首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ligands binding to the benzodiazepine-binding site in gamma-aminobutyric acid type A (GABA(A)) receptors may allosterically modulate function. Depending upon the ligand, the coupling can either be positive (flunitrazepam), negative (Ro15-4513), or neutral (flumazenil). Specific amino acid determinants of benzodiazepine binding affinity and/or allosteric coupling have been identified within GABA(A) receptor alpha and gamma subunits that localize the binding site at the subunit interface. Previous photolabeling studies with [(3)H]flunitrazepam identified a primary site of incorporation at alpha(1)His-102, whereas studies with [(3)H]Ro15-4513 suggested incorporation into the alpha(1) subunit at unidentified amino acids C-terminal to alpha(1)His-102. To determine the site(s) of photoincorporation by Ro15-4513, we affinity-purified ( approximately 200-fold) GABA(A) receptor from detergent extracts of bovine cortex, photolabeled it with [(3)H]Ro15-4513, and identified (3)H-labeled amino acids by N-terminal sequence analysis of subunit fragments generated by sequential digestions with a panel of proteases. The patterns of (3)H release seen after each digestion of the labeled fragments determined the number of amino acids between the cleavage site and labeled residue, and the use of sequential proteolytic fragmentation identified patterns of cleavage sites unique to the different alpha subunits. Based upon this radiochemical sequence analysis, [(3)H]Ro15-4513 was found to selectively label the homologous tyrosines alpha(1)Tyr-210, alpha(2)Tyr-209, and alpha(3)Tyr-234, in GABA(A) receptors containing those subunits. These results are discussed in terms of a homology model of the benzodiazepine-binding site based on the molluscan acetylcholine-binding protein structure.  相似文献   

2.
6-Methyl-3'-bromoflavone inhibited [(3)H]flunitrazepam binding to the benzodiazepine binding site of the GABA(A) receptor (BDZ-bs) with Ki values between 10 and 50 nM in different brain regions.The GABA ratio of 1.03 for [(3)H]flunitrazepam binding to cerebral cortex, 0.76 for cerebellum, 0.7 for hippocampus, 0.7 for striatum, and 0.8 for spinal cord indicated an antagonistic or weak inverse agonistic profile of 6-methyl-3'-bromoflavone on BDZ-bs. Unlike classical benzodiazepines, it had no anticonvulsant, anxiolytic, myorelaxant, sedative, amnestic or motor incoordination effects. However, it antagonized the muscle relaxant, the sedative effect, and the changes in locomotor activity induced by diazepam. Taken together, these findings suggest that 6-methyl-3'-bromoflavone has an antagonistic profile on the BDZ-bs.  相似文献   

3.
This study was undertaken to investigate the possibility of an allosteric interaction between benzodiazepine receptors and the CNS nucleoside transport system. Irreversible (photoaffinity) labelling of the benzodiazepine receptors in guinea pig cortical membranes resulted in a marked reduction in the binding (Bmax) of both [3H]flunitrazepam (71%) and [3H]ethyl-beta-carboline-3-carboxylate (22%) to the benzodiazepine receptors but had no effect on the binding of [3H]nitrobenzylthioinosine to the nucleoside transport system. Furthermore, although photoaffinity labelling resulted in a significant decrease in the affinities of flunitrazepam (approximately equal to 16-fold) and dipyridamole (approximately equal to sevenfold) for the [3H]Ro 15-1788 binding site of the benzodiazepine receptor complex, the affinities of these compounds for the nucleoside transport system were unaltered. These results suggest that the CNS nucleoside transport system and the benzodiazepine receptor complex are distinct, noninteractive ligand recognition sites.  相似文献   

4.
Avermectin B1a, a macrocyclic lactone anthelmintic agent, causes a concentration-dependent increase of [3H]flunitrazepam binding to membranes from rat cerebellum by increasing the affinity and the number of binding sites. This effect appears to be independent of the concentration of chloride ions. The effects of avermectin B1a occur with high affinity (EC50 = 70 nM), and they persist after washing of the membranes with drug-free buffer. Pretreatment of the membranes with Triton X-100 completely abolishes the action of avermectin B1a. GABA and the GABA-mimetic compounds piperidine-4-sulfonic acid and THIP diminish the effects of avermectin B1a on benzodiazepine receptor binding in a bicuculline-methiodide-sensitive mode. In addition, the stimulation of [3H]flunitrazepam binding by avermectin B1a is decreased by the pyrazolopyridines etazolate and cartazolate. These observations suggest that avermectin B1a stimulates benzodiazepine receptor binding by acting on a modulatory site which is independent of the GABA recognition site and of the drug receptor for the pyrazolopyridines, but which is in functional interaction with these sites.  相似文献   

5.
Binding of the benzodiazepine inverse agonist [3H]methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate [( 3H]DMCM) and the agonist [3H]flunitrazepam [( 3H]FNZ) was compared in rat cortical membranes. Halide ions enhanced [3H]DMCM binding three- to fourfold, increasing both the apparent affinity and the number of binding sites for this radioligand. The effect was present at both 0 and 37 degrees C. In contrast, the magnitude of halide stimulation of [3H]FNZ binding was much smaller, resulting solely from an increase in the apparent affinity for this radioligand, and was not observed at 37 degrees C. The potencies but not the efficacies of a series of anions to stimulate both [3H]DMCM and [3H]FNZ binding to benzodiazepine receptors were highly correlated with their relative permeabilities through gamma-aminobutyric acid (GABA)-gated chloride channels. Two stress paradigms (10 min of immobilization or ambient-temperature swim stress), previously shown to increase significantly the magnitude of halide-stimulated [3H]FNZ binding, did not significantly affect [3H]DMCM binding. Phospholipase A2 treatment of cortical membrane preparations was equipotent in preventing the stimulatory effect of chloride on both [3H]DMCM and [3H]FNZ binding. These data strongly suggest that anions modify the binding of [3H]DMCM and [3H]FNZ by acting at a common anion binding site that is an integral component of the GABA/benzodiazepine receptor chloride channel complex.  相似文献   

6.
Polyclonal antibodies have been raised against the GABA/benzodiazepine receptor purified to homogeneity from bovine cerebral cortex in deoxycholate and Triton X-100 media. Radioimmunoassay was applied to measure specific antibody production using the 125I-labelled gamma-aminobutyric acid (GABA)/benzodiazepine receptor as antigen. The antibodies specifically immunoprecipitated the binding sites for [3H]muscimol and for [3H]flunitrazepam from purified preparations. In addition, when a 3-[(3-cholamidopropyl)dimethylammonio] 1-propanesulphonate (CHAPS) extract of bovine brain membranes was treated with the antibodies, those sites as well as the [3H]propyl-beta-carboline-3-carboxylate binding, the [35S]t-butylbicyclophosphorothionate binding (TBPS), the barbiturate-enhanced [3H]flunitrazepam binding, and the GABA-enhanced [3H]flunitrazepam binding were all removed together into the immunoprecipitate. Western blot experiments showed that these antibodies recognise the alpha-subunit of the purified GABA/benzodiazepine receptor. These results further support the existence in the brain of a single protein, the GABAA receptor, containing a set of regulatory binding sites for benzodiazepines and chloride channel modulators.  相似文献   

7.
Polyclonal antibodies were raised to a synthetic peptide whose amino acid sequence was derived from the novel gamma-aminobutyric acidA (GABAA) receptor subunit, gamma 2. These anti-gamma 2 1-15 Cys antibodies reacted specifically with the GABAA receptor purified from adult bovine cerebral cortex in an enzyme-linked immunosorbent assay. Anti-gamma 2 1-15 Cys antibodies specifically immunoprecipitated [3H]flunitrazepam photoaffinity-labeled native receptor in parallel with anti-alpha 1 324-341 antibodies. Immunoprecipitation of sodium dodecyl sulphate (SDS) denatured photoaffinity-labeled receptor by anti-gamma 2 1-15 Cys antibodies, however, resulted in a significant decrease in the maximum percentage of radioactivity immunoprecipitated compared to that by anti-alpha 1 324-341 antibodies. In immunoblots, anti-gamma 2 1-15 Cys antibodies reacted with a broad band in the molecular weight range Mr 43,000-49,000 which was distinct from that recognized by anti-alpha 1 324-341 antibodies. The anti-alpha 1 324-341 immunoreactive band was the main subunit irreversibly photoaffinity labeled by [3H]flunitrazepam, i.e. Mr 53,000. These results demonstrate for the first time that the gamma 2 subunit is an integral component of the GABAA receptor but it is the alpha 1 subunit that is the principal site of the agonist benzodiazepine photoaffinity labeling reaction. It supports a role of both the alpha 1 and gamma 2 polypeptides in the formation of the central benzodiazepine binding site within a GABAA receptor oligomer.  相似文献   

8.
Six polychlorinated convulsant insecticides that potently inhibit t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to rat brain membranes also potentiate the protective effect of NaCl (200 mM) against heat inactivation of [3H]flunitrazepam binding sites on the same membranes. Similar effects were obtained with all "cage" convulsants tested. The rank order of potencies as heat protection potentiators was similar to the rank order of potencies as inhibitors of [35S]TBPS binding (alpha-endosulfan greater than endrin greater than dieldrin greater than toxaphene greater than lindane). alpha-Endosulfan and endrin are more potent in both respects than any previously reported picrotoxin-like (cage) convulsant, but are much less toxic to mammals. The greatly reduced toxicities of alpha-endosulfan and endrin in mammals may reflect partial gamma-aminobutyric acid (GABA)-neutral properties of these compounds. Time courses of heat inactivation of [3H]flunitrazepam binding sites in the presence of 200 mM NaCl plus saturating concentrations of endrin or picrotoxin revealed monophasic components constituting about 88% of the binding sites, suggesting that virtually all [3H]flunitrazepam binding sites are coupled to picrotoxin binding sites in the GABA/benzodiazepine/picrotoxin receptor complex. Protection against heat inactivation constitutes a useful tool for characterizing the various allosterically linked binding sites in neurotransmitter receptor complexes.  相似文献   

9.
The effects of preincubating cerebral cortical membranes with phospholipase A2 (PLA2) were examined on radioligand binding to benzodiazepine receptors of the "central" and "peripheral" types. PLA2 (0.005-0.1 U/ml) increased [3H]flunitrazepam and [3H]3-carboethoxy-beta-carboline binding by increasing the apparent affinities of these ligands with no concomitant change in the maximum number of binding sites. In contrast, neither gamma-aminobutyric acid (GABA)-enhanced [3H]flunitrazepam binding nor [3H]Ro 15-1788 binding was altered by preincubation with PLA2 at concentrations as high as 2 U/ml. Both pyrazolopyridine (SQ 65,396)- and barbiturate (pentobarbital)-enhanced [3H]flunitrazepam binding and [35S]t-butylbicyclophosphorothionate (TBPS) binding were markedly reduced by as little as 0.0025-0.005 U/ml of PLA2. These findings suggest that PLA2 inactivates the TBPS binding site on the benzodiazepine-GABA receptor chloride ionophore complex, which results in a selective loss of allosteric "regulation" between the components of this complex. PLA2 also reduced the apparent affinity of [3H]Ro 5-4864 to peripheral-type benzodiazepine receptors in cerebral cortical, heart, and kidney membranes, but increased the number of [3H]PK 11195 binding sites with no change in apparent affinity. These data demonstrate that PLA2 can differentially affect the lipid microenvironment of "central" and "peripheral" types of benzodiazepine receptors.  相似文献   

10.
The recently discovered benzodiazepine antagonist Ro 15-1788 was characterized in binding studies, and its potency and selectivity were determined in vivo by interaction with drug-induced changes in dopamine turnover and cerebellar cGMP level. Ro 15-1788 reduced [3H]flunitrazepam binding in the brain in vivo with a potency similar to that of diazepam and effectively inhibited [3H]diazepam binding in vitro (IC50 = 2.3 +/- 0.6 nmol/liter). [3H]Ro 15-1788 bound to tissue fractions of rat cerebral cortex with an apparent dissociation (KD) of 1.0 +/- 0.1 nmol/liter. The in vitro potency of various benzodiazepines in displacing [3H]Ro 15-1788 from its binding site was of the same rank order as found previously in [3H]diazepam binding. Autoradiograms of [3H]Ro 15-1788 binding in sections of rat cerebellum showed the same distribution of radioactivity as with [3H]flunitrazepam. The attenuating effect of diazepam on the chlorpromazine- or stress-induced elevation of homovanillic acid in rat brain was antagonized by Ro 15-1788. Among a series of compounds which either decreased or increased the rat cerebellar cGMP level, only the effect of benzodiazepine receptor ligands (diazepam, zopiclone, CL 218 872) was antagonized by Ro 15-1788. Thus, Ro 15-1788 is a selective benzodiazepine antagonist acting at the level of the benzodiazepine receptor in the central nervous system. Peripheral benzodiazepine binding sites in kidney and schistosomes were not affected by Ro 15-1788.  相似文献   

11.
The gamma-aminobutyric acid/benzodiazepine receptor from bovine cerebral cortex was solubilized with sodium deoxycholate and purified by affinity chromatography on benzodiazepine-agarose and ion exchange chromatography. The benzodiazepine binding protein was enriched 1800-fold. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and dithiothreitol showed the presence of two major bands of Mr = 57,000 and 53,000. [3H]Flunitrazepam, after UV irradiation, was incorporated irreversibly into both bands of the isolated protein. A high affinity binding site for gamma-aminobutyric acid was co-purified with the benzodiazepine binding site and the two sites were shown to reside on the same physical structure. The dissociation constants were 10 +/- 4 nM for [3H] flunitrazepam and 12 +/- 3 nM for the gamma-aminobutyric acid agonist [3H]muscimol. The maximum specific activity for [3H] muscimol binding was 4.3 nmol/mg of protein. The ratio of [3H]muscimol to [3H]flunitrazepam binding sites was between 3 and 4. Gel filtration and sucrose density gradient sedimentation studies gave a Stokes radius of 7.3 +/- 0.5 nm and a sedimentation coefficient of 11.1 +/- 0.3 S, respectively. The purified complex had a pharmacological profile that corresponds to the receptor specificity found in membranes and crude soluble extracts.  相似文献   

12.
We have solubilised the gamma-aminobutyric acid/benzodiazepine (GABA/BDZ) receptor from rat cerebellum using 3-[(3-cholamidopropyl)dimethylammonio] 1-propane sulphonate (CHAPS) in the presence of a natural brain lipid extract and cholesteryl hemisuccinate. The soluble material shows a homogeneous [3H]flunitrazepam ([3H]FNZ) binding population with an equilibrium dissociation constant (KD) of 4.4 +/- 0.2 nM compared to a KD of 2.3 +/- 0.2 nM in cerebellar synaptosomal membranes. The receptor complex in solution retains the characteristic facilitation of [3H]flunitrazepam binding induced by GABA, the pyrazolopyridine cartazolate, and the depressant barbiturate pentobarbital to the same extent as that observed in synaptosomal membranes. Furthermore, these responses are retained both quantitatively and qualitatively when this preparation is stored for 48 h at 4 degrees C. This is contrary to the results obtained with a CHAPS-soluble preparation including asolectin in which these responses are anomalous and extremely labile on storage.  相似文献   

13.
The effect of three compounds known to allosterically modulate binding to the GABA/benzodiazepine/picrotoxin receptor complex on 4-hydroxy-2,3 [3H]butyric acid (GHB) binding was investigated. Pentobarbital, pentylenetetrazole, and picrotoxin enhanced [3H]GHB binding in a dose dependent fashion. Pentobarbital enhanced 4-hydroxy-2,3 [3H]butyric acid binding was associated with an increase in Bmax while pentylenetetrazole and picrotoxin altered the affinity of GHB for its binding site producing a decrease in Kd. These findings suggest that the GHB and GABA receptor complex may share certain moieties in common.  相似文献   

14.
The aim of this study was to better understand the mechanisms that underlie adaptive changes in GABAA receptors following their prolonged exposure to drugs. Exposure (48 h) of human embryonic kidney (HEK) 293 cells stably expressing recombinant alpha1beta2gamma2S GABAA receptors to flumazenil (1 or 5 microM) in the presence of GABA (1 microM) enhanced the maximum number (Bmax) of [3H]flunitrazepam binding sites without affecting their affinity (Kd). The flumazenil-induced enhancement in Bmax was not counteracted by diazepam (1 microM). GABA (1 nM-1 mM) enhanced [3H]flunitrazepam binding to membranes obtained from control and flumazenil-pretreated cells in a concentration-dependent manner. No significant differences were observed in either the potency (EC50) or efficacy (Emax) of GABA to potentiate [3H]flunitrazepam binding. However, in flumazenil pretreated cells the basal [3H]flunitrazepam and [3H]TBOB binding were markedly enhanced. GABA produced almost complete inhibition of [3H]TBOB binding to membranes obtained from control and flumazenil treated cells. The potencies of GABA to inhibit this binding, as shown by a lack of significant changes in the IC50 values, were not different between vehicle and drug treated cells. The results suggest that chronic exposure of HEK 293 cells stably expressing recombinant alpha1beta2gamma2S GABAA receptors to flumazenil (in the presence of GABA) up-regulates benzodiazepine and convulsant binding sites, but it does not affect the allosteric interactions between these sites and the GABA binding site. Further studies are needed to elucidate these phenomena.  相似文献   

15.
Antibodies raised against the synthetic peptide NH2-QKSDDDYEDYASNKTC-COOH (gamma 2 1-15 Cys), which corresponds to the N-terminal amino acid sequence with a C-terminal cysteine of the human gamma 2 subunit of the gamma-aminobutyric acidA (GABAA) receptor, were used to study the quantitative immunoprecipitation of agonist benzodiazepine binding sites from bovine brain. Anti-gamma 2 1-15 Cys antibodies were found to immunoprecipitate specifically in parallel [3H]flunitrazepam- and [3H]muscimol-reversible binding sites in a dose-dependent manner. The maximum percentages of [3H]flunitrazepam binding sites immunoprecipitated from detergent extracts of bovine cerebral cortex, cerebellum, and hippocampus were 68, 77, and 83%, respectively. Immunoprecipitation studies with anti-alpha 1 324-341 antibodies carried out in parallel with anti-gamma 2 1-15 Cys antibodies provided evidence for the promiscuity of the gamma 2 subunit within native GABAA receptors. These results substantiate the association of the gamma 2 polypeptide with native GABAA receptors.  相似文献   

16.
The effects of the GABA agonist, muscimol on [3H]flunitrazepam binding were examined in cerebellum and hippocampus regions proposed to contain different populations of benzodiazepine binding site subtypes. Quantitative analysis was made of the contribution of different components of [3H]flunitrazepam binding by utilising the selective affinities of propyl β-carboline-3-carboxylate for these sites. The influence of muscimol on each of these components was determined and the results provide clear evidence that GABA receptors interact with only some subtypes of benzodiazepine binding sites; for example, whilst the cerebellar site and the low affinity hippocampal site are influenced, the high affinity site in hippocampus appears to be quite unaffected.  相似文献   

17.
The binding of [3H]flunitrazepam to benzodiazepine receptors in synaptic membranes and a digitonin-solubilized receptor fraction of rat brain is increased by avermectin B1a and gamma-aminobutyric acid (GABA). The effects of avermectin B1a and GABA are both sensitive to inhibition by (+)-bicuculline. Avermectin B1a and GABA both decrease the Kd and increase the Bmax of [3H]flunitrazepam binding to membranes. Kinetic analysis of the binding of [3H]flunitrazepam to rat brain membranes indicates that avermectin B1a and GABA reduce the rate constants of both association and dissociation between the ligand and the receptor. These results suggest a similar mechanism of modulation of benzodiazepine binding by avermectin B1a and GABA. This modulation may involve in interaction among the receptors for benzodiazepine, GABA and avermectin B1a.  相似文献   

18.
The specific binding of [N-methyl-3H]flunitrazepam ([3H]FNZP) to a membrane fraction from the supraoesophageal ganglion of the locust (Schistocerca gregaria) has been measured. The ligand binds reversibly with a KD of 47 nM. The binding is Ca2+-dependent, a property not found for the equivalent binding site in vertebrate brain. The pharmacological characteristics of the locust binding site show similarities to both central and peripheral benzodiazepine receptors in mammals. Thus binding is enhanced by gamma-aminobutyric acid (GABA), a feature of mammalian central receptors, whereas the ligand Ro 5-4864 was more effective in displacing [3H]FNZP than was clonazepam, which is the pattern seen in mammalian peripheral receptors. The locust benzodiazepine binding site was photoaffinity-labelled by [3H]FNZP, and two major proteins of Mr 45K and 59K were specifically labelled. In parallel experiments with rat brain membranes a single major protein of Mr 49K was labelled, a finding in keeping with many reports in the literature. We suggest that the FNZP binding site described here is part of the GABA receptor complex of locust ganglia. The insect receptor appears to have the same general organization as its mammalian counterpart but differs significantly in its detailed properties.  相似文献   

19.
The gamma-aminobutyric-acid-receptor protein complex from rat brain was solubilized in high yield, purified in milligram amounts by benzodiazepine affinity chromatography and used to generate a high-titer rabbit antiserum. High concentrations of Triton X-100 detergent plus KCl solubilized about 90% of the membrane-bound gamma-aminobutyric acid receptor (assayed by [3H]muscimol binding) and benzodiazepine receptor (assayed by [3H]flunitrazepam binding) activities. Both activities were retained on an affinity column using an immobilized benzodiazepine ligand, and most of the column-absorbed receptor could be eluted by a solution of free benzodiazepine plus 4 M urea. The purified protein bound [3H]muscimol and [3H]flunitrazepam with receptor-like pharmacological specificity and specific activities of about 1700 pmol and 700 pmol bound/mg protein, respectively, for the two ligands. This corresponds to a purification of over 600-fold and a near theoretical purity, with a yield of milligram quantities from 100 g brain. Four peptide bands were observed on gel electrophoresis in sodium dodecyl sulfate, with molecular mass values of 31, 47, 52 and 57 kDa. The latter two were most significantly stained, and identified as receptor subunits by photolabeling with [3H]flunitrazepam (52 kDa) and [3H]muscimol (57 kDa), and by reaction on Western blots with monoclonal antibodies to this protein produced by Schoch et al. [(1985) Nature (Lond.) 314, 168-171]. Rabbit antiserum was raised to the purified protein and could, at high dilutions, both coprecipitate soluble gamma-aminobutyric-acid/benzodiazepine-receptor-binding activities and stain the receptor subunits (principally 52-kDa band) on Western blots.  相似文献   

20.
《Life sciences》1987,40(15):1537-1543
The pineal gland and particularly its major hormone, melatonin, may participate in several physiological functions, including sleep promotion, anticonvulsant activity and the modulation of biological rhythms and affective disorders. These effects may be related to an interaction with benzodiazepine receptors, which have been demonstrated to be present in the pineal gland of several species including man. The present study examined the characteristics of benzodiazepine binding site subtypes in the human pineal gland, using [3H] flunitrazepam and [3H] PK 11195 as specific ligands for central and peripheral type benzodiazepine binding sites respectively. Scatchard analysis of [3H] flunitrazepam binding to pineal membrane preparations was linear, indicating the presence of a single population of sites. Clonazepam and RO 15-1788, which have a high affinity for central benzodiazepine binding sites, were potent competitors for [3H] flunitrazepam binding in the human pineal, whereas RO 5-4864 had a low affinity for these sites. Analyses of [3H] PK 11195 binding to pineal membranes also revealed the presence of a single population of sites. RO 5-4864, a specific ligand for peripheral benzodiazepine binding sites was the most potent of the drugs tested in displacing [3H] PK 11195, whereas clonazepam and RO 15-1788 were weak inhibitors of [3H] PK 11195 binding to pineal membranes. Overall, these results demonstrate, for the first time, the coexistence of peripheral and central benzodiazepine binding sites in the human pineal gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号