that exposure to BD also caused substantial damage to the endothelial lining, whereas the endothelium was completely intact after PD exposure, raising the possibility that the effect of PD on NO release may be reversible. In later stages of this project it is planned to use dielectric heating to rewarm the tissues and thereby avoid devitrification. The effects of each cryoprotectant on this mode of heating was therefore studied. Gelatin spheres containing vitrifiable concentrations of each cryoprotectant were rewarmed from -60 degrees C in a radiofrequency applicator. Because the uniformity of heating is related to the dielectric properties of the material, these properties were also measured. PD was the most suitable. These physical measurements, combined with the measurements of toxicity and permeability, indicate that PD is the most favorable cryoprotectant of those tested for use in subsequent stages of this study.  相似文献   

5.
《The Journal of cell biology》1986,103(4):1451-1464
Intercellular adherens junctions between cultured lens epithelial cells are highly Ca2+-dependent and are readily dissociated upon chelation of extracellular Ca2+ ions. Addition of Ca2+ to EGTA-treated cells results in the recovery of cell-cell junctions including the reorganization of adherens junction-specific cell adhesion molecule (A-CAM), vinculin, and actin (Volk, T., and B. Geiger, 1986, J. Cell Biol., 103:000-000). Incubation of cells during the recovery phase with Fab' fragments of anti-A-CAM specifically inhibited the re-formation of cell-cell adherens junctions. This inhibition was accompanied by remarkable changes in microfilament organization manifested by an apparent deterioration of stress fibers and the appearance of fragmented actin bundles throughout the cytoplasm. Incubation of EGTA-dissociated cells with intact divalent anti-A-CAM antibodies in normal medium had no apparent inhibitory effect on junction formation and did not affect the assembly of actin microfilament bundles. Moreover, adherens junctions formed in the presence of the divalent antibodies became essentially Ca2+-independent, suggesting that cell-cell adhesion between them was primarily mediated by the antibodies. These studies suggest that A-CAM participates in intercellular adhesion in adherens-type junctions and point to its involvement in microfilament bundle assembly.  相似文献   

6.
The normal ovarian surface epithelium (OSE) is a primitive epithelium made up by a single layer of mesothelial-type epithelial cells. When these cells get trapped in the ovarian stroma, expression of epithelial specific markers, such as E-cadherin, are induced. Most epithelial cells are also characterized by the ability to form tight junctions (TJ). Incomplete TJ have earlier been demonstrated in the OSE by electron microscopy studies. We have investigated expression and localization of the TJ proteins ZO-1, occludin, and claudin-1 in tissue biopsies from normal human ovaries and OSE in culture. The dynamics of TJ formation were studied in human OSE cultured on porous filters in culture inserts by measuring trans epithelial resistance (TER) including Ca(2+) switch experiments. Confluent OSE cells were also analyzed by electron microscopy. The results show that normal human OSE has expression of all three TJ proteins investigated. These proteins, ZO-1, occludin, and claudin-1, were localized to OSE cell borders both in ovarian biopsies and in cultured OSE. There was no difference in this regard between fertile and postmenopausal women. Cells in culture were polarized and presented junctional complexes seen by electron microscopy. In the Ca(2+) switch experiments, removing free Ca(2+) transiently, TER decreased significantly (P < 0.05) in the Ca(2+)-free group compared with nontreated OSE. TER was fully restored after 24 h. N-cadherin but not E-cadherin was expressed in the OSE and localized to the cell borders. We conclude that normal human OSE express and form functional TJ both in vivo and vitro. This report also describes a method to study the influence of ovarian-derived mediators on TJ in cultured OSE.  相似文献   

7.
Phage display was used to screen for peptides that modulate the activity of epithelial cell tight junctions. Panning with a phage library that displays random 7-mers was performed using monolayers of human bronchial epithelial cells (16HBE14o(-)) treated with a calcium chelator, ethylene glycol-bis(2-aminoethylether)- N, N, N', N'-tetraacetic acid (EGTA), to increase accessibility to the junctional complex/paracellular space, followed by subtractive panning. A novel peptide, FDFWITP, identified as a potential tight junction modulator, was synthesized in linear and cyclic forms with lysine residues added to improve solubility. The cyclic form of the peptide reduced transepithelial electrical resistance (TER) in a concentration-dependent manner (80% reduction at 100 microM and 95% reduction at 500 microM) and was reversible within 2 h; the linear form only affected TER at the highest concentration. Interestingly, the constrained peptide did not increase permeation of the model small molecule, fluorescein. The highly selective activity of FDFWITP supports the hypothesis that ions and small molecules may be transported paracellularly across tight junctions by separate pathways.  相似文献   

8.
A functional assay has been developed to identify cell surface proteins involved in the formation of epithelial tight junctions. Transepithelial electrical resistance was used to measure the presence of intact tight junctions in monolayers of Madin-Darby canine kidney (MDCK) cells cultured on nitrocellulose filters. The strain I MDCK cells used have a transmonolayer resistance greater than 2,000 ohm . cm2. When the monolayers were incubated at 37 degrees C without Ca2+, the intercellular junctions opened and the transmonolayer resistance dropped to the value of a bare filter, i.e., less than 40 ohm . cm2. When Ca2+ was restored, the cell junctions resealed and the resistance recovered rapidly. Polyclonal antibodies raised against intact MDCK cells inhibited the Ca2+-dependent recovery of electrical resistance when applied to monolayers that had been opened by Ca2+ removal. Cross-linking of cell surface molecules was not required because monovalent Fab' fragments also inhibited. In contrast, a variety of other antibodies that recognize specific proteins on the MDCK cell surface failed to inhibit the recovery of resistance. Monoclonal antibodies have been raised and screened for their ability to inhibit resistance recovery. One such monoclonal antibody has been obtained that stained the lateral surface of MDCK cells. This antibody, rr1, recognized a 118-kD polypeptide in MDCK cell extracts and an 81-kD fragment released from the cell surface by trypsinization in the presence of Ca2+. Sequential immunoprecipitation with antibody rr1 and a monoclonal antibody to uvomorulin showed that this polypeptide is related to uvomorulin. The role of uvomorulin-like and liver cell adhesion molecule (L-CAM)-like polypeptides in the establishment of the epithelial occluding barrier is discussed.  相似文献   

9.
Recognizing that uterine stromal cells regulate several uterine epithelial cell function(s), the current study was undertaken to more fully define cell-cell communication in the uterus and to examine the role of uterine stromal cells in regulating epithelial cell monolayer integrity and cytokine release. Uterine epithelial and stromal cells from adult intact mice were isolated and cultured separately on cell culture inserts and/or in culture plates. Epithelial cells, which reach confluence as indicated by high transepithelial resistance (TER > 1000 ohms/well), preferentially release transforming growth factor-beta (TGFbeta) into the basolateral chamber ( approximately 70% > apical) and tumor necrosis factor-alpha (TNFalpha) into the apical compartment ( approximately 30% > basolateral). When epithelial cells on cell culture inserts were transferred to plates containing stromal cells, coculture for 24-48 h increased epithelial cell TER ( approximately 70% higher than control) and decreased TNFalpha release into both the apical and basolateral chambers ( approximately 30%-50%). In contrast, TGFbeta release was not affected by the presence of stromal cells. In other studies, the effects of stromal cells on epithelial cell TER and TNFalpha release persisted for 5-7 days following the removal of stromal cells and were also seen in coculture studies in which conditioned stromal media (CSM) was placed in the basolateral chamber. These studies indicate that uterine stromal cells produce a soluble factor(s) that regulates epithelial cell TER and release of TNFalpha without effecting TGFbeta release. These results suggest that uterine stromal cells communicate with epithelial cells via a soluble factor(s) to maintain uterine integrity and epithelial secretory function.  相似文献   

10.
S J Rich  W J Armitage 《Cryobiology》1991,28(4):314-326
Corneas must first be equilibrated with multimolar concentrations of cryoprotectants if the formation of ice during cryopreservation is to be avoided by vitrification at practicable cooling rates. Rabbit corneas were exposed to equimolar mixtures of the cryoprotectants propane-1,2-diol and glycerol in a Hepes-buffered Ringer's solution containing glutathione, adenosine, 5 mmol/liter sodium bicarbonate, and 6% w/v bovine serum albumin. Endothelial function was assessed by monitoring its ability to control stromal hydration during perfusion of the endothelial surface at 34 degrees C for 6 h. Endothelial morphology was observed by specular microscopy during perfusion and by scanning electron microscopy after perfusion. Endothelial pump activity and structural integrity of the endothelial layer were demonstrated after 20 min exposure at 4 degrees C to a total concentration of 1.4 mol/liter cryoprotectant (i.e., 0.7 mol/liter propane-1,2-diol + 0.7 mol/liter glycerol). Exposure to 2.0 and 3.4 mol/liter cryoprotectant for 20 min at 4 degrees and -5 degrees C, respectively, resulted in initial endothelial damage; but this repaired and a functioning endothelial pump was subsequently demonstrated. Although exposure to 4.1 mol/liter cryoprotectant for 10 min at -10 degrees C caused irreparable damage to 2/4 corneas, reduced dilution temperatures together with increased dilution time allowed exposure to 4.8 and 5.5 mol/liter cryoprotectant with retention of endothelial pump activity. Exposure to 6.1 mol/liter cryoprotectant for 10 min at -15 degrees C caused endothelial damage which was not mitigated by the presence of 2.5% w/v chondroitin sulfate. Endothelial function may be improved by further modification of addition and dilution protocols or by exposure to the cryoprotectants at lower temperatures.  相似文献   

11.
Rotaviruses infect epithelial cells of the small intestine, but the pathophysiology of the resulting severe diarrhea is incompletely understood. Histological damage to intestinal epithelium is not a consistent feature, and in vitro studies showed that intestinal cells did not undergo rapid death and lysis during viral replication. We show that rotavirus infection of Caco-2 cells caused disruption of tight junctions and loss of transepithelial resistance (TER) in the absence of cell death. TER declined from 300 to 22 Omega. cm(2) between 8 and 24 h after infection and was accompanied by increased transepithelial permeability to macromolecules of 478 and 4,000 Da. Distribution of tight junction proteins claudin-1, occludin, and ZO-1 was significantly altered during infection. Claudin-1 redistribution was notably apparent at the onset of the decline in TER. Infection was associated with increased production of lactate, decreased mitochondrial oxygen consumption, and reduced cellular ATP (60% of control at 24 h after infection), conditions known to reduce the integrity of epithelial tight junctions. In conclusion, these data show that rotavirus infection of Caco-2 intestinal cells altered tight junction structure and function, which may be a response to metabolic dysfunction.  相似文献   

12.
The freezing of a living cell involves a complex physicochemical process of heat and water transport between the cell and its surrounding medium. Embryos survive cryopreservation only in the presence of a cryoprotectant in concentrations between 1 and 2M. During the addition and dilution of a permeating cryoprotectant, the cell undergoes osmotic changes in cell size. As a consequence, if the addition or particularly the dilution are carried out inappropriately, the viability of cells can be affected. Equations which model the influx and efflux of cryoprotectants in cells can be used to calculate the optimum and most practical addition and removal method. However, the equations require the permeability coefficient of the cryoprotectant, a quantity that has only experimentally determined for a few of the developmental stages of two species.  相似文献   

13.
Apparently conflicting observations indicated that protein kinase C both may block and support the assembly of tight junctions. We therefore tested the hypothesis that different isoenzymes antagonistically affect tight junction proteins and function. Thus, by using specific inhibitors we investigated the involvement of conventional and novel protein kinase C of kidney tubule cells in tight junction assembly. In low Ca2+ medium, the application of pan-protein kinase C inhibitor GF-109203X blocked the formation of tight junctions induced by protein kinase C agonist diacyglycerol. G?6976, inhibitor of conventional protein kinase C, promoted the formation of tight junctions and occludin phosphorylation in cells cultivated in low Ca2+ medium and attenuated the disruption of tight junction complex induced by the switch to low Ca2+ medium. In addition, G?6976 accelerated the occludin phosphorylation and the formation of tight junction barrier during assembly of tight junctions induced by Ca2+ re-addition. This phosphorylation was accompanied by accelerated occludin incorporation into newly forming tight junctions and by reducing the paracellular permeability. In contrast, inhibitor of novel protein kinase C rottlerin blocked the occludin phosphorylation and the formation of tight junction barrier, both caused by re-addition of normal Ca2+ medium. It is concluded that the conventional protein kinase C alpha participates in tight junction disassembly while the novel protein kinase C epsilon plays a role in tight junction formation of kidney epithelial cells. The discovered antagonism contributes to a better understanding of the regulation of the structure and function of tight junctions and hence to that of the epithelial barrier.  相似文献   

14.
High concentrations of membrane permeable cryoprotectants are necessary to protect human polymorphonuclear leukocytes from osmotic stress injury during freezing, but there are reports that some cryoprotectants are chemically toxic. Cells were exposed to various concentrations of glycerol, dimethyl sulfoxide, or ethylene glycol for 5 min to 2 hr at 37, 22 or 0 degree C, adding or removing the cryoprotectant either slowly or rapidly. Assays included cell number recovery, membrane integrity, phagocytosis, microbicidal ability, and chemotaxis. We conclude that (1) 1 and 2 M concentrations generally are not toxic if they are added and removed slowly at 22 degrees C; (2) addition and removal of glycerol at 0 degree C was injurious even at 1 M; (3) slow addition and removal allowed better recovery than rapid addition or removal; (4) salt concentration in cryoprotectant solutions should be adjusted to isotonic on the basis of moles per liter of solution, rather than moles per kilogram of water; (5) the toxicity reported by other investigators can be largely explained by osmotic stress or dilution shock rather than chemical toxicity; and (6) ethylene glycol is the easiest cryoprotectant to add to and remove from these cells.  相似文献   

15.
Tian P  Legge M 《Cryobiology》2010,61(3):357-359
Previous immunolocalisation studies using intact cells have identified modification of the cytoskeleton by cryoprotectants. In the present study we have used a proteomics approach to directly resolve the interactive effects of 3T3-L1cells exposed to two cryoprotectants, dimethyl sulphoxide (Me(2)SO) and 1,2-propanediol (PROH) in 5,10, 20 and 50(v/v) percent solutions, respectively. Two-dimensional protein electrophoresis and Western blot analysis of the cell extracts identified a range of immunoreactive actin fragments with varying molecular weights and isoelectric points at all cryoprotectant concentrations. The addition of either 10mM l-cysteine or reduced glutathione to the cells prior to cryprotectant exposure modified the actin fragmentation. In this preliminary report, we have provided direct evidence of actin fragmentation when exposed to cryoprotectants and have demonstrated that the use of redox agents can modify the cryprotectant action.  相似文献   

16.
17.
18.
Drug metabolism and viability studies in cryopreserved rat hepatocytes   总被引:1,自引:0,他引:1  
Rat hepatocytes were cryopreserved optimally by freezing them at 1 degrees C/min to -80 degrees C in cryoprotectant medium containing either 20% (v/v) dimethylsulfoxide (Me2SO) and 25% (v/v) fetal calf serum in Leibowitz L15 medium (Me2SO cryoprotectant) or 25% (v/v) vitrification solution (containing Me2SO, acetamide, propylene glycol and polyethylene glycol) in Leibowitz L15 medium (VS25). The VS25 solution was superior for maintaining viability during short-term storage (24-48 hr) but was slightly toxic during longer storage periods (7 days). Although thawed cells were 40-50% viable on ice after cryopreservation, their viability fell rapidly during incubation in suspension at 37 degrees C. This decline in viability occurred more rapidly after freezing in Me2SO cryoprotectant than in VS25 and was associated with extensive intracellular damage and cell swelling. The loss in viability at 37 degrees C does not appear to be due to ice-crystal damage as it occurred in cells stored at -10 degrees C (above the freezing point of the cryoprotectants) and it may be due to temperature/osmotic shock. Both cryoprotectant media were equally efficient at preserving enzyme activities in the hepatocytes over 7 days at -80 degrees C. Cytochrome P450 and reduced glutathione content and the activities of the microsomal enzymes responsible for aminopyrine N-demethylation and epoxide hydrolysis were well maintained over 7 days storage. In contrast, the cytosolic enzymes glutathione-S-transferase and glutathione reductase were markedly labile during cryopreservation. Cytosolic enzymes may be more susceptible to ice-crystal damage, whereas the microsomal membrane may protect the enzymes which are embedded in it.  相似文献   

19.
Etk/Bmx is a member of the Tec family of cytoplasmic non-receptor tyrosine kinases known to express in epithelial cells. We demonstrate herein that Etk activation in stably Etk-transfected epithelial Pa-4 cells resulted in a consistently increased transepithelial resistance (TER). After 24 h of hypoxic (1% O(2)) exposure, the TER and equivalent active ion transport rate (I(eq)) were reduced to <5% of the normoxia control in Pa-4 cells, whereas both TER and I(eq) were maintained at comparable and 60% levels, respectively, relative to their normoxic controls in cells with Etk activation. Moreover, Pa-4 cells exhibited an abundant actin stress fiber network with a diffuse distribution of beta-catenin at the cell periphery. By contrast, Etk-activated cells displayed a redistribution of actin to an exclusively peripheral network, with a discrete band of beta-catenin also concentrated at the cell periphery, and an altered occludin distribution profile. On the basis of these findings, we propose that Etk may be a novel regulator of epithelial junctions during physiological and pathophysiological conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号