首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The 8000 X g pellet of rabbit placenta transformed arachidonic acid into a number of lipoxygenase and cyclooxygenase products of known structure. A metabolite was also produced which was inhibited by indomethacin and required calcium for its formation. This compound had a UV absorption maximum at 227 nm under acidic or neutral conditions and gave a bathochromic shift to 281 nm under alkaline conditions. Reduction of this metabolite with sodium borohydride produced prostaglandin (PG) F2 alpha (as determined by mass spectrometry), while catalytic hydrogenation increased the molecular weight by four mass units, indicating the presence of two double bonds. Based on the mass spectrum of the derivatized metabolite, the structure proved to be 9,15-dioxo-11-hydroxyprosta-5,13-dienoic acid. This compound is produced by the term placenta and does not appear to be formed from PGE2, PGF2 alpha, or PGD2. The compound is suppressed by GSH and NADPH, but its formation is not increased by NAD or NADP. PGH2 and PGG2 are not converted to 9,15-dioxo-11-hydroxyprosta-5,13-dienoic acid under similar in vitro incubation conditions. This therefore represents conversion of arachidonate to 9,15-dioxo-11-hydroxyprosta-5,13-dienoic acid through a Ca2+-dependent, non-PG dehydrogenase pathway.  相似文献   

2.
Intramuscular administration to female rabbits of 2 mg/kg ethinylestradiol every other day for 10 days increased the uptake and incorporation of [14C]arachidonic acid into platelet lipids, and increased the proportion of [14C]arachidonic acid released from platelets after stimulation by thrombin. The conversion of [14C]arachidonic acid to thromboxane B2 did not differ between the control and ethinylestradiol-treated groups. Thus, the results of this study indicate that the major site in the prostaglandin metabolic pathway influenced by estrogen is the incorporation and release of arachidonic acid in platelet phospholipids.  相似文献   

3.
4.
A specific radioimmunoassay has been applied to the measurement of the conversion of arachidonic acid to PGE2 and PGF. PGE2 and PGF biosynthesis was linearly related to the amount of arachidonic acid added and was significantly inhibited by indomethacin in concentrations as low as 10?10 M. Sonicated Hela, L, and HEp-2 cells synthesized 244.0, 42.3, and 22.6 ng PGE2 per mg of protein, but made substantially less PGF.  相似文献   

5.
The conversion of arachidonic acid into 8,11,12-trihydroxyeicosatrienoic acid by rat lung high-speed supernatant has been resolved into two separate stages through ammonium sulfate precipitation. The first stage is catalysed by 0-30% ammonium sulfate fraction and converts arachidonic acid and 12-hydroperoxyeicosatetraenoic acid into an intermediate, X. X is subsequently utilized in the second stage by the fraction sedimented at 30-50% saturation in ammonium sulfate to form two isomeric 8,11,12-trihydroxyeicosatrienoic acids.  相似文献   

6.
Biosynthesis of prostaglandins (PGs) from 14C-arachidonic acid was studied using homogenates of the ovaries from immature rats. In ascending order of metabolizing potency were, the ovaries from untreated rats, from rats treated with pregnant mare's serum gonadotropin (PMS), and from PMS-human chorionic gonadotropin (hCG) treated rats. Among the radioactive metabolites extracted, PGE2 and 6-keto PGF1∝ were purified and identified by silicic acid column-, thin layer-, reversed phase partition chromatographies, and radiogaschromatography. Production of PGE2 and 6-keto PGF1∝ was observed in homogenates of the ovaries of intact and PMS-hCG treated rats at conversion rates of 0.72; 0.43% and 7.62; 2.31%, but not by FMS treated rat ovaries. Treatment with PMS-hCG activated metabolism of arachidonic acid into radioactive metabolites including PGE2 and 6-keto PGF to a large extent. Accordingly, it is concluded that luteinizing hormone and hCG play a significant role in the biosynthesis of PGs by the rat ovarian follicle.  相似文献   

7.
The bioformation of PGs in the human heart was studied in 7 male volunteers by constant rate infusion of 14C-labelled arachidonic acid (AA) into the aortic root and simultaneous blood sampling from the coronary sinus. After conventional extraction of lipids from the plasma samples, the various 14C-PGs formed were separated and quantified by means of thin layer chromatography and fractionated liquid scintillation spectrometry. The infused arachidonic acid was metabolized and well defined chromatographic peaks of 14C-PGs were obtained. Apart from a chromatographic peak corresponding to 14C-PG metabolites, 6-keto-PGF constituted the main 14C-PG formed (23 ± 8 %) reflecting a considerable synthesis of prostacyclin in the heart. 14C-PGs of the D, E and F series were formed in roughly equal amounts (14 – 19 %). In a 54-year-old subject, 6-keto-PGF constituted a greater proportion of 14C-PGs (60 %) than in the other subjects. This can reflect a general effect of ageing or it can indicate the presence of ischemic heart disease in this subject.  相似文献   

8.
Human adults are shown to be capable of conversion of linoleic acid (LA, 18:2 n-6) to arachidonic acid (AA, 20:4 n-6) in vivo. It is confirmed that they can also convert alpha-linolenic acid (LNA, 18:3 n-3) to eicosapentaenoic acid (EPA, 20:5 n-3) and to docosahexaenoic acid (DHA, 22:6 n-3) in vivo. The time course and the maximal response for these processes during the first week after a single dose of the 18-carbon precursor is described. A stable-isotope method in which the protons of the C17 and C18 carbons are substituted with deuterium atoms is used in order to provide for a safe method for the study of human metabolism. High sensitivity and selectivity of detection is assured with negative ion, gas chromatography/mass spectrometry analysis. It is clear that human adults on an ad lib diet carry out EFA metabolism in vivo.  相似文献   

9.
Chromosome segregation is a complex and astonishingly accurate process whose inner working is beginning to be understood at the molecular level. The spindle checkpoint plays a key role in ensuring the fidelity of this process. It monitors the interactions between chromosomes and microtubules, and delays mitotic progression to allow extra time to correct defects. Here, we review and integrate findings on the dynamics of checkpoint proteins at kinetochores with structural information about signalling complexes.  相似文献   

10.
Substance P (SP) may play an important role in the interactions between the nervous system and the immune system. Astrocytes carry receptors for SP on their surfaces. We examined whether ligand-induced receptor activation would lead to the release of arachidonic acid metabolites. SP (10(-10)-10(-8) M) evokes the formation of prostaglandin E and thromboxane B2 in a dose-dependent manner. Structure-activity studies disclosed that the COOH-terminal peptide sequence of SP is primarily responsible for this biological activity. The generation by astrocytes of arachidonate-derived proinflammatory and immunoregulatory compounds in response to SP receptor activation may be relevant to immunoinflammatory responses within the central nervous system and emphasizes the concept of neuroimmunomodulation.  相似文献   

11.
12.
Kynurenine aminotransferases are pyridoxal-5'-phosphate-dependent enzymes, which catalyze the synthesis of kynurenic acid, a highly neuroactive metabolite whose impairment is associated with a number of severe brain disorders. Crystallographic studies of these enzymes from different organisms, including humans, have revealed distinctive structural traits of type I and type II kynurenine aminotransferases. A striking difference concerns domain swapping of the N-terminal regions, which play equivalent key functional roles in both an unswapped and swapped structure in type I and type II isozymes. Different conformational changes during catalysis create divergent active sites in the two isozymes and affect substrate specificity. Structural investigations indicate intriguing evolutionary relationships and pave the way for the design of isozyme-specific inhibitors, which are of interest for the treatment of catastrophic brain diseases such as Alzheimer's disease and schizophrenia.  相似文献   

13.
We infused A23187, a calcium ionophore, into the pulmonary circulation of dextran-salt-perfused isolated rabbit lungs to release endogenous arachidonic acid. This led to elevations in pulmonary arterial pressure and to pulmonary edema as measured by extravascular wet-to-dry weight ratios. The increase in pressure and edema was prevented by indomethacin, a cyclooxygenase enzyme inhibitor, and by 1-benzylimidazole, a selective inhibitor of thromboxane (Tx) A2 synthesis. Transvascular flux of 125I-albumin from vascular to extravascular spaces of the lung was not elevated by A23187 but was elevated by infusion of oleic acid, an agent known to produce permeability pulmonary edema. We confirmed that A23187 leads to elevations in cyclooxygenase products and that indomethacin and 1-benzylimidazole inhibit synthesis of all cyclooxygenase products and TxA2, respectively, by measuring perfusate levels of prostaglandin (PG) I2 as 6-ketoprostaglandin F1 alpha, PGE2, and PGF2 alpha and TxA2 as TxB2. We conclude that release of endogenous pulmonary arachidonic acid can lead to pulmonary edema from conversion of such arachidonic acid to cyclooxygenase products, most notably TxA2. This edema was most likely from a net hydrostatic accumulation of extravascular lung water with an unchanged permeability of the vascular space, since an index of permeability-surface area product (i.e., transvascular albumin flux) was not increased.  相似文献   

14.
The interaction of proliferating macrophages with the glomerulus may play an important role in certain forms of glomerulonephritis. This interaction could involve metabolites of arachidonic acid (C20:4) such as prostaglandins (PG) and lipoxygenase products. We therefore investigated the conversion of exogenous |3H| C20:4 into hydroxyeicosatetraenoic acids (HETE) and PG by isolated glomeruli and macrophages from rats, alone and in combination. As demonstrated by HPLC, glomeruli converted C20:4 predominantly to lipoxygenase products -mainly 12-HETE- and, to a lesser extent, to PG. Resident macrophages converted C20:4 to equivalent amounts of HETE and PG, mainly 12-HETE and 6 keto-PGF. When macrophages and glomeruli were studied in combination, a striking interaction was detected in both pathways of C20:4 metabolism. Production of 6 keto-PGF was stimulated and considerable amounts of TXB2, PGD2 and hydroxyheptadecatrienoic acid (HHT) were also produced Total 12-HETE production was unchanged. When a lipid extract of glomeruli, containing oxygenated metabolites of C20:4, was added to macrophages, stimulation of 12-HETE occurred without any change in HHT or PG formation. When, on the contrary, a lipid extract from macrophages was added to glomeruli, 12-HETE production by the glomeruli was nearly completely abolished. Thus the unchanged total 12-HETE production by coincubated glomeruli and macrophages resulted from its increased production by macrophages and its decreased production by glomeruli. These data suggest that interaction between glomeruli and macrophages results in activation of C20:4 metabolism by macrophages followed by inhibition of C20:4 metabolism by glomeruli. Such a regulatory process could play a role in the inflammatory response to immunological injuries during macrophage-dependent human and experimental glomerulonephritis.  相似文献   

15.
Linoleic acid plasma kinetics in pregnant baboons and its conversion to long chain polyunsaturates (LCP) in fetal organs is characterized over a 29-day period using stable isotope tracers. Pregnant baboons consumed an LCP-free diet and received [U-13C]linoleic acid (18:2*) in their third trimester of gestation. In maternal plasma, 18:2* dropped to near baseline by 14 days post-dose, while labeled arachidonic acid (20:4*) plateaued at 10 days at about 70% of total labeled fatty acids. After 2;-5 days, total tracer fatty acids decreased in visceral organs, but increased in the fetal brain. Maximal fetal incorporation of 18:2* was 1;-2 days post-dose; thereafter it dropped while 20:4* increased reciprocally. Labeled 20:4 replaced 18:2* in neural tissues by 5 days post-dose. In liver, kidney, and lung, 20:4* became dominant by 12 days, but in heart the crossover was >29 days. Fetal brain 20:4* plateaued by 21 days at 0. 025% of dose, while fetal liver 20:4* was constant from 1 to 29 days at 0.006% of dose. Under these dietary conditions we estimate that the fetus derives about 50% its 20:4 requirement from conversion of dietary 18:2, with the balance from maternal stores, and conclude that 1) fetal organs accumulate 18:2 within a day of a maternal dose and convert much of it to 20:4 within weeks, 2) modest dietary 18:2 levels may support fetal brain requirements for 20:4, and 3) the brain retains n;-6 fatty acids uniquely compared with major visceral organs.  相似文献   

16.
Furse KE  Pratt DA  Porter NA  Lybrand TP 《Biochemistry》2006,45(10):3189-3205
The cyclooxygenase (COX) enzymes are responsible for the committed step in prostaglandin biosynthesis, the generation of prostaglandin H(2). As a result, these enzymes are pharmacologically important targets for nonsteroidal antiinflammatory drugs, such as aspirin and newer COX-2 selective inhibitors. The cyclooxygenases are functional homodimers, and each subunit contains both a cyclooxygenase and a peroxidase active site. These enzymes are quite interesting mechanistically, as the conversion of arachidonic acid to prostaglandin H(2) requires two oxygenation and two cyclization reactions, resulting in the formation of five new chiral centers with nearly absolute regio- and stereochemical fidelity. We have used molecular dynamics (MD) simulations to investigate the equilibrium behavior of both COX-1 and COX-2 enzyme isoforms with bound arachidonate. These simulations were compared with reference simulations of arachidonate in solution to explore the effect of enzyme on substrate conformation and positioning in the active site. The simulations suggest that the substrate has greater conformational freedom in the COX-2 active site, consistent with the larger COX-2 active site volume observed in X-ray crystal structures. The simulations reveal different conformational behavior for arachidonate in each subunit over the course of extended equilibrium MD simulations. The simulations also provide detailed information for several protein channels that might be important for oxygen and water transport to or from active sites or for intermediate trafficking between the cyclooxygenase and peroxidase active sites. The detailed comparisons for COX-1 versus COX-2 active site structural fluctuations may also provide useful information for design of new isozyme-selective inhibitors.  相似文献   

17.
Six tau isoforms arise from the alternative splicing of a single gene in humans. Insoluble, filamentous deposits of tau protein occur in a number of neurodegenerative diseases, and in some of these diseases, the deposition of polymers enriched in certain tau isoforms has been documented. Because of these findings, we have undertaken studies on the efficacy of fatty acid-induced polymerization of the individual tau isoforms found in the adult human CNS. The polymerization of each tau isoform in the presence of two concentrations of arachidonic acid indicated that isoforms lacking N-terminal exons e2 and e3 formed small, globular oligomers that did not go on to elongate into straight (SF) or paired helical (PHF) filaments under our buffer conditions. The polymerization of all isoforms containing e2 or e2 and e3 occurred readily at a high arachidonic acid concentration. Conversely, at a lower arachidonic acid concentration, only tau isoforms containing four microtubule binding repeats assembled well. Under all buffer conditions employed, filaments formed from three of the isoforms containing e2 and e3 resembled SFs in morphology but began to form PHF-like structures following extended incubation at 37 degrees C. These results indicate that polymerization of the intact tau molecule may be facilitated by e2 and e3. Moreover, tau isoforms containing three versus four microtubule binding repeats display different assembly properties depending on the solvent conditions employed.  相似文献   

18.
Arachidonic acid (AA) incorporation into phospholipids and cyclooxygenase and lipoxygenase mediated metabolism of arachidonic acid were studied in homogenized and intact Neuro-2A cells. When 3H8-AA was added to homogenized cells and incubated 20 minutes, 39% of the label was converted to prostaglandins (PGs), 10% to hydroxy-eicosatetraenoic acid (HETE) and 26% was incorporated into phospholipids. PGE2 and PGF2a were the major PGs produced. Synthesis of PGs was blocked by 10 microM indomethacin and synthesis of PGs and HETE was blocked by 10 microM eicosatetraynoic acid (ETYA). The cell homogenate produced the 13,14-dihydro-15-keto metabolites of PGE2 and PGF2a from 3H8-AA and also converted exogenous 3H7-PGE2 and 3H8-PGF2a to metabolites. When intact cells were labeled for 24 hours with 14C1-AA and the cells and media then analyzed, 75% of the radioactivity was incorporated into cellular phospholipids, 0.8% was converted to PGs and metabolites and 0.7% converted to HETE. Cells prelabeled for 24 hours were washed and incubated for 30 minutes in fatty acid free media. There was a 23% release of AA from phospholipids. One-fifth of the released AA was converted to HETE. PG synthesis in the intact resting cells was low. In summary, the Neuro-2A cell provides a good model system for studying arachidonic acid metabolism and incorporation into phospholipids in cells of neuronal origin.  相似文献   

19.
Effect of various prostaglandins on the release of arachidonic acid from [14C]arachidonic acid labeled fibroblasts was studied. Prostaglandin(PG) F was found to enhance the release of radioactive arachidonic acid from the cells. The stimulatory effect was dose dependent, and was greater than that of bradykinin. The active compounds can be ranked in potency for the release of arachidonic acid from the pre-labeled cells per cent of control: PGF(200.1%)>PGF (141.8%)>PGD2 (137.1%)>thromboxane B2 (113.7%)>PGE2 (109.4%). On the other hand, PGI2 showed a strong inhibitory effect on the arachidonic acid release from the pre-labeled cells (the value was only 69% of the control), while 6-ketoPGF, an end metabolite of PGI2, had no effect.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号