首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inactivation of endotoxin by human plasma gelsolin   总被引:7,自引:0,他引:7  
Septic shock from bacterial endotoxin, triggered by the release of lipopolysaccharide (LPS) molecules from the outer wall of Gram-negative bacteria, is a major cause of human death for which there is no effective treatment once the complex inflammatory pathways stimulated by these small amphipathic molecules are activated. Here we report that plasma gelsolin, a highly conserved human protein, binds LPS from various bacteria with high affinity. Solid-phase binding assays, fluorescence measurements, and functional assays of actin depolymerizing effects show that gelsolin binds more tightly to LPS than it does to its other known lipid ligands, phosphatidylinositol 4,5-bisphosphate and lysophosphatidic acid. Gelsolin also competes with LPS-binding protein (LBP), a high-affinity carrier for LPS. One result of gelsolin-LPS binding is inhibition of the actin binding activity of gelsolin as well as the actin depolymerizing activity of blood serum. Simultaneously, effects of LPS on cellular functions, including cytoskeletal actin remodeling, and collagen-induced platelet activation by pathways independent of toll-like receptors (TLRs) are neutralized by gelsolin and by a peptide based on gelsolin residues 160-169 (GSN160-169) which comprise part of gelsolin's phosphoinositide binding site. Additionally, TLR-dependent NF-kappaB translocation in astrocytes appears to be blocked by gelsolin. These results show a strong effect of LPS on plasma gelsolin function and suggest that some effects of endotoxin in vivo may be mediated or inhibited by plasma gelsolin.  相似文献   

2.
3.
4.
Lipoteichoic acid (LTA), a key cell wall component of Gram-positive bacteria, seems to function as an immune activator with characteristics very similar to lipopolysaccharide from Gram-negative bacteria. It has been shown that LTA binds CD14 and triggers activation via Toll-like receptor 2, but whether the activation occurs at the cell surface or internalization is required to trigger signaling has yet to be demonstrated. In this work we have investigated LTA binding and internalization and found that LTA and its receptor molecules accumulate in lipid rafts and are subsequently targeted rapidly to the Golgi apparatus. This internalization seems to be lipid raft-dependent because raft-disrupting drugs inhibited LTA/Toll-like receptor 2 colocalization in the Golgi. Similarly to lipopolysaccharide, LTA activation occurs at the cell surface, and the observed trafficking is independent of signaling.  相似文献   

5.
6.
Domain 5 of high molecular weight kininogen is antibacterial   总被引:1,自引:0,他引:1  
Antimicrobial peptides are important effectors of the innate immune system. These peptides belong to a multifunctional group of molecules that apart from their antibacterial activities also interact with mammalian cells and glycosaminoglycans and control chemotaxis, apoptosis, and angiogenesis. Here we demonstrate a novel antimicrobial activity of the heparin-binding and cell-binding domain 5 of high molecular weight kininogen. Antimicrobial epitopes of domain 5 were characterized by analysis of overlapping peptides. A peptide, HKH20 (His(479)-His(498)), efficiently killed the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa and the Gram-positive Enterococcus faecalis. Fluorescence microscopy and electron microscopy demonstrated that HKH20 binds to and induces breaks in bacterial membranes. Furthermore, no discernible hemolysis or membrane-permeabilizing effects on eukaryotic cells were noted. Proteolytic degradation of high molecular weight kininogen by neutrophil-derived proteases as well as the metalloproteinase elastase from P. aeruginosa yielded fragments comprising HKH20 epitopes, indicating that kininogen-derived antibacterial peptides are released during proteolysis.  相似文献   

7.
Lipoteichoic acid (LTA) is a structural component of the cell walls of Gram-positive bacteria. Similar to lipopolysaccharide (LPS) which is expressed in Gram-negative bacteria, LTA exhibits immunostimulatory properties. Frequently observed positive response of LTA in the Limulus amebocyte lysate (LAL) assay has been interpreted as a sign of LPS contamination, raising doubts about the intrinsic immune activities of LTA. Regarding many similarities in immunobiological and physicochemical properties of LTA and LPS, we hypothesized that similar to LPS, the LAL reactivity of LTA might be due to its ability to bind to LAL. Our data confirm the positivity of Bacillus subtilis, Staphylococcus aureus, Streptococcus faecalis and Streptococcus pyogenes LTAs in the LAL test. The estimates of suspected LPS content were 605, 10.3, 6.2 and 127 pg/μg LTA, respectively. The effectiveness of LTAs to induce the NO production in rat peritoneal cells was remarkably higher than that of equivalent concentrations of reference LPS (Escherichia coli). The LPS-induced NO was inhibited by polymyxin B (PMX), the IC50 of PMX:LPS concentration ratio (pg:pg) being 1050:1. Many fold higher concentrations of PMX were needed to partially suppress the NO-augmenting effects of LTAs, applied at concentrations representing the equivalents of LPS. Transposed to the concentrations of LTAs per se, the IC50s of the PMX:LTA ratios (μg:μg) ranged from 0.3:1 (S. aureus) to 7.5:1 (B. subtilis). It is concluded that LTA is not necessarily contaminated with LPS. The results prove the intrinsic immunostimulatory properties of LTAs of Gram-positive bacteria. The positive response of LTA in the LAL assay results from its capacity to bind to LAL. In addition, LTA binds with high affinity to PMX.  相似文献   

8.
A complex of low-molecular cationic peptides having an anti-bacterial effect with respect to Gram-positive and Gram-negative bacteria was isolated from the preparation of leukocytic interferon. The antibacterial action of the peptide complex was experimentally studied in vitro. The study revealed that the degree of the antibacterial activity of the peptide complex depended on the concentration of the bacterial culture under study, the ionic power of the incubation medium and did not depend on the presence of the products of bacterial vital activity in the growth medium. The antibacterial action of the peptide complex on the test cultures of Gram-positive and Gram-negative bacteria, as well as on the cultures of bacteria isolated from patients with infectious inflammatory diseases of the organs of the urinary system, was established. These results opened prospects for the development of fundamentally new antibacterial preparation on the basis of the peptide complex obtained in our studies.  相似文献   

9.
Peptidoglycan recognition proteins (PGRPs) are involved in the recognition of pathogen-associated molecular patterns. The well known pathogen-associated molecular patterns include LPS from Gram-negative bacteria and lipoteichoic acid (LTA) from Gram-positive bacteria. In this work, the crystal structures of two complexes of the short form of camel PGRP (CPGRP-S) with LPS and LTA determined at 1.7- and 2.1-? resolutions, respectively, are reported. Both compounds were held firmly inside the complex formed with four CPGRP-S molecules designated A, B, C, and D. The binding cleft is located at the interface of molecules C and D, which is extendable to the interface of molecules A and C. The interface of molecules A and B is tightly packed, whereas that of molecules B and D forms a wide channel. The hydrophilic moieties of these compounds occupy a common region, whereas hydrophobic chains interact with distinct regions in the binding site. The binding studies showed that CPGRP-S binds to LPS and LTA with affinities of 1.6 × 10(-9) and 2.4 × 10(-8) M, respectively. The flow cytometric studies showed that both LPS- and LTA-induced expression of the proinflammatory cytokines TNF-α and IL-6 was inhibited by CPGRP-S. The results of animal studies using mouse models indicated that both LPS- and LTA-induced mortality rates decreased drastically when CPGRP-S was administered. The recognition of both LPS and LTA, their high binding affinities for CPGRP-S, the significant decrease in the production of LPS- and LTA-induced TNF-α and IL-6, and the drastic reduction in the mortality rates in mice by CPGRP-S indicate its useful properties as an antibiotic agent.  相似文献   

10.
Hepcidin is an antimicrobial peptide and iron-regulatory molecule with highly conserved disulfide bridges among vertebrates, but structural insights into the function in fish remains largely missing. We demonstrate here that recombinant hepcidin-2 from zebrafish is capable of inhibiting the growth of the Gram-negative bacteria Escherichia coli and Vibrio anguillarum, and the Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis with minimum inhibitory concentrations (MICs) of 18, 15, 13 and 9 μM, respectively. We also show by TEM examination that recombinant hepcidin-2 is directly cidal to the cells of E. coli and S. aureus. Moreover, we find that hepcidin-2 displays affinity to LPS, LTA and PGN. All these data indicate that hepcidin-2 is both a pattern recognition molecule, capable of identifying LPS, LTA and PGN, and an antibacterial effector, capable of inhibiting the growth of bacteria. The data also show that the antibacterial activity of hepcidin-2 depends upon the disulfide bridges.  相似文献   

11.
Apolipophorin III (apoLp-III) is an abundant hemolymph protein involved in lipid transport and immune response in insects. We investigated involvement of apoLp-III in the antibacterial response in Galleria mellonella larvae. Immune challenge with Gram-negative (Escherichia coli, Klebsiella pneumoniae) and Gram-positive (Micrococcus luteus) bacteria led to an increase in the level of apoLp-III in G. mellonella hemolymph, 0.5-2h and 8h after treatment, respectively. ApoLp-III purified from larval hemolymph as well as that present in hemolymph extracts adsorbed on the surface of different bacteria. The adsorption capacity of apoLp-III on bacterial cells prompted us to investigate the effect of this phenomenon on bacterial growth. Our results demonstrate antibacterial activity of apoLp-III against selected Gram-positive and Gram-negative bacteria in vitro. Among bacteria tested, Salmonella typhimurium and K. pneumoniae were the most sensitive to apoLp-III. LIVE/DEAD staining of bacteria incubated with purified apoLp-III revealed their growth inhibition; however, neither morphological changes in the cell shape nor formation of cell aggregates was noticed. The results suggest that apoLp-III is a multifunctional protein in G. mellonella hemolymph.  相似文献   

12.
Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions.  相似文献   

13.
In many vertebrates and invertebrates, offspring whose mothers have been exposed to pathogens can exhibit increased levels of immune activity and/or increased survival to infection. Such phenomena, called “Trans-generational immune priming” (TGIP) are expected to provide immune protection to the offspring. As the offspring and their mother may share the same environment, and consequently similar microbial threats, we expect the immune molecules present in the progeny to be specific to the microbes that immune challenged the mother. We provide evidence in the mealworm beetle Tenebrio molitor that the antimicrobial activity found in the eggs is only active against Gram-positive bacteria, even when females were exposed to Gram-negative bacteria or fungi. Fungi were weak inducers of TGIP while we obtained similar levels of anti-Gram-positive activity using different bacteria for the maternal challenge. Furthermore, we have identified an antibacterial peptide from the defensin family, the tenecin 1, which spectrum of activity is exclusively directed toward Gram-positive bacteria as potential contributor to this antimicrobial activity. We conclude that maternal transfer of antimicrobial activity in the eggs of T. molitor might have evolved from persistent Gram-positive bacterial pathogens between insect generations.  相似文献   

14.
The importance of the biological function and activity of lipoproteins from the outer or cytoplasmic membranes of Gram-positive and Gram-negative bacteria is being increasingly recognized. It is well established that they are like the endotoxins (lipopolysaccharide (LPS)), which are the main amphiphilic components of the outer membrane of Gram-negative bacteria, potent stimulants of the human innate immune system, and elicit a variety of proinflammatory immune responses. Investigations of synthetic lipopeptides corresponding to N-terminal partial structures of bacterial lipoproteins defined the chemical prerequisites for their biological activity and in particular the number and length of acyl chains and sequence of the peptide part. Here we present experimental data on the biophysical mechanisms underlying lipopeptide bioactivity. Investigation of selected synthetic diacylated and triacylated lipopeptides revealed that the geometry of these molecules (i.e. the molecular conformations and supramolecular aggregate structures) and the preference for membrane intercalation provide an explanation for the biological activities of the different lipopeptides. This refers in particular to the agonistic or antagonistic activity (i.e. their ability to induce cytokines in mononuclear cells or to block this activity, respectively). Biological activity of lipopeptides was hardly affected by the LPS-neutralizing antibiotic polymyxin B, and the biophysical interaction characteristics were found to be in sharp contrast to that of LPS with polymyxin B. The analytical data show that our concept of "endotoxic conformation," originally developed for LPS, can be applied also to the investigated lipopeptide and suggest that the molecular mechanisms of cell activation by amphiphilic molecules are governed by a general principle.  相似文献   

15.
Cell-density-dependent gene expression is widespread in bacteria and is mediated by extracellular communication molecules. Gram-negative bacteria often use N-acyl homoserine lactones, whereas cell-cell signaling in Gram-positive bacteria is accomplished using post-translationally processed peptide pheromones. In many Gram-positive bacteria, export of these peptides requires the activity of a dedicated ATP-binding cassette (ABC) transporter, which cleaves off a typical leader peptide termed the double-glycine leader sequence concomitant with translocation across the membrane. Inspection of bacterial genome sequences has revealed the presence of similar ABC transporters, as well as genes encoding peptides with double-glycine-type leader sequences in Gram-negative bacteria, and it is suggested that the postulated transported peptides could perform a signaling function.  相似文献   

16.
17.
Invasive infection with Gram-positive and Gram-negative bacteria often results in septic shock and death. The basis for the earliest steps in innate immune response to Gram-positive bacterial infection is poorly understood. The LPS component of the Gram-negative bacterial cell wall appears to activate cells via CD14 and Toll-like receptor (TLR) 2 and TLR4. We hypothesized that Gram-positive bacteria might also be recognized by TLRs. Heterologous expression of human TLR2, but not TLR4, in fibroblasts conferred responsiveness to Staphylococcus aureus and Streptococcus pneumoniae as evidenced by inducible translocation of NF-kappaB. CD14 coexpression synergistically enhanced TLR2-mediated activation. To determine which components of Gram-positive cell walls activate Toll proteins, we tested a soluble preparation of peptidoglycan prepared from S. aureus. Soluble peptidoglycan substituted for whole organisms. These data suggest that the similarity of clinical response to invasive infection by Gram-positive and Gram-negative bacteria is due to bacterial recognition via similar TLRs.  相似文献   

18.
It has been previously reported that pretreatment with exogenous heat shock protein 70 (Hsp70) is able to protect cells and animals from the deleterious effects of bacterial lipopolysaccharide (LPS) produced by Gram-negative bacteria. However, the effects of Hsp70 pretreatment on lipoteichoic acid (LTA) challenge resulted from Gram-positive bacteria infection have not been fully elucidated. In this study, we demonstrated that preconditioning with human recombinant Hsp70 ameliorates various manifestations of systematic inflammation, including reactive oxygen species, TNFα, and CD11b/CD18 adhesion receptor expression induction observed in different myeloid cells after LTA addition. Therefore, exogenous Hsp70 may provide a mechanism for controlling excessive inflammatory responses after macrophage activation. Furthermore, in a rat model of LTA-induced sepsis, we demonstrated that prophylactic administration of exogenous human Hsp70 significantly exacerbated numerous homeostatic and hemodynamic disturbances induced by LTA challenge and partially normalized the coagulation system and multiple biochemical blood parameters, including albumin and bilirubin concentrations, which were severely disturbed after LTA injections. Importantly, prophylactic intravenous injection of Hsp70 before LTA challenge significantly reduced mortality rates. Thus, exogenous mammalian Hsp70 may serve as a powerful cellular defense agent against the deleterious effects of bacterial pathogens, such as LTA and LPS. Taken together, our findings reveal novel functions of this protein and establish exogenous Hsp70 as a promising pharmacological agent for the prophylactic treatment of various types of sepsis.  相似文献   

19.
The antimicrobial peptide from a bacterial strain is isolated from soil sample of Margalla Hills of Islamabad, Pakistan. The peptide is found to significantly inhibit the growth of both Gram-positive (Staphylococcus aureus ATCC 6538 and Micrococcus luteus ATCC 10240) and Gram-negative (Escherichia coli ATCC 25922 and Salmonella typhi ATCC 14028) bacteria as compared to gramicidin as standard. The bacterium is identified as Bacillus brevis strain MH9 based on phenotype and phylogenetic analysis. The antibacterial polypeptide was produced optimally at 35 °C after 48 h of growth, precipitated by 50 % ammonium sulphate, and further purified using HPLC. The sequential steps of purification decrease the peptide contents with prominent antibacterial activity. The peptide composed of 11 amino acid was further characterized by FT-IR and NMR. Results suggested that the peptide molecule is a novel antibacterial agent that is effective against both Gram-positive and Gram-negative bacteria. This study may have important implications for new peptide antibiotic that could be a new addition to treat infections.  相似文献   

20.
Peng  Jinxiu  Qiu  Shuai  Jia  Fengjing  Zhang  Lishi  He  Yuhang  Zhang  Fangfang  Sun  Mengmeng  Deng  Yabo  Guo  Yifei  Xu  Zhaoqing  Liang  Xiaolei  Yan  Wenjin  Wang  Kairong 《Amino acids》2021,53(1):23-32

Protonectin was a typical amphiphilic antimicrobial peptide with potent antimicrobial activity against Gram-positive and Gram-negative bacteria. In the present study, when its eleventh amino acid in the sequence was substituted by phenylalanine, the analog named phe-Prt showed potent antimicrobial activity against Gram-positive bacteria, but no antimicrobial activity against Gram-negative bacteria, indicating a significant selectivity between Gram-positive bacteria and Gram-negative bacteria. However, when Gram-negative bacteria were incubated with EDTA, the bacteria were susceptible to phe-Prt. Next, the binding effect of phe-Prt with LPS was determined. Our result showed that LPS could hamper the bactericidal activity of phe-Prt against Gram-positive bacteria. The result of zeta potential assay further confirmed the binding effect of phe-Prt with LPS for it could neutralize the surface charge of E. coli and LPS. Then, the effect of phe-Prt on the integrity of outer membrane of Gram-negative bacteria was determined. Our results showed that phe-Prt had a much weaker disturbance to the outer membrane of Gram-negative bacteria than the parent peptide protonectin. In summary, the introduction of l-phenylalanine into the sequence of antimicrobial peptide protonectin made phe-Prt show significant selectivity against Gram-positive bacteria, which could partly be attributed to the delay effect of LPS for phe-Prt to access to cell membrane. Although further study is still needed to clarify the exact mechanism of selectivity, the present study provided a strategy to develop antimicrobial peptides with selectivity toward Gram-positive and Gram-negative bacteria.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号