首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In vivo rates of glucose uptake and acid production by oral streptococci grown in glucose- or nitrogen-limited continuous culture and batch culture were compared with the glucose phosphorylation activities of harvested, decryptified cells. The strains examined contained significant phosphoenolpyruvate-phosphotransferase system (PTS) activity, measured by a glucose 6-phosphate (G6P) dehydrogenase-linked assay procedure, but this activity was insufficient to account for the in vivo glucose uptake rates. However, ATP was a superior phosphoryl donor to phosphoenolpyruvate, and unlike the PTS, phosphoryl transfer with ATP was insensitive to bacteriostatic concentrations of chlorhexidine, suggesting glucokinase-mediated G6P formation. Again, G6P formation from the PTS and glucokinase reactions was not commensurate with some of the glucose uptake rates observed, implying that other phosphorylation reactions must be occurring. Two novel reactions involving carbamyl phosphate and acetyl phosphate were identified in some of the strains. No G6P formation was detected with these potential phosphoryl donors, but in the presence of phosphoglucomutase, glucose 1-phosphate (G1P) formation was evident, which was insensitive to chlorhexidine. G1P is a precursor of glycogen, and good correlation was obtained between G1P formation activity and endogenous metabolism of washed cells measured either as a rate of acid production at a constant pH 7 or as a decrease in pH with time in the absence of titrant. A "league table" of abilities to synthesize G1P and produce acid from endogenous metabolism was compiled for oral streptococci grown in batch culture. This indicated that Streptococcus mutans Ingbritt and Streptococcus sanguis Challis were unable to form G1P or produce much acid endogenously, whereas increasing activities were obtained with Streptococcus salivarius, Streptococcus sanguis, and Streptococcus mitis. In particular, S. mitis had the highest G1P formation activities and was able to decrease the pH to less than 5 in 15 min by endogenous metabolism alone. The data are consistent with the intracellular accumulation of free glucose driven by proton motive force when PTS activities are low and the subsequent phosphorylation to either G6P for metabolism via glycolysis or G1P for glycogen biosynthesis. The accumulation of acetyl phosphate during glucose-limited growth and the availability of arginine for catabolism to carbamyl phosphate provide an explanation as to why some glucose-limited oral streptococci continue to synthesize glycogen under these conditions, which might prevail in plaque.  相似文献   

3.
4.
The enzyme phosphoglucomutase plays a key role in cellular metabolism by virtue of its ability to interconvert Glc-1-P and Glc-6-P. It was recently shown that a yeast strain lacking the major isoform of phosphoglucomutase (pgm2Delta) accumulates a high level of Glc-1-P and exhibits several phenotypes related to altered Ca(2+) homeostasis when d-galactose is utilized as the carbon source (Fu, L., Miseta, A., Hunton, D., Marchase, R. B., and Bedwell, D. M. (2000) J. Biol. Chem. 275, 5431-5440). These phenotypes include increased Ca(2+) uptake and accumulation and sensitivity to high environmental Ca(2+) levels. In the present study, we overproduced the enzyme UDP-Glc pyrophosphorylase to test whether the overproduction of a downstream metabolite produced from Glc-1-P can also mediate changes in Ca(2+) homeostasis. We found that overproduction of UDP-Glc did not cause any alterations in Ca(2+) uptake or accumulation. We also examined whether Glc-6-P can influence cellular Ca(2+) homeostasis. A yeast strain lacking the beta-subunit of phosphofructokinase (pfk2Delta) accumulates a high level of Glc-6-P (Huang, D., Wilson, W. A., and Roach, P. J. (1997) J. Biol. Chem. 272, 22495-22501). We found that this increase in Glc-6-P led to a 1.5-2-fold increase in total cellular Ca(2+). We also found that the pgm2Delta/pfk2Delta strain, which accumulated high levels of both Glc-6-P and Glc-1-P, no longer exhibited the Ca(2+)-related phenotypes associated with high Glc-1-P levels in the pgm2Delta mutant. These results provide strong evidence that cellular Ca(2+) homeostasis is coupled to the relative levels of Glc-6-P and Glc-1-P in yeast.  相似文献   

5.
6,7 -Dideoxy-alpha-D-gluco-heptose 7-phosphonic acid, the isosteric phosphonate analogue of glucose 6-phosphate, was synthesized in six steps from the readily available precursor benzyl 4,6-O-benzylidene-alpha-D-glucopyranoside. The analogue is a substrate for yeast glucose 6-phosphate dehydrogenase, showing Michaelis-Menten kinetics at pH7.5 and 8.0. At both pH values the Km values of the analogue are 4-5 fold higher and the values approx. 50% lower than those of the natural substrate. The product of enzymic dehydrogenation of the phosphonate analogue at pH8.5 is itself a substrate for gluconate 6-phosphate dehydrogenase.  相似文献   

6.
7.
Sedimentation behavior of sweet potato glucose 6-phosphate dehydrogenasewas studied using the sucrose density gradient centrifugation.The relative s value to s20, value of alcohol dehydrogenasewas determined to be about 6 in the absence of both NADP$ andglucose 6-phosphate. In the presence of NADP$, the enzyme wassedimented with a relative s value of about 9. The additionof glucose 6-phosphate did not affect the sedimentation behavior.When glucose 6-phosphate was added to the gradient medium containingNDAP$, the enzyme was sedimented with a relative s value ofabout 6 or 7, depending on the concentration of glucose 6-phosphate. 1 Present address: Institute of Applied Microbiology, Universityof Tokyo, Bunkyo-ku. Tokyo, Japan. (Received February 13, 1971; )  相似文献   

8.
Bovine brain hexokinase enhances the effect of Mn(II) on the longitudinal relaxation rate of water protons. Direct interaction of Mn(II) with the enzyme has been studied using electron spin resonance and proton relaxation rate enhancement methods. The results indicate that brain hexokinase has 1.05 ± 0.13 tight binding sites and 7 ± 2 weak binding sites with a dissociation constant, KD = 25 ± 4 μM and KD = 1050 ± 290 μM, respectively, at pH 8.0, 23 °C. The characteristic enhancement ?b) for hexokinase-Mn(II) complex evaluated from proton relaxation rate enhancement studies, gave ?b = 3.5 ± 0.4 for tight binding sites and an average ?b = 2.3 ± 0.5 per site for weak binding sites at 9 MHZ. The dissociation constant of Mn(II) for tight binding sites on the enzyme exhibits strong temperature dependence. In the low-temperature region (5–12 °C) brain hexokinase probably undergoes a conformational change. Frequency dependence of the normalized relaxation rate for bound water at various temperatures has shown that the number of exchangeable water molecules left in the first coordination sphere of bound Mn(II) is about one at 30 °C and about two at 18 °C. Binding of glucose 6-phosphate to hexokinase results in large-line broadening of the resonances of anomeric protons of the sugar. However, no such effect was observed in the case of glucose binding. These results suggest different modes of interaction of these two sugars to hexokinase. Line broadening of the C-(1) hydrogen resonances of glucose caused by Mn(II) in the presence of hexokinase suggests the proximity of the Mn(II) binding site to that of glucose. A lower limit of 1330 ± 170 s?1 for the rate of dissociation of glucose from enzyme-Mn(II)-glucose complex has been obtained from these studies.  相似文献   

9.
Membrane vesicles were characterized for their ability to specifically bind [14C]glucose 6-phosphate. Membranes prepared from a strain carrying a ColE1 uhp hybrid plasmid showed significantly enhanced glucose 6-phosphate binding. It is hypothesized that glucose 6-phosphate binding to these membranes is due to a uhpR-directed, membrane-bound receptor which functions in regulation of the inducible uhpT gene product: the hexose phosphate permease.  相似文献   

10.
11.
12.
An automated flow system for the bioluminescent assay of various metabolites have been developed. The enzymes used in the assays have been coimmobilized onto Sepharose and packed into small flow cells. Assays for NADH, glucose 6-phosphate, and primary bile acids utilize the bacterial NADH:FMN oxidoreductase/luciferase and either glucose-6-phosphate dehydrogenase or 7 alpha-hydroxysteroid dehydrogenase. ATP assays were performed using immobilized firefly luciferase. In general, the lower limit of detection of the metabolites was at the picomole level, and light intensity was proportional to the substrate concentration from several picomoles to several hundred picomoles. The reproducibility was good with coefficient of variations in the range of 2-5%. The carryover was less than 5% and 30 samples per hour could be assayed. The flow cells were reusable for up to 700 consecutive assays. The major factor limiting their continued use was bacterial contamination of the Sepharose. The results obtained for serum primary bile acids using the bioluminescent assay wer in good agreement with independent measurements on the same samples using gas-liquid chromatography. The immobilized firefly luciferase system was successfully used to measure high levels of bacteria in urine specimens.  相似文献   

13.
An approach to the mechanism which may govern the behaviour of biological compartmentalized systems is presented. Artificial enzyme membranes with immobilized glucose oxidase, invertase or hexokinase were used to separate two compartments of a specially designed diffusion cell. Asymmetry in volume, hydrodynamic conditions and enzyme location was purposely chosen in order to create situations which could not be obtained with an enzyme free in solution, and was then used to tentatively mimic situations existing in vivo. Experiments were conducted and a translocation effect of H2O2, glucose and glucose 6-phosphate was obtained. A theoretical analysis taking into account the different identified parameters of the system was elaborated.  相似文献   

14.
Summary Glucose-6-phosphate dehydrogenase was purified to homogeneity from testes and kidneys of the inbred strain of mice (DBA/2J) by a simple two-step affinity column procedure. This involved the sequential application of 8-(6-aminohexyl)-amino-AMP-and -2, 5-ADP-Sepharose columns and biospecific elution with NADP+ in both steps. The molecular and biochemical properties of the purified enzyme were studied in detail. These include the molecular weight determination, amino acid composition, steady-state kinetics, inactivation by high temperature, urea and iodoacetate, and immunology. The purified enzyme from mouse kidneys or testes was shown to be a tetramer with a molecular weight of 220,000. The enzyme is highly specific for glucose-6-phosphate, exhibits almost no activity with NAD+ as a coenzyme and is little inhibited by AMP or ATP. Michaelis constants for glucose-6-phosphate and NADP+ were determined to be 50 m and 10 m respectively. NADPH is a competitive inhibitor of NADP+ and has a Ki of 18 µm. Rabbit antisera against glucose-6-phosphate dehydrogenase were raised. The antisera also cross-react with the same enzyme from human and guinea pig.  相似文献   

15.
1. Glucose 6-phosphate dehydrogenase was isolated and partially purified from a thermophilic fungus, Penicillium duponti, and a mesophilic fungus, Penicillium notatum. 2. The molecular weight of the P. duponti enzyme was found to be 120000+/-10000 by gelfiltration and sucrose-density-gradient-centrifugation techniques. No NADP(+)- or glucose 6-phosphate-induced change in molecular weight could be demonstrated. 3. Glucose 6-phosphate dehydrogenase from the thermophilic fungus was more heat-stable than that from the mesophile. Glucose 6-phosphate, but not NADP(+), protected the enzyme from both the thermophile and the mesophile from thermal inactivation. 4. The K(m) values determined for glucose 6-phosphate dehydrogenase from the thermophile P. duponti were 4.3x10(-5)m-NADP(+) and 1.6x10(-4)m-glucose 6-phosphate; for the enzyme from the mesophile P. notatum the values were 6.2x10(-5)m-NADP(+) and 2.5x10(-4)m-glucose 6-phosphate. 5. Inhibition by NADPH was competitive with respect to both NADP(+) and glucose 6-phosphate for both the P. duponti and P. notatum enzymes. The inhibition pattern indicated a rapid-equilibrium random mechanism, which may or may not involve a dead-end enzyme-NADP(+)-6-phosphogluconolactone complex; however, a compulsory-order mechanism that is consistent with all the results is proposed. 6. The activation energies for the P. duponti and P. notatum glucose 6-phosphate dehydrogenases were 40.2 and 41.4kJ.mol(-1) (9.6 and 9.9kcal.mol(-1)) respectively. 7. Palmitoyl-CoA inhibited P. duponti glucose 6-phosphate dehydrogenase and gave an inhibition constant of 5x10(-6)m. 8. Penicillium glucose 6-phosphate dehydrogenase had a high degree of substrate and coenzyme specificity.  相似文献   

16.
17.
18.
19.
Although the electrophoretic mobility of HeLa G6PD is similar to that of the common Negro variant G6PD A+, several reports have suggested slight differences between HeLa G6PD and G6PD A+. This study, carried out using the pure homogeneous B+, A+, and HeLa G6PD, showed that (1) the electrophoretic mobility of HeLa G6PD is identical to that of G6PD A+, (2) the enzymatic properties and thermostability of HeLa G6PD are indistinguishable from those of G6PD A+, and (3) the peptide map of the tryptic digest of HeLa G6PD is identical to that of G6PD A+, with one peptide spot of HeLa G6PD different from the corresponding spot of G6PD B+. These results indicate that the structure of HeLa G6PD is identical to that of G6PD A+, and that the amino acid substitution in HeLa G6PD is from one asparagine residue in the wild-type G6PD B+ to an aspartic acid residue in HeLa G6PD.This research was supported by research grant GM 15253 from the National Institutes of Health.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号