首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p27Kip1 was first discovered as a key regulator of cell proliferation. The canonical function of p27Kip1 is inhibition of cyclin-dependent kinase (CDK) activity. In addition to its initial identification as a CDK inhibitor, p27Kip1 has also emerged as an intrinsically unstructured, multifunctional protein with numerous non-canonical, CDK-independent functions that exert influence on key processes such as cell cycle regulation, cytoskeletal dynamics and cellular plasticity, cell migration, and stem-cell proliferation and differentiation. Many of these non-canonical functions, depending on the cell-specific contexts such as oncogenic activation of signaling pathways, have the ability to turn pro-oncogenic in nature and even contribute to tumor-aggressiveness and metastasis. This review discusses the various non-canonical, CDK-independent mechanisms by which p27Kip1 functions either as a tumor-suppressor or tumor-promoter.  相似文献   

2.
SCF-Skp2 E3 ubiquitin ligase (Skp2 hereafter) targets several cell cycle regulatory proteins for degradation via the ubiquitin-dependent pathway. However, the target-specific physiological functions of Skp2 have not been fully elucidated in kidney diseases. We previously reported an increase in Skp2 in progressive nephropathy and amelioration of unilateral ureteral obstruction (UUO) renal injury associated with renal accumulation of p27 in Skp2(-/-) mice. However, it remains unclear whether the amelioration of renal injury in Skp2(-/-) mice is solely caused by p27 accumulation, since Skp2 targets several other proteins. Using Skp2(-/-)p27(-/-) mice, we investigated whether Skp2 specifically targets p27 in the progressive nephropathy mediated by UUO. In contrast to the marked suppression of UUO renal injury in Skp2(-/-) mice, progression of tubular dilatation associated with tubular epithelial cell proliferation and tubulointerstitial fibrosis with increased expression of collagen and α-smooth muscle actin were observed in the obstructed kidneys in Skp2(-/-)p27(-/-) mice. No significant increases in other Skp2 target proteins including p57, p130, TOB1, cyclin A and cyclin D1 were noted in the UUO kidney in Skp2(-/-) mice, while p21, c-Myc, b-Myb and cyclin E were slightly increased. Contrary to the ameliorated UUO renal injure by Skp2-deficiency, the amelioration was canceled by the additional p27-deficiency in Skp2(-/-)p27(-/-) mice. These findings suggest a pathogenic role of the reduction in p27 targeted by Skp2 in the progression of nephropathy in UUO mice.  相似文献   

3.
Connexin32 knockout mice (Cx32-KO) exhibit increased chemical and radiation-induced liver and lung tumorigenesis. This increased tumor incidence is associated with altered tumor biology including enhanced tumor progression and an increased percent of MAPK-active tumors. Likewise, mice lacking the tumor suppressor/cell cycle regulator p27Kip1 exhibit increased tumorigenesis in a variety of tissues following chemical and radiation induction. Interestingly, in a double-deficient mouse model (DKO), additional loss of p27Kip1 in a Cx32-KO background results in attenuation of liver and lung tumorigenesis as well as MAPK activation profiles, suggesting pathway interaction. While these mouse strains exhibit altered liver and lung tumor susceptibility following both chemical (DEN) and radiation (X-ray) induction protocols, comparisons of the resulting tumor incidence, multiplicity, tumor progression, and MAPK activation in response to these two distinct carcinogens underscores the separate influence of each individual gene on both tumor formation and activation of specific oncogenic pathways. Furthermore, these studies demonstrate that different carcinogens interact disparately with Cx32/p27Kip1 genotypic backgrounds in situ resulting in varied tumorigenic response.  相似文献   

4.
BACKGROUND: The ability of cyclin-dependent kinases (CDKs) to promote cell proliferation is opposed by cyclin-dependent kinase inhibitors (CKIs), proteins that bind tightly to cyclin-CDK complexes and block the phosphorylation of exogenous substrates. Mice with targeted CKI gene deletions have only subtle proliferative abnormalities, however, and cells prepared from these mice seem remarkably normal when grown in vitro. One explanation may be the operation of compensatory pathways that control CDK activity and cell proliferation when normal pathways are inactivated. We have used mice lacking the CKIs p21(Cip1) and p27(Kip1) to investigate this issue, specifically with respect to CDK regulation by mitogens. RESULTS: We show that p27 is the major inhibitor of Cdk2 activity in mitogen-starved wild-type murine embryonic fibroblasts (MEFs). Nevertheless, inactivation of the cyclin E-Cdk2 complex in response to mitogen starvation occurs normally in MEFs that have a homozygous deletion of the p27 gene. Moreover, CDK regulation by mitogens is also not affected by the absence of both p27 and p21. A titratable Cdk2 inhibitor compensates for the absence of both CKIs, and we identify this inhibitor as p130, a protein related to the retinoblastoma gene product Rb. Thus, cyclin E-Cdk2 kinase activity cannot be inhibited by mitogen starvation of MEFs that lack both p27 and p130. In addition, cell types that naturally express low amounts of p130, such as T lymphocytes, are completely dependent on p27 for regulation of the cyclin E-Cdk2 complex by mitogens. CONCLUSIONS: Inhibition of Cdk2 activity in mitogen-starved fibroblasts is usually performed by the CKI p27, and to a minor extent by p21. Remarkably p130, a protein in the Rb family that is not related to either p21 or p27, will directly substitute for the CKIs and restore normal CDK regulation by mitogens in cells lacking both p27 and p21. This compensatory pathway may be important in settings in which CKIs are not expressed at standard levels, as is the case in many human tumors.  相似文献   

5.
Gap junctions and their structural proteins, connexins (Cxs), have been implicated in carcinogenesis. To explore the involvement of Cx32 in gastric carcinogenesis, immunochemical analysis of Cx32 and proliferation marker Ki67 using tissue-microarrayed human gastric cancer and normal tissues was performed. In addition, after Cx32 overexpression in the human gastric cancer cell line AGS, cell proliferation, cell cycle analyses, and p21Cip1 and p27Kip1 expression levels were examined by bromodeoxyuridine assay,flow cytometry, real-time RT-PCR, and western blotting. Immunohistochemical study noted a strong inverse correlation between Cx32 and Ki67 expression pattern as well as theirlocation. In vitro, overexpression of Cx32 in AGS cells inhibited cell proliferation significantly. G1 arrest, up-regulation of cell cycle-regulatory proteins p21Cip1 and p27Kip1 was also found at both mRNA and protein levels. Taken together, Cx32 plays some roles in gastric cancer development by inhibiting gastric cancer cell proliferation through cell cycle arrest and cell cycle regulatory proteins. [BMB Reports 2013; 46(1): 25-30]  相似文献   

6.
Levels of p27Kip1, a key negative regulator of the cell cycle, are often decreased in cancer. In most cancers, levels of p27Kip1 mRNA are unchanged and increased proteolysis of the p27Kip1 protein is thought to be the primary mechanism for its down-regulation. Here we show that p27Kip1 protein levels are also down-regulated by microRNAs in cancer cells. We used RNA interference to reduce Dicer levels in human glioblastoma cell lines and found that this caused an increase in p27Kip1 levels and a decrease in cell proliferation. When the coding sequence for the 3'UTR of the p27Kip1 mRNA was inserted downstream of a luciferase reporter gene, Dicer depletion also enhanced expression of the reporter gene product. The microRNA target site software TargetScan predicts that the 3'UTR of p27Kip1 mRNA contains multiple sites for microRNAs. These include two sites for microRNA 221 and 222, which have been shown to be upregulated in glioblastoma relative to adjacent normal brain tissue. The genes for microRNA 221 and microRNA 222 occupy adjacent sites on the X chromosome; their expression appears to be coregulated and they also appear to have the same target specificity. Antagonism of either microRNA 221 or 222 in glioblastoma cells also caused an increase in p27Kip1 levels and enhanced expression of the luciferase reporter gene fused to the p27Kip1 3'UTR. These data show that p27Kip1 is a direct target for microRNAs 221 and 222, and suggest a role for these microRNAs in promoting the aggressive growth of human glioblastoma.  相似文献   

7.
The cell cycle of cultured cells appears to be regulated by opposing actions of the cyclins together with their partners, the cyclin-dependent kinases (Cdk), and their inhibitors (Cki). Consistent with this situation null mutations in the genes for cyclin D1 and Cki p27(Kip1) in mice give opposite phenotypes of dwarfism and gigantism. To test their genetic interactions, we generated mice nullizygous for both genes. Correction of cyclin D1 or p27 null to wild-type phenotypes was observed for many but not all traits. These included, for cyclin D1(-/-) mice, body weight, early lethality, retinal hypoplasia, and male aggressiveness and, for p27(-/-) mice, body weight, retinal hyperplasia, and embryo implantation. p27(-/-) traits that were not corrected were the aberrant estrus cycles, luteal cell proliferation, and susceptibility to pituitary tumors. This mutual correction of these phenotypes is the first genetic demonstration of the interaction of these inhibitory and stimulatory cell cycle-regulatory molecules in vivo. The molecular basis for the correction was analyzed in the neonatal retina. Retinal cellularity was rescued in the cyclin D1 null mouse by loss of p27 with only a partial restoration of phosphorylation of retinoblastoma protein (Rb) and Cdk4 activity but with a dramatic elevation of Cdk2 activity. Our data provide in vivo genetic validation of cell culture experiments that indicated that p27 acts as a negative regulator of cyclin E-Cdk2 activity and that it can be titrated away by cyclin D-Cdk4 complexes. It also supports the suggestion that the cyclin E/Cdk2 pathway can largely bypass Rb in regulating the cell cycle in vivo.  相似文献   

8.
9.
To examine the p53-mediated biological activities and signalling pathways, we generated stable transfectants of the p53-null IW32 murine erythroleukemia cells expressing the temperature-sensitive p53 mutant DNA, tsp53(val135). Two clones with different levels of p53 protein expression were selected for further characterization. At permissive temperature, clone 1-5 cells differentiated along the erythroid pathway, and clone 3-2 cells that produced greater levels (3.5-fold) of p53 underwent apoptosis. Apoptosis of 3-2 cells was accompanied by mitochondrial cytochrome c release and caspase activation as well as by cleavage of caspase substrates. Bax protein was induced to a similar extent in these clones by wild-type p53; expression of p21(Cip1/Waf1) and p27(Kip1) proteins was also increased. However, significantly lesser extent of induction for both CDK inhibitors was detected in the apoptotic 3-2 clone. The general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD.fmk) blocked the p53-induced apoptosis in 3-2 cells, with a concomitant elevation of p27(Kip1), suggesting that p27(Kip1) protein underwent caspase-dependent proteolysis in the apoptotic 3-2 cells. Together these results linked a pathway involving cytochrome c release, caspase activation and p27(Kip1) degradation to the p53-induced apoptosis in IW32 erythroleukemia cells.  相似文献   

10.
Multiple functions of p27(Kip1) and its alterations in tumor cells: a review   总被引:19,自引:0,他引:19  
Cyclin-dependent kinases (CDKs), together with cyclins, their regulatory subunits, govern cell-cycle progression in eukaryotic cells. p27(Kip1) is a member of a family of CDK inhibitors (CDIs) that bind to cyclin/CDK complexes and arrest cell division. There is considerable evidence that p27(Kip1) plays an important role in multiple fundamental cellular processes, including cell proliferation, cell differentiation, and apoptosis. Moreover, p27(Kip1) is a putative tumor-suppressor gene that appears to play a critical role in the pathogenesis of several human malignancies and its reduced expression has been shown to correlate with poor prognosis in cancer patients. This study reviews current information on the functions of p27(Kip1), its abnormalities found in human tumors, and the possible clinical implications of these findings with respect to the management of cancer patients.  相似文献   

11.
Mdm2 and MdmX are structurally related p53-binding proteins that function as critical negative regulators of p53 activity in embryonic and adult tissue. The overexpression of Mdm2 or MdmX inhibits p53 tumor suppressor functions in vitro, and the amplification of Mdm2 or MdmX is observed in human cancers retaining wild-type p53. We now demonstrate a surprising role for MdmX in suppressing tumorigenesis that is distinct from its oncogenic ability to inhibit p53. The deletion of MdmX induces multipolar mitotic spindle formation and the loss of chromosomes from hyperploid p53-null cells. This reduction in chromosome number, not observed in p53-null cells with Mdm2 deleted, correlates with increased cell proliferation and the spontaneous transformation of MdmX/p53-null mouse embryonic fibroblasts in vitro and with an increased rate of spontaneous tumorigenesis in MdmX/p53-null mice in vivo. These results indicate that MdmX has a p53-independent role in suppressing oncogenic cell transformation, proliferation, and tumorigenesis by promoting centrosome clustering and bipolar mitosis.  相似文献   

12.
To investigate the potential functional cooperation between p27Kip1 and p130 in vivo, we generated mice deficient for both p27Kip1 and p130. In p27Kip1-/-; p130-/- mice, the cellularity of the spleens but not the thymi is significantly increased compared with that of their p27Kip1-/- counterparts, affecting the lymphoid, erythroid, and myeloid compartments. In vivo cell proliferation is significantly augmented in the B and T cells, monocytes, macrophages, and erythroid progenitors in the spleens of p27Kip1-/-; p130-/- animals. Immunoprecipitation and immunodepletion studies indicate that p130 can compensate for the absence of p27Kip1 in binding to and repressing CDK2 and is the predominant CDK-inhibitor associated with the inactive CDK2 in the p27Kip1-/- splenocytes. The finding that the p27Kip1-/-; p130-/- splenic B cells are hypersensitive to mitogenic stimulations in vitro lends support to the concept that the hyperproliferation of splenocytes is not a result of the influence of their microenvironment. In summary, our findings provide genetic and molecular evidence to show that p130 is a bona fide cyclin-dependent kinase inhibitor and cooperates with p27Kip1 to regulate hematopoietic cell proliferation in vivo.  相似文献   

13.
We show that p27 localization is cell cycle regulated and we suggest that active CRM1/RanGTP-mediated nuclear export of p27 may be linked to cytoplasmic p27 proteolysis in early G1. p27 is nuclear in G0 and early G1 and appears transiently in the cytoplasm at the G1/S transition. Association of p27 with the exportin CRM1 was minimal in G0 and increased markedly during G1-to-S phase progression. Proteasome inhibition in mid-G1 did not impair nuclear import of p27, but led to accumulation of p27 in the cytoplasm, suggesting that export precedes degradation for at least part of the cellular p27 pool. p27-CRM1 binding and nuclear export were inhibited by S10A mutation but not by T187A mutation. A putative nuclear export sequence in p27 is identified whose mutation reduced p27-CRM1 interaction, nuclear export, and p27 degradation. Leptomycin B (LMB) did not inhibit p27-CRM1 binding, nor did it prevent p27 export in vitro or in heterokaryon assays. Prebinding of CRM1 to the HIV-1 Rev nuclear export sequence did not inhibit p27-CRM1 interaction, suggesting that p27 binds CRM1 at a non-LMB-sensitive motif. LMB increased total cellular p27 and may do so indirectly, through effects on other p27 regulatory proteins. These data suggest a model in which p27 undergoes active, CRM1-dependent nuclear export and cytoplasmic degradation in early G1. This would permit the incremental activation of cyclin E-Cdk2 leading to cyclin E-Cdk2-mediated T187 phosphorylation and p27 proteolysis in late G1 and S phase.  相似文献   

14.
Using theconditionally immortalized human cell line tsFHI, we have investigatedthe role of cyclin-dependent kinase inhibitors (CKIs) in intestinalepithelial cell differentiation. Expression of cyclins,cyclin-dependent kinases (Cdk), and CKIs was examined under conditionspromoting growth, growth arrest, or expression of differentiatedtraits. Formation of complexes among cell cycle regulatory proteins andtheir kinase activities were also investigated. The tsFHI cells expressthree CKIs: p16, p21, and p27. With differentiation, p21 and p27 werestrongly induced, but with different kinetics: the p21 increase wasrapid but transient and the p27 increase was delayed but sustained. Ourresults suggest that the function of p16 is primarily to inhibit cyclinD-associated kinases, making tsFHI cells dependent on cyclin E-Cdk2 forpRb phosphorylation and G1/Sprogression. Furthermore, they indicate that p21 is the main CKIinvolved in irreversible growth arrest during the early stages of celldifferentiation in association with D-type cyclins, cyclin E, and Cdk2,whereas p27 may induce or stabilize expression of differentiated traitsacting independently of cyclin-Cdk function.

  相似文献   

15.
A major function of p27, also known as Kip1, is to bind and inhibit cyclin/cyclin-dependent kinase complexes, thereby blocking cell cycle progression. As p27 operates at the heart of the cell cycle, it is perhaps not surprising that it is emerging as a key player in multiple cell fate decisions including proliferation, differentiation, and cell death. The central role of p27 makes it important in a variety of disease processes that involve aberrations in cellular proliferation and other cell fates. Most notable among these processes is neoplasia. A large number of studies have reported that p27 expression is frequently downregulated in human tumors. In most tumor types, reduced p27 expression correlates with poor prognosis, making p27 a novel and powerful prognostic marker. In addition to these practical implications, murine and tissue culture models have shown that p27 is a potent tumor suppressor gene for multiple epithelially derived neoplasias. Loss of p27 cooperates with mutations in several oncogenes and tumor suppressor genes to facilitate tumor growth, indicating that p27 may be a "nodal point" for tumor suppression. In contrast to most tumor suppressor genes studied to date, which are recessive at the cellular level, p27 is haploinsufficient for tumor suppression. The fact that tumor suppression by p27 is critically dependent on the absolute level of p27 expression indicates that p27 acts as a rheostat rather than as an on/off switch to control growth and neoplasia.  相似文献   

16.
17.
为了探讨p27Kip1蛋白和CyclinD1蛋白在非小细胞肺癌(NSCLC)中的表达及意义,收集临床手术切除的非小细胞肺癌组织蜡块64例及正常肺组织10例,应用免疫组化(S-P法)检测组织中p27Kip1蛋白和CyclinD1蛋白的表达,结合临床病理资料和随访资料进行回顾性研究。实验发现NSCLC组织中p27Kip1蛋白表达和CyclinD1蛋白表达均明显不同于正常肺组织(P<0.01)。p27Kip1蛋白表达降低与NSCLC肿瘤大小、病理分级、分期增加、淋巴结转移之间有相关性(P<0.05),但与肿瘤组织学分型无相关性(P>0.05)。CyclinD1蛋白过表达与组织学分型、肿瘤大小、病理分级、临床分期、淋巴结转移无相关性(P>0.05)。p27Kip1蛋白表达与CyclinD1蛋白表达之间呈显著负相关(P<0.01)。cox单因素及多因素分析,p27Kip1蛋白低表达及CyclinD1过表达是影响NSCLC患者预后的主要因素。实验结果显示,NSCLC组织中,p27Kip1蛋白表达降低,而CyclinD1过表达,二者与NSCLC的发生发展机制有关,可作为预后指标,有利于NSCLC患者预后判断及个体化治疗。  相似文献   

18.
19.
p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells   总被引:1,自引:0,他引:1  
The F-box protein p45SKP2 is the substrate-targeting subunit of the ubiquitin-protein ligase SCFSKP2 and is frequently overexpressed in transformed cells. Here we report that expression of p45SKP2 in untransformed fibroblasts activates DNA synthesis in cells that would otherwise growth-arrest. Expression of p45SKP2 in quiescent fibroblasts promotes p27Kip1 degradation, allows the generation of cyclin-A-dependent kinase activity and induces S phase. Coexpression of a degradation-resistant p27Kip1 mutant suppresses p45SKP2-induced cyclin-A-kinase activation and S-phase entry. We propose that p45SKP2 is important in the progression from quiescence to S phase and that the ability of p45SKP2 to promote p27Kip1 degradation is a key aspect of its S-phase-inducing function. In transformed cells, p45SKP2 may contribute to deregulated initiation of DNA replication by interfering with p27Kip1 function.  相似文献   

20.
Endothelial cell proliferation is a critical step in angiogenesis and requires a coordinated response to soluble growth factors and the extracellular matrix. As focal adhesion kinase (FAK) integrates signals from both adhesion events and growth factor stimulation, we investigated its role in endothelial cell proliferation. Expression of a dominant-negative FAK protein, FAK-related nonkinase (FRNK), impaired phosphorylation of FAK and blocked DNA synthesis in response to multiple angiogenic stimuli. These results coincided with elevated cyclin-dependent kinase inhibitors (CDKIs) p21/Cip and p27/Kip, as a consequence of impaired degradation. FRNK inhibited the expression of Skp2, an F-box protein that targets CDKIs, by inhibiting mitogen-induced mRNA. The FAK-regulated degradation of p27/Kip was Skp2 dependent, while levels of p21/Cip were regulated independent of Skp2. Skp2 is required for endothelial cell proliferation as a consequence of degrading p27. Finally, knockdown of both p21 and p27 in FRNK-expressing cells completely restored mitogen-induced endothelial cell proliferation. These data demonstrate a critical role for FAK in the regulation of CDKIs through two independent mechanisms: Skp2 dependent and Skp2 independent. They also provide important insights into the requirement of focal adhesion kinase for normal vascular development and reveal novel regulatory control points for angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号