首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antiviral activities of type I IFNs have long been established. However, comparatively little is known of their role in defenses against nonviral pathogens. We examined here the effects of type I IFNs on host resistance against the model pathogenic yeast Cryptococcus neoformans. After intratracheal or i.v. challenge with this fungus, most mice lacking either the IFN-alpha/beta receptor (IFN-alpha/betaR) or IFN-beta died from unrestrained pneumonia and encephalitis, while all wild-type controls survived. The pulmonary immune response of IFN-alpha/betaR-/- mice was characterized by increased expression of IL-4, IL-13, and IL-10, decreased expression of TNF-alpha, IFN-gamma, inducible NO synthetase, and CXCL10, and similar levels of IL-12 mRNA, compared with wild-type controls. Histopathological analysis showed eosinophilic infiltrates in the lungs of IFN-alpha/betaR-/- mice, although this change was less extensive than that observed in similarly infected IFN-gammaR-deficient animals. Type I IFN responses could not be detected in the lung after intratracheal challenge. However, small, but statistically significant, elevations in IFN-beta levels were measured in the supernatants of bone marrow-derived macrophages or dendritic cells infected with C. neoformans. Our data demonstrate that type I IFN signaling is required for polarization of cytokine responses toward a protective type I pattern during cryptococcal infection.  相似文献   

2.
African trypanosomes are extracellular parasites causing sleeping sickness to human or nagana to livestock in sub-Saharan Africa. To gain insight into factors governing resistance/susceptibility to these parasites, the immune responses in mice infected with a Trypanosoma brucei phospholipase C null mutant (PLC(-/-)) or its wild type counterpart (WT) were compared. We found that the T. b. brucei mutant inducing a chronic infection triggers the production of type I cytokines during the early stage of infection, followed by the secretion of type II cytokines in the late/chronic phase of the disease. In contrast, WT-infected mice are killed within 5 weeks and remain locked in a type I cytokine response. The type I/type II cytokine balance may influence the development of different subsets of suppressive macrophages, i.e. classically activated macrophages (type I) versus alternatively activated macrophages (type II) that are antagonistically regulated. Therefore, the phenotype and accessory cell function of macrophages elicited during WT and PLC(-/-) T. b. brucei infections were addressed. Results indicate that classically activated macrophages develop in a type I cytokine environment in the early phase of both WT and PLC(-/-) trypanosome infections. In the late stage of infection, only PLC(-/-)-infected mice resisting the infection develop type II cytokine-associated alternative macrophages. In parallel, we found that mice susceptible to Trypanosoma congolense infection, showing an exponential parasite growth until they die, have a higher level of type II cytokines in the early stage of infection than resistant animals controlling the first peak of parasitaemia. The levels of type I cytokines were comparable in both T. congolense-resistant and -susceptible mice. On the basis of these results, we propose that survival to African trypanosome infection requires a type I cytokine environment and classical macrophage activation in the early stage of infection, enabling mice to control the first peak of parasitaemia. Thereafter, a switch to type II cytokine environment triggering alternative macrophage activation is required to enable progression of the disease into the chronic phase. The possible role of the sequential activation of alternative macrophages in the late/chronic stage of infection in the increased resistance of mice to PLC(-/-) T. b. brucei will be discussed.  相似文献   

3.
Type I IFNs (IFNIs) have pleiotropic functions in regulating host innate and adaptive immune responses to pathogens. To elucidate the role of IFNIs in host resistance to chlamydial infection in vivo, we compared IFN-alpha/beta receptor knockout (IFNAR(-/-)) and wild-type control mice in susceptibility to Chlamydia trachomatis mouse pneumonitis (Chlamydia muridarum) lung infection. We found that the IFNAR(-/-) mice were significantly more resistant to C. muridarum infection showing less bacterial burden and bodyweight loss, and milder pathological changes. However, IFN-gamma response, which is believed to be critical in host defense against chlamydial infection, was similar between the wild-type and IFNAR(-/-) mice. More importantly, TUNEL analysis showed less macrophage apoptosis in IFNAR(-/-) mice, which was consistent with lower expressions of IFNI-induced apoptotic factors, TRAIL, Daxx, and PKR. Furthermore, depletion of lung macrophages with dichloromethylene diphosphonate-liposome significantly increased the susceptibility of the IFNAR(-/-) mice to C. muridarum, confirming the importance of macrophages. Overall, the data indicate that IFNIs play a promoting role in C. muridarum lung infection, largely through increase of local macrophage apoptosis.  相似文献   

4.
Peritoneal macrophages (PM) were isolated from mice treated with Dimycolate of Trehalose (TDM), a glycolipid extracted from the cell wall of Mycobacterium tuberculosis. PM from TDM-treated mice (TDM-PM) were shown to secrete consistent amount of IFN-gamma, which was not detectable in control Resident-PM (Res-PM), as revealed by ELISA. In addition, biologically active IFN was detected in the supernatants of TDM-PM, whereas no IFN production was found in those of control Res-PM. The addition of specific antisera to PM cultures revealed the simultaneous production of both type I and II IFNs in TDM-PM cultures. No reciprocal regulation in the production of IFN-gamma and IFN-alpha/beta was found in these cultures. In parallel, nitric oxide (NO) production was measured in TDM-PM cultures by detecting nitrites (NO2-). TDM-PM cultures accumulated high amounts of NO2- which decreased to the level of Res-PM in the presence of NMMA, an inhibitor of NO-synthases. In vitro, neither type I nor type II IFNs were involved in the stimulation of NO production. The capacity of macrophages to simultaneously secrete IFN-gamma, IFN-alpha/beta and NO upon in vivo TDM-treatment could be of particular relevance for the defense process of innate immunity in which macrophages play a crucial role.  相似文献   

5.
Resistance to African trypanosomes is dependent on B cell and Th1 cell responses to the variant surface glycoprotein (VSG). While B cell responses to VSG control levels of parasitemia, the cytokine responses of Th1 cells to VSG appear to be linked to the control of parasites in extravascular tissues. We have recently shown that IFN-gamma knockout (IFN-gamma KO) mice are highly susceptible to infection and have reduced levels of macrophage activation compared to the wild-type C57BL/6 (WT) parent strain, even though parasitemias were controlled by VSG-specific antibody responses in both strains. In the present work, we examine the role of IFN-gamma in the induction of nitric oxide (NO) production and host resistance and in the development of suppressor macrophage activity in mice infected with Trypanosoma brucei rhodesiense. In contrast to WT mice, susceptible IFN-gamma KO mice did not produce NO during infection and did not develop suppressor macrophage activity, suggesting that NO might be linked to resistance but that suppressor cell activity was not associated with resistance or susceptibility to trypanosome infection. To further examine the consequence of inducible NO production in infection, we monitored survival, parasitemia, and Th cell cytokine production in iNOS KO mice. While survival times and parasitemia of iNOS KO mice did not differ significantly from WT mice, VSG-specific Th1 cells from iNOS KO mice produced higher levels of IFN-gamma and IL-2 than cells from WT mice. Together, these results show for the first time that inducible NO production is not the central defect associated with susceptibility of IFN-gamma KO mice to African trypanosomes, that IFNgamma-induced factors other than iNOS may be important for resistance to the trypanosomes, and that suppressor macrophage activity is not linked to either the resistance or the susceptibility phenotypes.  相似文献   

6.
Interleukin-10 is a predominantly anti-inflammatory cytokine that inhibits macrophage and dendritic cell function, but can acquire proinflammatory activity during immune responses. We investigated whether type I IFNs, which are elevated during infections and in autoimmune diseases, modulate the activity of IL-10. Priming of primary human macrophages with low concentrations of IFN-alpha diminished the ability of IL-10 to suppress TNF-alpha production. IFN-alpha conferred a proinflammatory gain of function on IL-10, leading to IL-10 activation of expression of IFN-gamma-inducible, STAT1-dependent genes such as IFN regulatory factor 1, IFN-gamma-inducible protein-10 (CXCL10), and monokine induced by IFN-gamma (CXCL9). IFN-alpha priming resulted in greatly enhanced STAT1 activation in response to IL-10, and STAT1 was required for IL-10 activation of IFN-gamma-inducible protein-10 and monokine induced by IFN-gamma expression in IFN-alpha-primed cells. In control, unprimed cells, IL-10 activation of STAT1 was suppressed by constitutive activity of protein kinase C and Src homology 2 domain-containing phosphatase 1. These results demonstrate that type I IFNs regulate the balance between IL-10 anti- and proinflammatory activity, and provide insight into molecular mechanisms that regulate IL-10 function. Gain of IL-10 proinflammatory functions may contribute to its pathogenic role in autoimmune diseases characterized by elevated type I IFN levels, such as systemic lupus erythematosus.  相似文献   

7.
8.
A three-day treatment with IFN-gamma enhanced up to 300% the capacity of human monocytes and macrophages to produce H2O2 during the respiratory burst. IFN-alpha or -beta (type I IFNs), which did not by themselves influence the burst, were found to antagonize the enhancing effect of IFN-gamma (type II IFN). The antagonism was concentration-dependent and required the presence of type I IFNs during the whole period of IFN-gamma pretreatment. These results suggest that the host defense function of mononuclear phagocytes may be controlled by the relative local concentrations of type I and type II IFNs.  相似文献   

9.
We previously reported that macrophage arginase inhibits NO-dependent trypanosome killing in vitro and in vivo. BALB/c and C57BL/6 mice are known to be susceptible and resistant to trypanosome infection, respectively. Hence, we assessed the expression and the role of inducible NO synthase (iNOS) and arginase in these two mouse strains infected with Trypanosoma brucei brucei. Arginase I and arginase II mRNA expression was higher in macrophages from infected BALB/c compared with those from C57BL/6 mice, whereas iNOS mRNA was up-regulated at the same level in both phenotypes. Similarly, arginase activity was more important in macrophages from infected BALB/c vs infected C57BL/6 mice. Moreover, increase of arginase I and arginase II mRNA levels and of macrophage arginase activity was directly induced by trypanosomes, with a higher level in BALB/c compared with C57BL/6 mice. Neither iNOS expression nor NO production was stimulated by trypanosomes in vitro. The high level of arginase activity in T. brucei brucei-infected BALB/c macrophages strongly inhibited macrophage NO production, which in turn resulted in less trypanosome killing compared with C57BL/6 macrophages. NO generation and parasite killing were restored to the same level in BALB/c and C57BL/6 macrophages when arginase was specifically inhibited with N(omega)-hydroxy-nor-L-arginine. In conclusion, host arginase represents a marker of resistance/susceptibility to trypanosome infections.  相似文献   

10.
IFN-kappa belongs to a recently identified subclass of type I IFNs. In this study, we report the cloning and preliminary characterization of the murine homologue of IFN-kappa. The gene encodes a 200-aa protein which is 38.5% homologous to human IFN-kappa. Murine IFN-kappa contains four cysteines in analogous positions to those observed in the IFN-alpha and an additional fifth unique cysteine, C174. The murine gene is located on chromosome 4, where other type I murine IFN genes, IFN-alpha and IFN-beta, are clustered. This region is syntenic with human chromosome 9 where the gene encoding IFN-kappa and the type I IFN gene cluster are found. Mouse IFN-kappa is expressed at low levels in peritoneal macrophages and its expression is up-regulated by dsRNA and IFN-gamma. Similar to previously reported transgenic mice carrying type I and type II IFNs, transgenic mice overexpressing murine IFN-kappa in the beta cells of the pancreas develop overt diabetes with hyperglycemia. Histological characterization of pancreatic islets from these transgenic mice showed inflammatory infiltrates with corresponding destruction of beta cells.  相似文献   

11.
Effects of type I interferons on Friend retrovirus infection   总被引:1,自引:0,他引:1  
The type I interferon (IFN) response plays an important role in the control of many viral infections. However, since there is no rodent animal model for human immunodeficiency virus, the antiviral effect of IFN-alpha and IFN-beta in retroviral infections is not well characterized. In the current study we have used the Friend virus (FV) model to determine the activity of type I interferons against a murine retrovirus. After FV infection of mice, IFN-alpha and IFN-beta could be measured between 12 and 48 h in the serum. The important role of type I IFN in the early immune defense against FV became evident when mice deficient in IFN type I receptor (IFNAR(-/-)) or IFN-beta (IFN-beta(-/-)) were infected. The levels of FV infection in plasma and in spleen were higher in both strains of knockout mice than in C57BL/6 wild-type mice. This difference was induced by an antiviral effect of IFN-alpha and IFN-beta and was most likely mediated by antiviral enzymes as well as by an effect of these IFNs on T-cell responses. Interestingly, the lack of IFNAR and IFN-beta enhanced viral loads during acute and chronic FV infection. Exogenous IFN-alpha could be used therapeutically to reduce FV replication during acute but not chronic infection. These findings indicate that type I IFN plays an important role in the immediate antiviral defense against Friend retrovirus infection.  相似文献   

12.
Legionella pneumophila is an intracellular pathogen whose replication in macrophages is mainly controlled by IFN-gamma. Freshly isolated peritoneal macrophages elicited in vivo with thioglycolate (TG) from A/J mice are highly permissive to L. pneumophila growth in vitro, while TG-elicited macrophages from CD1 mice are resistant. In this study, we show that when CD1 TG-macrophages are cultured for 7 days, they become permissive to Legionella infection. We demonstrate that treatment with type I IFN (IFN-alphabeta) totally inhibits the growth of L. pneumophila in both freshly isolated A/J and in vitro-aged CD1 TG-macrophages. IFN-alphabeta protective effect on permissive macrophages was comparable to that induced by IFN-gamma. Even low doses of either IFN-alpha or IFN-beta alone were effective in inhibiting L. pneumophila multiplication in macrophage cultures. Notably, treatment of resistant, freshly isolated CD1 TG-macrophages with Ab to mouse IFN-alphabeta significantly enhanced their susceptibility to Legionella infection in vitro, thus implying a role of endogenous IFN-alphabeta in mediating the natural resistance of macrophages to L. pneumophila infection. Finally, addition of anti-IFN-gamma-neutralizing Ab did not restore Legionella growth in IFN-alpha- or IFN-beta-treated A/J or CD1 permissive macrophages, indicating that IFN-alphabeta effect was not mediated by IFN-gamma. This observation was further confirmed by the finding that IFN-alphabeta was effective in inhibiting L. pneumophila replication in macrophages from IFN-gamma receptor-deficient mice. Taken together, our results provide the first evidence for a role of IFN-alphabeta in the control of L. pneumophila infection in mouse models of susceptible macrophages and suggest the existence of different pathways for the control of intracellular bacteria in macrophages.  相似文献   

13.
Type I interferon (IFN) contributes significantly to innate immune responses to pathogen infections in macrophages. Our previous studies demonstrate that Ubp43, an ISG15-specific isopeptidase, is highly expressed in macrophages and noncatalytically inhibits Type I IFN signaling. To understand the effect of Type I IFN and Ubp43 in macrophage activation, we analyzed the expression of IFN-beta stimulated genes in wild-type and Ubp43(-/-) bone marrow derived macrophages (BMMs). Here, we show that Ubp43 regulates IFN-beta stimulated genes at genome level. IFN hypersensitivity of Ubp43(-/-) BMMs resulted in the identification of 749 unique genes that are upregulated by IFN-beta, including a large group of previously unidentified IFN-stimulated genes. Functional analyses of these genes showed that Type I IFN strongly induced the expression of a group of immune response related genes, including genes for antigen presentation, antiviral responses, and chemokine and cytokine production. These results provide excellent biochemical support for the high resistance of viral and bacterial infection of Ubp43 knockout mice, suggesting that Ubp43 is a potential therapeutic target for the enhancement of immune responses against infections.  相似文献   

14.
Tolerance to African trypanosomes requires the production of IFN-gamma in the early stage of infection that triggers the development of classically activated macrophages controlling parasite growth. However, once the first peak of parasitemia has been controlled, down-regulation of the type 1 immune response has been described. In this study, we have evaluated whether regulatory T cells (Tregs) contribute to the limitation of the immune response occurring during Trypanosoma congolense infection and hereby influence the outcome of the disease in trypanotolerant C57BL/6 host. Our data show that Foxp3+ Tregs originating from the naturally occurring Treg pool expanded in the spleen and the liver of infected mice. These cells produced IL-10 and limited the production of IFN-gamma by CD4+ and CD8+ effector T cells. Tregs also down-regulated classical activation of macrophages resulting in reduced TNF-alpha production. The Treg-mediated suppression of the type 1 inflammatory immune response did not hamper parasite clearance, but was beneficial for the host survival by limiting the tissue damages, including liver injury. Collectively, these data suggest a cardinal role for naturally occurring Tregs in the development of a trypanotolerant phenotype during African trypanosomiasis.  相似文献   

15.
Mice of the CBA/CaJ strain, infected with Trypanosoma rhodesiense, were injected with a single high dose (approximately 200 mg/kg) of the immunosuppressive drug cyclophosphamide to determine if an induced, transient inability to make antibody affected survival or parasitemia. When given on the day of infection, the drug had no significant effect on survival. It delayed, but did not prevent, the appearance of specific antibodies and the clearance of the infecting trypanosome variants. When cyclophosphamide was injected 1 week after infection, survival mass significantly decreased. Antibody production to specific variant antigens and to common trypanosome antigens were terminated, but the mice were able to eliminate the infecting trypanosomes. These findings suggest that a temporary inability to make antibody to trypanosomes does not result in more rapid death when only the infecting trypanosome variant is present. However, immunosuppression may accelerate death if it occurs when there are many different types of trypanosomes present.  相似文献   

16.
High systemic drug toxicity and increasing prevalence of drug resistance hampers efficient treatment of human African trypanosomiasis (HAT). Hence, development of new highly specific trypanocidal drugs is necessary. Normal human serum (NHS) contains apolipoprotein L-I (apoL-I), which lyses African trypanosomes except resistant forms such as Trypanosoma brucei rhodesiense. T. b. rhodesiense expresses the apoL-I-neutralizing serum resistance-associated (SRA) protein, endowing this parasite with the ability to infect humans and cause HAT. A truncated apoL-I (Tr-apoL-I) has been engineered by deleting its SRA-interacting domain, which makes it lytic for T. b. rhodesiense. Here, we conjugated Tr-apoL-I with a single-domain antibody (nanobody) that efficiently targets conserved cryptic epitopes of the variant surface glycoprotein (VSG) of trypanosomes to generate a new manmade type of immunotoxin with potential for trypanosomiasis therapy. Treatment with this engineered conjugate resulted in clear curative and alleviating effects on acute and chronic infections of mice with both NHS-resistant and NHS-sensitive trypanosomes.  相似文献   

17.
The interferon system of teleost fish   总被引:4,自引:0,他引:4  
Interferons (IFNs) are secreted proteins, which induce vertebrate cells into an antiviral state. In mammals, three families of IFNs (type I IFN, type II IFN and IFN-lambda) can be distinguished on the basis of gene structure, protein structure and functional properties. Type I IFNs, which include IFN-alpha and IFN-beta, are encoded by intron lacking genes and have a major role in the first line of defense against viruses. The human IFN-lambdas have similar biological properties as type I IFNs, but are encoded by intron containing genes. Type II IFN is identical to IFN-gamma, which is produced by T helper 1 cells in response to mitogens and antigens and has a key role in adaptive cell mediated immunity. IFNs, which show structural and functional properties similar to mammalian type I IFNs, have recently been cloned from Atlantic salmon, channel catfish, pufferfish, and zebrafish. Teleost fish appear to have at least two type I IFN genes. Phylogenetic sequence analysis shows that the fish type I IFNs form a group separated from the avian type I IFNs and the mammalian IFN-alpha, -beta and -lambda groups. Interestingly, the fish IFNs possess the same exon/intron structure as the IFN-lambdas, but show most sequence similarity to IFN-alpha. Recently, IFN-gamma genes have also been cloned from several fish species and shown to have the same exon/intron structure as mammalian IFN-gamma genes. The antiviral effect of mammalian type I IFN is exerted through binding to the IFN-alpha/beta-receptor, which triggers signal transduction through the JAK-STAT signal transduction pathway resulting in expression of Mx and other antiviral proteins. Putative IFN receptor genes have been identified in pufferfish. Several interferon regulatory factors and members of the JAK-STAT pathway have also been identified in various fish species. Moreover, Mx and several other interferon stimulated genes have been cloned and studied in fish. Furthermore, antiviral activity of Mx protein from Atlantic salmon and Japanese flounder has recently been demonstrated.  相似文献   

18.
Type I IFN protects against murine lupus   总被引:1,自引:0,他引:1  
Both the type I (IFN-alpha beta) and type II (IFN-gamma) IFNs have been heavily implicated in the pathogenesis of systemic lupus erythematosus. To test the relative roles of these systems, congenic lupus-prone MRL/CD95(lpr/lpr) (MRL/lpr) mice lacking the type I IFN receptor (IFN-RI), type II IFN receptor (IFN-RII), or both, were derived. As expected, deficiency for IFN-RII protected MRL/lpr mice from the development of significant autoimmune-associated lymphadenopathy, autoantibodies, and renal disease. However, deficiency for the IFN-RI surprisingly worsened lymphoproliferation, autoantibody production, and end organ disease; animals doubly deficient for IFN-RI and IFN-RII developed an autoimmune phenotype intermediate between wild-type and IFN-RII-deficient animals, all correlating with an ability of type I IFN to suppress MRL B cell activation. Thus, type I IFNs protect against both the humoral and end organ autoimmune syndrome of MRL/lpr mice, independent of IFN-gamma. These findings warrant caution in the use of type I IFN antagonists in the treatment of autoimmune diseases and suggest further investigation into the interplay between the types I and II IFNs during the ontogeny of pathogenic autoantibodies.  相似文献   

19.
Defence mechanisms against intracellular bacterial pathogens are incompletely understood. Our study characterizes a type I IFN-dependent cell-autonomous defence pathway directed against Legionella pneumophila, an intracellular model organism and frequent cause of pneumonia. We show that macrophages infected with L. pneumophila produced IFNβ in a STING- and IRF3- dependent manner. Paracrine type I IFNs stimulated upregulation of IFN-stimulated genes and a cell-autonomous defence pathway acting on replicating and non-replicating Legionella within their specialized vacuole. Our infection experiments in mice lacking receptors for type I and/or II IFNs show that type I IFNs contribute to expression of IFN-stimulated genes and to bacterial clearance as well as resistance in L. pneumophila pneumonia in addition to type II IFN. Overall, our study shows that paracrine type I IFNs mediate defence against L. pneumophila, and demonstrates a protective role of type I IFNs in in vivo infections with intracellular bacteria.  相似文献   

20.
Antigenic variation in African trypanosomes, which is a simple strategy for survival in the immune host, is rendered complex by its magnitude. For protection from nonspecific immunity and escape from specific immunity, each trypanosome is covered by a replaceable surface coat composed of the variant surface glycoprotein (VSG), which specifies the variable antigen type (VAT) of the trypanosome. Antigenic variation is the process by which the trypanosome switches from one coat to another. Here, David Barry and Michael Turner consider this phenomenon within the context of the course of trypanosome infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号