首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mannans from Saccharomyces cerevisiae mutant strains X2180-1A-5 and 4484-24D-1, both of which were shown to contain small amounts of phosphate (less than 0.2%), were fractionated on a column of diethylaminoethyl-Sephadex into five subfractions designated as fractions I to V. These subfractions contain different amounts of phosphate, ranging from 0.03 to 0.09 (strain X2180-1A-5) and from 0.01 to 0.17% (strain 4484-24D-1). Fractions I to IV from strain X2180-1A-5 showed nearly identical precipitin activities against the homologous anti-whole cell serum, whereas fraction V, containing the largest amount of phosphate and protein among this mannan subfraction series, showed unexpectedly weaker precipitin activity than those of the other fractions. A synthetic mannan consisting or consecutive alpha-1 leads to 6-linked D-mannopyranosyl residues was found to be cross-reactive with all the mannan subfractions of strain X2180-1A-5 against anti-X2180-1A-5 serum. On the other hand, antibody-precipitating activities of the mannan subfractions of the latter strain were proportional to their phosphate content, although the increments of precipitated antibody nitrogen among the subfractions were quite small. However, fraction V of this mannan subfraction series, containing the largest amounts of phosphate and protein, showed lower precipitin activity than did the other four fractions. These findings indicate that mannans containing no phosphate or relatively small amounts of phosphate, such as those investigated in the present study, are less heterogeneous in the densities of the branching moieties than are highly phosphorylated mannans. These findings suggest that the transfer step of mannosyl-1-phosphate into the precursor(s) of the wild-type strain mannans during the biosynthetic process corresponds to the key reaction responsible for the anionic heterogeneity due to the density heterogeneity of the antigenic determinants.  相似文献   

2.
Y Okubo  Y Honma    S Suzuki 《Journal of bacteriology》1979,137(1):677-680
The mannans from Candida albicans strains NIH A-207 (serotype A), NIH B-792 (serotype B), and J-1012 (serotype C) were fractionated on a column of diethylaminoethyl-Sephadex into five subfractions containing different amounts of phosphate. Antibody-precipitating activities of the mannan subfractions of strains NIH A-207 and NIH B-792 were proportional to their phosphate content, while those of strain J-1012 did not show regularly proportional precipitin activity. A similar tendency was also observed in the cross-reaction between the mannan su,fractions of strains NIH A-207 and J-1012 and their heterologous antisera. The mannans of strain NIH B-792 showed lower cross-reactivities against antisera of strains NIH A-207 and NIH B-792, i.e., only two subfractions containing larger amounts of phosphate were able to react with these antisera.  相似文献   

3.
The isolation of phosphomannan-protein complexes from the viable cells of yeast (Y) and mycelial (M) forms of Candida albicans NIH B-792 strain was conducted by treatment with Zymolyase-100T followed by fractional precipitation with cetyltrimethylammonium bromide. The M-form complex was found to contain smaller amount of phosphate (1.3%) than that of the Y-form complex (1.6%). Proton magnetic resonance (PMR) spectra of these complexes indicated that the content of beta-1,2-linked oligomannosyl and nonreducing terminal alpha-1,3-linked mannopyranosyl residues in the M-form complex was lower than that of the Y-form complex. With hot 10 mM HCl, the Y-form complex released a mixture of oligosaccharides ranging from mannose to mannoheptaose, while the M-form complex produced lower oligosaccharides, from mannose to mannotetraose. Upon acetolysis, the acid-modified complex of the M form gave mainly mannotetraose, while that of the Y form produced mainly mannopentaose and mannohexaose in addition to mannotetraose. The average length of branching moieties of the mannan of Y-form cells was therefore longer than that of M-form cells. These results indicate that the Y to M transformation of this C. albicans strain accompanies the suppression of enzyme activity concerning the biosynthesis of mannan such as beta-1,2- and alpha-1,3-mannosyltransferases to synthesize the phosphomannan-protein complex containing mannan moiety with incomplete structure.  相似文献   

4.
We have obtained evidence for two structurally and antigenically different Saccharomyces cerevisiae cell wall mannans. One, which occurs widely and is found in S. cerevisiae strain 238C, is already known to be a neutral mannan which yields mannose, mannobiose, mannotriose, and mannotetraose on acetolysis of the (1 --> 6)-linked backbone. The other, which was found in S. cerevisiae brewer's strains, is a phosphomannan with a structure very similar to that of Kloeckera brevis mannan. S. cerevisiae (brewer's yeast strain) was agglutinated by antiserum prepared against Kloeckera brevis cells. The mannan, isolated from a proteolytic digest of the cell wall of the former, did not react with S. cerevisiae 238C antiserum, whereas it cross-reacted strongly with K. brevis antiserum. Controlled acetolysis cleaved the (1 --> 6)-linkages in the polysaccharide backbone and released mannose, mannobiose, mannotriose, and mannotriose phosphate. Mild acid treatment of the phosphomannan hydrolyzed the phosphodiester linkage, yielding phosphomonoester mannan and mannose. The resulting phosphomonoester mannan reacted with antiserum prepared against K. brevis possessing monoester phosphate groups on the cell surface. alpha-d-Mannose-1-phosphate completely inhibited the precipitin reaction between brewer's yeast mannan and the homologous antiserum. Flocculent and nonflocculent strains of this yeast were shown to have similar structural and immunological properties.  相似文献   

5.
The neutral component of d-mannan of bakers' yeast (Saccharomyces cerevisiae), consisting solely of d-mannose residues, was precipitated with concanavalin A to give four fractions. The first three displayed similar reactivities in quantitative precipitin reaction against concanavalin A and homologous anti-S. cerevisiae serum, but the fourth showed different precipitin curves. Analysis of the fractions by acetolysis indicated structural differences. The different behavior of the last fraction in precipitin reactions could be due to a lower content of branching points, or to shorter chain-lengths.  相似文献   

6.
Structural analysis of the phosphomannan isolated from yeast-form cells of a pathogenic yeast, Candida albicans J-1012 strain, was conducted. Treatment of this phosphomannan (Fr. J) with 10 mM HCl at 100 degrees C for 60 min gave a mixture of beta-1,2-linked manno-oligosaccharides, from tetraose to biose plus mannose, and an acid-stable mannan moiety (Fr. J-a), which was then acetolyzed by means of an acetolysis medium, 100:100:1 (v/v) mixture of (CH3CO)2O, CH3COOH, and H2SO4, at 40 degrees C for 36 h in order to avoid cleavage of the beta-1,2 linkage. The resultant manno-oligosaccharide mixture was fractionated on a column of Bio-Gel P-2 to yield insufficiently resolved manno-oligosaccharide fractions higher than pentaose and lower manno-oligosaccharides ranging from tetraose to biose plus mannose. The higher manno-oligosaccharide fraction was then digested with the Arthrobacter GJM-1 alpha-mannosidase in order to cleave the enzyme-susceptible alpha-1,2 and alpha-1,3 linkages, leaving manno-oligosaccharides containing the beta-1,2 linkage at their nonreducing terminal sites, Manp beta 1----2Manp alpha 1----2Manp alpha 1----2Manp alpha 1----2Man, Manp beta 1----2Manp beta 1----2Manp alpha 1----2Manp alpha 1---- 2Manp alpha 1----2Man, and Manp beta 1----2Manp beta 1----2Manp beta 1----2Manp alpha 1---- 2Manp alpha 1----2Manp alpha 1----2Man. However, the result of acetolysis of Fr. J-a by means of a 10:10:1 (v/v) mixture of (CH3CO)2O, CH3COOH, and H2SO4 at 40 degrees C for 13 h was significantly different from that obtained by the mild acetolysis method; i.e., the amount of mannose was apparently larger than that formed by the mild acetolysis method. In summary, a chemical structure for Fr. J as a highly branched mannan containing 14 different branching moieties was proposed.  相似文献   

7.
Growth of the yeast Pichia pastoris IFP 206 in methanol- and glucose-containing media led respectively to very and weakly flocculent cells. Mannans from both kinds of cells were extracted and compared. Chemical analysis and molecular mass estimation showed some differences between the mannans from very and weakly flocculent cells, especially in quantitative amino acid content. 1H NMR analysis showed that both kinds of mannan contained alpha-1,2 and beta-1,2 linkages. Two acetolysis conditions, combined with 1H NMR analysis, revealed that mannans from both kinds of cells were composed of mannose, mannobiose, mannotriose, mannotetraose and mannopentaose side-chains with the following respective structures: Man; Man alpha 1---2Man; Man alpha 1----2Man alpha 1----2Man; Man beta 1----2Man alpha 1----2Man; Man beta 1----2Man beta 1----2Man alpha 1----2Man; Man alpha 1----2Man beta 1----2Man beta 1----2Man alpha 1----2Man. Additionally the beta-1,2 linkages of the non-reducing terminal residues of the mannotetraose were shown to be acetolysis-labile. The mannans from very flocculent cells were richer in mannopentaose than the mannans from weakly flocculent cells. According to these results, the extended conformations in the branching moieties of the mannan could be the basis of the higher degree of flocculation of the methanol-grown cells.  相似文献   

8.
In order to provide further information on the chemical nature of the antigenideterminants of the mannan of Saccharomyces cerevisiae, the mannan was digested by Arthrobacter α -mannosidase, and 9, 21, 35, 59 and 62%-partially degraded mannans were prepared in the present study. Acetolysis of each degraded mannan showed that only a small amount of the tetrasaccharide was detectable in the 35%-digested mannan, whereas the predominant product of the 59 and 62%-digested mannan was mannose. The result of a quantitative precipitation reaction with the degraded mannans showed that the precipitation activities were partially or completely destroyed by the action of the enzyme. The lack of the tetrasaccharide moieties of the mannan were noticeable by a decrease in the precipitating ability. It was observed that the decreasing ratio of either the maximum amount of the antibody N precipitable by the mannan or per cent degradation of the mannan were essentially equal and yielded nearly a straight relationship between 0 and 2.0 hr digestion. However, the 59 and 62%-digested mannans, containing trace amounts of di- and trisaccharides in the branching parts, showed no significant antigenic activities. Furthermore, the molar ratio of the tetrasaccharide relative to the trisaccharide also gradually decreased. These observations confirm that the tetrasaccharide moiety, Man α1→3Man α1→2Manα1→2Man, plays an important role as the antigenic determinant. The core mannan moiety completely lost both the precipitating ability and inhibitory activity in ranges employed up to 1500 μg. These findings offer a direct proof that the core mannan moiety of mannan is not responsible for antigenic activity, and functions merely as the “carrier” of the antigenic determinants which dominate the immunological specificity.  相似文献   

9.
In order to provide further information about the immunochemical differences between two mannans of Candida albicans serotype A and serotype B, quantitative precipitation-inhibition tests of anti-C. albicans serotype B serum were carried out in the present study. Oligosaccharides were prepared by acetolysis of a homologous mannan, and a1→2 linked di-, tri-, tetra-, penta- and hexasaccharide were separated in chromatographically homogeneous states. The latter two oligomers contained a small amount of an isomer containing a1→2 and a1→3 linkages. In the precipitation-inhibition tests of anti-C. albicans serotype B serum with its homologous mannan and heterologous mannan of C. albicans serotype A, the inhibitory power of the oligomers was of the following order; hexa-> penta-> tetra-> tri-> disaccharide, and the amounts for 50%-inhibition of the former 4 oligomers were 0.02–0.03, 0.05–0.07, 0.1–0.2 and 0.3–0.4 μmoles respectively, whereas disaccharide was very poor inhibitor. The lower oligomers, a1→2 linked tri- and tetrasaccharide, showed considerably strong inhibitory activities. The results obtained in the present study confirmed that the antigenic determinants of the mannan of C. albicans serotype B is the hexasaccharide moiety corresponding to the longest branched chains of mannan, and moreover, the a1→2 linked tri- and tetrasaccharide moieties play an important factor in dominating immunochemical specificity.  相似文献   

10.
The structure of the cell-wall mannan from the J-1012 (serotype A) strain of the polymorphic yeast Candida albicans was determined by acetolysis under mild conditions followed by HPLC and sequential NMR experiments. The serotype A mannan contained beta-1,2-linked mannose residues attached to alpha-1,3-linked mannose residues and alpha-1,6-linked branching mannose residues. Using a beta-1,2-mannosyltransferase, we synthesized a three-beta-1,2-linkage-containing mannoheptaose and used it as a reference oligosaccharide for 1H-NMR assignment. On the basis of the results obtained, we derived an additivity rule for the 1H-NMR chemical shifts of the beta-1,2-linked mannose residues. The morphological transformation of Candida cells from the yeast form to the hyphal form induced a significant decrease in the phosphodiesterified acid-labile beta-1,2-linked manno-oligosaccharides, whereas the amount of acid-stable beta-1,2 linkage-containing side chains did not change. These results suggest that the Candida mannan in candidiasis patients contains beta-1,2-linked mannose residues and that they behave as a target of the immune system.  相似文献   

11.
A rough-colony mutant of Candida albicans was isolated after ultraviolet mutagenesis. The mutant contained approximately half the normal amount of the cell wall mannan, the acetolysis pattern of which was indistinguishable from that of the wild-type counterpart. However, the extent of phosphorylation in the mutant mannan was about 12% of the value for wild type.  相似文献   

12.
In order to determine the determinant antigenic group of the mannan of Saccharomyces cerevisiae, a series of inhibition tests were carried out employing oligosaccharides which separated from the acetolyzate and the hydrolyzate of the mannan. Tetraose, Man α1→3 Man α1→2 Man α→2 Man2, corresponding to the structure of the longer branching moieties of the mannan showed the strongest inhibition, while the isomer, Man α1→6 Man α1→6 Man, corresponding to the core moiety, produced only one-tenth the inhibition of the former. This provides evidence that the branching moieties of the mannan play important role in combining with antibody. The fact that the disaccharide, Man α→3, showed significantly stronger inhibition than those of the other disaccharides, Man α1→2 Man and Man α1→6 Man, indicates that the most important part of the determinant group of the mannan is α1→3 linked D-mannose residue. The antigenic inactivity of the periodate-oxidized mannan containing unoxidized mannose residues indicates that the presence of 3-O-substituted-D-mannose residues adjacent to the D-mannose residues and joined with α1→d2 linkages, are essential to fit the combining site of the antibody.  相似文献   

13.
Cell walls of the Basidiomycete fungus Polyporus tumulosus (Cooke) were fractionated, and the polysaccharide content of the fractions investigated. The major constituents of the cell wall include four polysaccharides, chitin, a β-1, 3-glucan and the alkali soluble α-glucan and xylomannan.The glucan is highly dextrotatory with an [α]D21 of + 221° and gave on partial acid hydrolysis and acetolysis an homologous series of oligosaccharides. The disaccharide was shown to be nigerose 3-0-α-D-glucopyranosyl-D-glucose. Periodate oxidation and methylation studies provided supporting evidence that the polysaccharide is an essentially unbranched polymer of 1,3-linked glucose residues.The other alkali-soluble polysaccharide, a xylomannan, is a polymer of mannose and xylose in the approximate molar proportions of 1.2:1. It has an [α]D = + 56° and on partial acid hydrolysis and acetolysis gave an homologous series of 1,3-linked mannodextrins but no oligosaccharides containing xylose were obtained. An α-1,3-linked mannan was prepared from the xylomannan by degradation with mild acid or by degradation of the periodate-oxidased and reduced xylomannan. The structure therefore is visualised as having a backbone of 1,3-linked mannan, to which xylose residues are attached. Methylation studies showed that branching occurs at C-4 of the mannopyranose units; the presence of 2,3-di-o-methyl-d-xylose in the hydrolysate of the methylated polysaccharide indicated that some of the xylose residues are 1,4-linked. The possible structure of the fungal cell wall is discussed in the light of the results obtained.  相似文献   

14.
The viable whole cells of Saccharomyces cerevisiae X2180-1A wild type and its mannan mutant strain S. cerevisiae X2180-1A-5, were treated with an Arthrobacter sp. beta-1,3-glucanase in the presence of a serine protease inhibitor, phenyl-methylsulfonyl fluoride. Fractionation of the solubilized materials of each strain with Cetavlon (cetyltrimethylammonium bromide) yielded one mannan-protein complex. Molecular weights of these complexes were almost the same as that of the mannoprotein of the mutant strain prepared by Nakajima and Ballou, which had a molecular weight of 133,000 and were approximately three times larger than those of the mannans isolated from the same cells by hot-water extraction. Each mannan-protein complex contained up to 2% glucose residue, which was not removed by specific precipitation with anti-mannan sera or by affinity chromatography on a column of concanavalin A-Sepharose. Treatment of these complexes with alkaline NaBH4 produced peptide-free mannan containing small amounts of glucose nearly identical to those of the parent complexes. The above findings provide evidence that the glucose residues exist in a covalently linked form to the mannan moiety. Fractionation of the mannan-protein complex of the S. cerevisiae wild-type strain by DEAE-Sephadex chromatography yielded five subfractions of different phosphate content, indicating that these highly intact mannan-protein complexes were of heterogeneous material consisting of many molecular species of different phosphate content.  相似文献   

15.
The DNA synthetic activities of mannans isolated from two Saccharomyces cerevisiae strains were examined in vitro using spleen cells obtained from normal or nude BALB/c strain mice. A highly branched mannan isolated from the S. cerevisiae wild type strain induced a greater increase in mitogenic activity than those displayed by the mannan of the S. cerevisiae X2180–1A-5 mutant strain which possessed fewer branching moieties. Acid-hydrolyzed wild type strain mannan with two-thirds of the molecular weight of the parent intact mannan showed weak mitogenicity. Increases in the DNA synthetic activities of nude and normal spleen cells were almost the same as that of wild type strain mannan, while nylon wool column-passed spleen cells obtained from both normal and nude mice did not show mitogenicity with this mannan. The results indicated that the mitogenic activity was responsible for the highly branched structure of the wild type strain mannan, and that this mannan is a B-cell mitogen.  相似文献   

16.
Previously, we showed that quantitatively minor several glycolipids only less than 5% of the lipoteichoic acid (LTA) fraction from Enterococcus hirae ATCC 9790 possessed cytokine-inducing activity, whereas the major component (over 90%) did not [Suda et al. (1995) FEMS Immun Med Microbiol 12:97–112]. The major inactive component was shown to have the chemical structure as was proposed for the LTA by Fischer [Hashimoto et al. (1997) J Biochem 121:779–86], suggesting that so-called LTA is not a cytokine-inducing component in the Gram-positive bacteria. In the present paper, the structure of the hydrophilic part of one of the cytokine-inducing glycolipid tentatively named GL4 is elucidated. GL4 was first subjected to hydrolysis with aqueous HF to give a polysaccharide and a mixture of low molecular weight products. The polysaccharide was composed mainly of highly branching mannan as concluded from NMR and MS analyses of its acetolysis products. The low molecular weight products consisted of phosphate and glycerol, suggesting the presence of a poly(glycerophosphate) structure in the original GL4. From these observations, the hydrophilic part of GL4 was shown to consist of mannose-rich polysaccharide and poly(glycerophosphate), the latter being bound to the former by a phosphodiester linkage.  相似文献   

17.
In order to determine the antigenic determinant groups of the mannan of Candida albicans by the precipitation-inhibition test, several oligosaccharides were prepared by acetolysis of the polysaccharide. The manno-oligosaccharides, from biose to heptaose were separated by a charcoal-Celite chromatography and a subsequent cellulose column chromatography. The oligosaccharides thus separated were examined on the degrees of polymerization and the mode of the linkages, and evidence was obtained that the biose and triose were joined through α1→2 linkage only, while the tetraose, pentaose and hexaose contained α1→3 linkage in addition to α1→2 linkages. Heptaose was joined entirely through α1→2 linkage. In the precipitation-inhibition test, the inhibitory power of the oligosaccharides of acetolysis product was found to be the following order: hexaose>heptaose>pentaose>tetraose>triose>biose, and the amount for the 50% inhibitions were 0.025, 0.09, 0.12, 0.60, 3.96 and 5.84 μmoles respectively. On the other hand, the biose, triose and tetraose, which were isolated from the acid-hydrolysate of the mannan of Saccharomyces cerevisiae and joined through α1→6 linkage, showed poor or nearly no inhibitory power. The above facts provide an evidence that the consecutive α1→6 linkages were not located in a position that is responsible for antigenic specificity of the mannan of C. albicans.  相似文献   

18.
To obtain manno-oligosaccharides containing beta-1,2-linked nonreducing terminal groups from the mannan of Pichia pastoris IFO 0948 strain by acetolysis, an attempt was made to establish the reaction conditions under which cleavage of the alpha-1,6 linkage took place preferentially leaving manno-oligosaccharides composed largely of beta-1,2 linkages. By the action of an ordinary acetolysis medium, a 10/10/1 (v/v) mixture of acetic anhydride, acetic acid, and sulfuric acid at 40 degrees C for 13 h or at 25 degrees C for 120 h, the O-acetyl derivative of this mannan gave mannose, mannobiose, mannotriose, and mannopentaose. However, treatment of the same O-acetyl mannan with a 50/50/1 (v/v) acetolysis medium at 40 degrees C for 15 h gave a mannotetraose in addition to mannose, mannobiose, mannotriose, and mannopentaose. Use of a 100/100/1 (v/v) acetolysis medium at 40 degrees C for 36 h gave a more satisfactory result, a mixture of oligosaccharides, from mannose to mannopentaose, which contained more mannotetraose than mannopentaose. Because both mannotetraose and mannopentaose contained alpha-1,2 and beta-1,2 linkages, it was concluded that an acetolysis medium containing a low concentration of sulfuric acid, up to 0.5% (v/v), facilitates the preferential cleavage of the alpha-1,6 linkage, leaving manno-oligosaccharides containing the beta-1,2 linkage which was found to be labile to the action of the 10/10/1 (v/v) acetolysis medium.  相似文献   

19.
The antigenic mannan of Candida albicans was degraded by acid-hydrolysis and the resultant oligosaecharides were fractionated by a carbon-Celite and a subsequent cellulose-powder chromatography to yield four oligosaecharides, pentaose, hexaose, heptaose and octaose, which involved 2,6-di-0- and 6-0-substituted mannopyranosyl residues as the common. feature. These oligosaccharides showed lower precipitation-inhibition activity than that of the hexaose of acetolysate, the strongest inhibitor among the oligosaccharides described in the preceding study. The order of inhibitory powers of oligosaccharides was as follows: hexaose of acetolysate>heptaose>pentaosez=octaose>hexaose. The μmoles requiring for 50%-inhibition were 0.025, 0.15, 0.20, 0.20 and 0.50 respectively. The results clearly indicate that the determinant groups of the mannan of C. albicans employed this study are the hexaose moieties which constitute the branching parts of polysaccharide.  相似文献   

20.
We investigated the chemical structure of the specific determinant in the mannan of Candida albicans M-1012 (serotype A) strain. Acetolysis of the mannan, obtained by alkali extraction and purified as the copper complex, gave mannose and six oligosaccharides (from di- to hexasaccharide) and a small amount of a heptasaccharide. We examined the inhibition by these oligosaccharides up to hexaose of the precipitin reaction between anti-factor 6 serum specific for serotype A and homologous mannan, and found that the mannohexaose was the most effective inhibitor. These, and results obtained by proton magnetic resonance (PMR) spectroscopy, methylation analysis, and other structural studies, suggest that the main component of this hexaose consists of one terminal alpha (1-3) linkage in addition to four alpha (1-2) linkages, and that this alpha (1-3)-containing mannohexaose may be responsible for the specificity of antigenic factor 6. Further results obtained by analyses of polarimetry, PMR spectroscopy, and chromium trioxide oxidation-methylation of C. albicans M-1012 mannan has a beta-linkage in addition to alpha-linkages, and that the mode of the beta-linkage is mainly (1-6) linkage. Further evidence obtained by Smith degradation-methylation analysis and by quantitative precipitin reactions of intact and acid-degraded mannan suggests that the antigenic determinant of antigenic factor 6 may be bound, via the beta (1-6) linkage, to C-6 of mannose residues involved in oligosaccharide side chains of serotype A mannan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号