首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of mutations rad201, mei-9, and mei-41on cell sensitivity to gamma-radiation in Drosophilaoogenesis were studied. Females of the control (Oregon R) and mutant strains were irradiated at a dose of 15 Gy. For 9 days after the irradiation, the number of eggs in consecutive day batches, the frequency of dominant lethals (DLs) among the eggs, and the cytologically recorded distribution of oocytes for stages of their development, and the frequency of egg chamber degeneration in female ovaries were estimated. As a result of joint analysis of the data, different oogenesis stages were characterized with regard to the frequency of two radiation-induced events: appearance of DLs in oocytes and degeneration of egg chambers due to apoptosis of nurse cells. It was shown that the mutations affect these parameters only at particular stages of early oogenesis, at which previtellogenetic growth of egg follicles and meiotic recombination in oocytes occur. Mutation rad201 G1increased the frequency of DLs and egg chamber degeneration, mei-41 D5affected only the DL frequency, and mei-9 a, in addition to enhancing the chamber degeneration frequency, promoted radiation rescue of some oocytes from the DL induction.  相似文献   

2.
Summary The frequency of intra- and interchromosomal recombination was determined in RAD18 and rad18 deletion and rad18-3 mutant strains. It was found that spontaneous interchromosomal recombination at trp5, his1, ade2, and MAT was elevated 10- to 70-fold in the rad18-3 and rad18 mutants as compared to the RAD + strains. On the other hand the frequencies of spontaneous intrachromosomal recombination for the his33, his35 and the his4C , his4A duplications and for heterothallic mating type switching were only marginally elevated in the rad18 deletion mutant, and recombination between ribosomal DNA repeats was only 2-fold elevated in the rad18-3 mutant. These differences may be due to a haploid versus diploid specific difference. However interchromosomal recombination was elevated 40-fold and intrachromosomal recombination was only marginally (1.5-fold) elevated in a diploid homozygous for rad18, arguing against a haploid versus diploid specific difference. Possible explanations for the difference in the elevated levels of intra- versus interchromosomal spontaneous recombination are discussed.  相似文献   

3.
Summary Excision of pyrimidine dimers and interstrand DNA crosslinks was examined in the deletion mutants rad7-1, rad23-1, and rad7-1 rad23-1. These mutants remove pyrimidine dimers and crosslinks much less efficiently than the RAD + strains; only 30–60% of pyrimidine dimers and 25–40% of crosslinks are removed even after prolonged incubation. The rad7 and rad23 mutations may represent defects in protein factors which increase the efficiency of the nicking enzyme complex or make chromatin more accessible to the nicking activity.  相似文献   

4.
Modification of tyrosine (TyrOH) is used as a marker of oxidative and nitrosative stress. 3,3′-Dityrosine formation, in particular, reflects oxidative damage and results from the combination of two tyrosyl phenoxyl radicals (TyrO). This reaction is in competition with reductive processes in the cell which ‘repair’ tyrosyl radicals: possible reductants include thiols and ascorbate. In this study, a rate constant of 2 × 106 M−1 s−1 was estimated for the reaction between tyrosyl radicals and glutathione (GSH) at pH 7.15, generating the radicals by pulse radiolysis and monitoring the tyrosyl radical by kinetic spectrophotometry. Earlier measurements have suggested that this ‘repair’ reaction could be an equilibrium, and to investigate this possibility the reduction (electrode) potential of the (TyrO,H+/TyrOH) couple was reinvestigated by observing the fast redox equilibrium with the indicator 2,2′-azinobis(3-ethylbenzothiazoline-6-sulphonate). Extrapolation of the reduction potential of TyrO measured at pH 9–11 indicated the mid-point reduction potential of the tyrosyl radical at pH 7, Em7(TyrO,H+/TyrOH) = 0.93 ± 0.02 V. This is close to the reported reduction potential of the glutathione thiyl radical, Em7 = 0.94 ± 0.03 V, confirming the ‘repair’ equilibrium constant is of the order of unity and suggesting that efficient reduction of TyrO by GSH might require removal of thiyl radicals to move the equilibrium in the direction of repair. Loss of thiyl radicals, facilitating repair of TyrO, can arise either via conjugation of thiyl with thiol/thiolate or oxygen, or unimolecular transformation, the latter important at low concentrations of thiols and oxygen.  相似文献   

5.
The dynamics of superoxide anion (O2) in vivo remain to be clarified because no appropriate method exists to directly and continuously monitor and evaluate O2 in vivo. Here, we establish an in vivo method using a novel electrochemical O2 sensor. O2 generated is measured as a current and evaluated as a quantified partial value of electricity (Qpart), which is calculated by integration of the difference between the baseline and the actual reacted current. The accuracy and efficacy of this method were confirmed by dose-dependent O2 generation in xanthine–xanthine oxidase in vitro in phosphate-buffered saline and human blood. It was then applied to endotoxemic rats in vivo. O2 current began to increase 1 h after lipopolysaccharide, and Qpart increased significantly for 6 h in endotoxemic rats, in comparison to sham-treated rats. These values were attenuated by superoxide dismutase. The generation and attenuation of O2 were indirectly confirmed by plasma lipid peroxidation with malondialdehyde, endothelial injury with soluble intercellular adhesion molecule-1, and microcirculatory dysfunction. This is a novel method for measuring O2 in vivo and could be used to monitor and treat the pathophysiology caused by excessive O2 generation in animals and humans.  相似文献   

6.
Summary We studied the repair of double-strand breaks (DSB) in plasmid DNA introduced into haploid cells of the yeast Saccharomyces cerevisiae. The efficiency of repair was estimated from the frequency of transformation of the cells by an autonomously replicated linearized plasmid. The frequency of lithium transformation of Rad+ cells was increased greatly (by 1 order of magnitude and more) compared with that for circular DNA if the plasmid was initially linearized at the XhoI site within the LYS2 gene. This effect is due to recombinational repair of the plasmid DNA. Mutations rad52, rad53, rad54 and rad57 suppress the repair of DSB in plasmid DNA. The kinetics of DSB repair in plasmid DNA are biphasic: the first phase is completed within 1 h and the second within 14–18 h of incubating cells on selective medium.  相似文献   

7.
8.
The effect of Drosophilamutation rad201 G1together with mutations mei-41 D5and mei-9 aon the sensitivity of oocytes to induction of dominant lethals (DLs) was studied. To this end, the frequencies of spontaneous and gamma-radiation-induced DLs in consecutive egg batches of females carrying double or single mutations were estimated. Since the effects of the mutations examined are expressed only at the previtellogenetic stages of oogenesis, only newly hatched (0–5-hour-old) females, whose oocytes did not develop farther than stage 7, were irradiated. The results obtained indicated that in intact and irradiated oocytes of double mutants mei-9 a rad201 G1and mei-41 D5 rad201 G1, mutation rad201 G1epistatically suppresses the mutations of the both meigenes.  相似文献   

9.
Nitrogen dioxide (NO2) is an important oxidant molecule in biology that is produced by several biological processes, and it is also an important air pollutant. It can oxidize proteins and lipids with important consequences on their biological functions. Despite its relevance, the interaction of NO2 with the cell barrier, the lipid membrane, is poorly understood. For instance, can lipid membranes limit NO2 diffusion? To estimate the permeability of lipid membranes to NO2 it is necessary to learn more about its solubility in the lipid phase. However, experimental data on NO2 solubility is very limited. To improve our knowledge on this matter, we used a mixed approach consisting in calculating the solubility of NO2 and related diatomic and triatomic gases (NO, O2, CO2, etc.) in different solvents using quantum calculations and Tomasi’s Polarizable Continuum Model and validating and correcting these results using experimental data available for the related gases. This approach led to an estimated partition coefficient for NO2 of 2.7 between n-octanol and water, and 1.5 between lipid membranes and water, meaning that NO2 is a moderately hydrophobic molecule (less than NO, more than CO2). Based on the solubility-diffusion permeability theory, the permeability coefficient was estimated to be 5 cm s−1, up to 4000 times higher than that of peroxynitrous acid. It is concluded that lipid membranes are not significant barriers to NO2 transport.  相似文献   

10.
11.
The present study investigates cadmium (Cd) ability to enhance superoxides (O2) and nitric oxide (NO) production (as nitrites) in haemocytes of mussel Mytilus galloprovincialis as well as the possible involvement of Na+/H+ exchanger (NHE) in the induction of NADPH oxidase and NO synthase activity. PMA, a well-known PKC-mediated NADPH oxidase as well as NO synthase stimulator was also used, in order to verify Cd effects on both O2 and NO generation. According to the results of the present study, micromolar concentrations of Cd (0.05, 5, 10 and 50 μM) seemed to enhance O2 and NO generation in haemocytes of mussels. Moreover, O2 and NO generation in haemocytes exposed to Cd could be enhanced by its ability to induce reactive oxygen species (ROS) but respiratory burst activation as well. Inhibition of NO synthase with 10 μM l-NAME, significantly attenuated Cd ability to enhance O2 production and diminished NO generation, thus leading to the suggestion that Cd toxic effects, started at concentration of 50 μM, could enhance NADPH oxidase and NO synthase stimulation in haemocytes of mussels. NHE seems to play a regulatory role in the induction of either O2 or NO generation in haemocytes exposed to the metal, since its inhibition with the use of 10 μM EIPA significantly decrease both O2 and NO production. The involvement of NHE in the induction of O2 and NO generation, probably via PKC-mediated NADPH oxidase and NO synthase activation, is likely to be crucial to haemocytes exposed to heavy metals, such as Cd.  相似文献   

12.
Summary The following equations represent the influence of the ethanol concentration (E) on the specific growth rate of the yeast cells () and on the specific production rate of ethanol () during the reactor filling phase in fed-batch fermentation of sugar-cane blackstrap molasses: = 0 - k · E and v = v 0 · K/(K +E) Nomenclature E ethanol concentration in the aqueous phase of the fermenting medium (g.L–1) - Em value of E when = 0 or = 0 (g.L–1) - F medium feeding rate (L.h–1) - k empirical constant (L.g–1.h–1) - K empirical constant (g.L–1) - Mas mass of TRS added to the, reactor (g) - Mcs mass of consumed TRS (g) - Me mass of ethanol in the aqueous phase of the fermenting medium (g) - Ms mass of TRS in the aqueous phase of the fermenting medium (g) - Mx mass of yeast cells (dry matter) in the fermenting medium (g) - r correlation coefficient - S TRS concentration in the aqueous phase of the fermenting medium (g.L–1) - Sm TRS concentration of the feeding medium (g.L–1) - t time (h) - T temperature (° C) - TRS total reducing sugars calculated as glucose - V volume of the fermenting medium (L) - V0 volume of the inoculum (L) - X yeast cells concentration (dry matter) in the fermenting medium (g.L–1) - filling-up time (h) - specific growth rate of the yeast cells (h–1) - 0 value of when E=0 - specific production rate of ethanol (h–1) - 0 value of when E=0 - density of the yeast cells (g.L–1) - dry matter content of the yeast cells  相似文献   

13.
Summary In Saccharomyces cerevisiae, a protein was recognized by polyclonal antibodies raised against homogeneous Escherichia coli K12 RecA protein. The cellular level of the yeast protein called RecAsc (molecular weight 44 kDa, pI 6.3), was transiently enhanced after UV irradiation. Protease inhibitors were required to minimize degradation of the RecAsc protein during cell lysis. The RecAsc protein exhibited similar basal levels and similar kinetics of increase after UV irradiation in DNA-repair proficient (RAD +) strains carrying mitochondrial DNA or not (rho 0). This was also true for the following DNA-repair deficient (rad -) strains: rad2-6 rad6-1 rad52-1, a triple mutant blocked in three major repair pathways; rad6-, a mutant containing an integrative deletion in a gene playing a central role in mutagenesis; pso2-1, a mutant that exhibits a reduced rate of mutagenesis and recombination after exposure to DNA cross-linking agents.  相似文献   

14.
Physiological processes are often activated by reactive oxygen species (ROS), such as the superoxide anion (O2) and nitric oxide (NO) produced by cells. We studied the interactions between NO and O2, and their generators (NO synthase, NOS, and a still elusive oxidase), in human spermatozoa during capacitation (transformations needed for acquisition of fertility). Albumin, fetal cord serum ultrafiltrate, and L-arginine triggered capacitation and ROS generation (NO and O2) and superoxide dismutase (SOD) and NOS inhibitors prevented all these effects. Surprisingly, capacitation due to exogenous NO (or O2) was also blocked by SOD (or NOS inhibitors). Probes used were proven specific and innocuous on spermatozoa. Whereas O2 was needed only for 30 min, the continuous NO generation was essential for hours. Capacitation caused a time-dependent increase in protein tyrosine nitration that was prevented by SOD and NOS inhibitors, suggesting that O2 and NO· also act via the formation of ONOO. Spermatozoa treated with NO (or O2) initiated a dose-dependent O2 (or NO) production, providing, for the first time in cells, a strong evidence for a two-sided ROS-induced ROS generation. Data presented show a close interaction between NO and O2 and their generators during sperm capacitation.  相似文献   

15.
Nitric oxide (NO) is a diffusible messenger that conveys information based on its concentration dynamics, which is dictated by the interplay between its synthesis, inactivation and diffusion. Here, we characterized NO diffusion in the rat brain in vivo. By direct sub-second measurement of NO, we determined the diffusion coefficient of NO in the rat brain cortex. The value of 2.2 × 10−5 cm2/s obtained in vivo was only 14% lower than that obtained in agarose gel (used to evaluate NO free diffusion). These results reinforce the view of NO as a fast diffusing messenger but, noticeably, the data indicates that neither NO diffusion through the brain extracellular space nor homogeneous diffusion in the tissue through brain cells can account for the similarity between NO free diffusion coefficient and that obtained in the brain. Overall, the results support that NO diffusion in brain tissue is heterogeneous, pointing to the existence of a pathway that facilitates NO diffusion, such as cell membranes and other hydrophobic structures.  相似文献   

16.
    
DNA replication and DNA repair are essential cell cycle steps ensuring correct transmission of the genome. The feedback replication control system links mitosis to completion of DNA replication and partially overlaps the radiation checkpoint control. Deletion of the chkl/rad27 gene abolishes the radiation but not the replication feedback control. Thermosensitive mutations in the DNA polymerase , cdc18 or cdc20 genes lead cells to arrest in the S phase of the cell cycle. We show that strains carrying any of these mutations enter lethal mitosis in the absence of the radiation checkpoint chk1/rad27. We interpret these data as an indication that an assembled replisome is essential for replication dependent control of mitosis and we propose that the arrest of the cell cycle in the thermosensitive mutants is due to the chk1 +/rad27 + pathway, which monitors directly DNA for signs of damage.  相似文献   

17.
In this study, we examined the mechanisms and kinetic profiles of intracellular nitrosative processes using diaminofluorescein (DAF-2) as a target in RAW 264.7 cells. The intracellular formation of the fluorescent, nitrosated product diaminofluorescein triazol (DAFT) from both endogenous and exogenous nitric oxide (NO) was prevented by deoxygenation and by cell membrane-permeable superoxide (O2) scavengers but not by extracellular bovine Cu,Zn-SOD. In addition, the DAFT formation rate decreased in the presence of cell membrane-permeable Mn porphyrins that are known to scavenge peroxynitrite (ONOO) but was enhanced by HCO3/CO2. Together, these results indicate that nitrosative processes in RAW 264.7 cells depend on endogenous intracellular O2 and are stimulated by ONOO/CO2-derived radical oxidants. The N2O3 scavenger sodium azide (NaN3) only partially attenuated the DAFT formation rate and only with high NO (>120 nM), suggesting that DAFT formation occurs by nitrosation (azide-susceptible DAFT formation) and predominantly by oxidative nitrosylation (azide-resistant DAFT formation). Interestingly, the DAFT formation rate increased linearly with NO concentrations of up to 120–140 nM but thereafter underwent a sharp transition and became insensitive to NO. This behavior indicates the sudden exhaustion of an endogenous cell substrate that reacts rapidly with NO and induces nitrosative processes, consistent with the involvement of intracellular O2. On the other hand, intracellular DAFT formation stimulated by a fixed flux of xanthine oxidase-derived extracellular O2 that also occurs by nitrosation and oxidative nitrosylation increased, peaked, and then decreased with increasing NO, as previously observed. Thus, our findings complementarily show that intra- and extracellular O2-dependent nitrosative processes occurring by the same chemical mechanisms do not necessarily depend on NO concentration and exhibit different unusual kinetic profiles with NO dynamics, depending on the biological compartment in which NO and O2 interact.  相似文献   

18.
Summary Postreplication repair of nuclear DNA was examined in an excision defective haploid strain of yeast lacking mitochondrial DNA (ral 0). The size of the DNA synthesized in cells exposed to various fluences of ultraviolet light (UV) corresponds approximately to the average interdimer distance in the parental DNA. Upon further incubation of cells following exposure to 2.5 J/m2, the DNA increases in size; by 4 h, it corresponds to DNA from uniformly labeled cells. The alkaline sucrose sedimentation pattern of DNA pulse labeled at various times after UV irradiation, for up to 4 h, does not change substantially, indicating that dimers continue to block DNA replication. A significant amount of postreplication repair requires de novo protein synthesis, as determined by its inhibition by cycloheximide. The rad6 mutant does not carry out postreplication repair, the rad18 and rad52 mutants show great inhibition while the rev3 mutation does not affect postreplication repair. Both recombinational and nonrecombinational repair mechanisms may function in postreplication repair and most of postreplication repair is error free.  相似文献   

19.
Scavenging abilities of animal sera against six reactive species (OH, O2, RO, t-BuOO, H3C, and 1O2) were determined with the use of multiple free-radical scavenging (MULTIS) method. Commercially available sera from pig, horse, rabbit, Guinea pig, hamster and chicken were subjected to MULTIS analysis and the results were compared with human specimen. In general, animal sera showed lower scavenging ability against OH and RO radicals than human serum. However, it is noteworthy that rabbit and chicken sera have higher scavenging ability against O2 than others. This is consistent with the known data that superoxide dismutase levels in these sera are high. In addition, we determined the uric acid level in animal sera using the uricase-TOOS method. In chicken serum, uric acid was found to be the major effective component in RO scavenging. This paper is first to quantitatively evaluate antioxidant capacities in animal sera.  相似文献   

20.
Hiroyuki Mino  Shigeru Itoh 《BBA》2005,1708(1):42-49
We investigated a new EPR signal that gives a broad line shape around g=2 in Ca2+-depleted Photosystem (PS) II. The signal was trapped by illumination at 243 K in parallel with the formation of YZ. The ratio of the intensities between the g=2 broad signal and the YZ signal was 1:3, assuming a Gaussian line shape for the former. The g=2 broad signal and the YZ signal decayed together in parallel with the appearance of the S2 state multiline at 243 K. The g=2 broad signal was assigned to be an intermediate S1X state in the transition from the S1 to the S2 state, where X represents an amino acid radical nearby manganese cluster, such as D1-His337. The signal is in thermal equilibrium with YZ. Possible reactions in the S state transitions in Ca2+-depleted PS II were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号