首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

In the absence of consolidated pipelines to archive biological data electronically, information dispersed in the literature must be captured by manual annotation. Unfortunately, manual annotation is time consuming and the coverage of published interaction data is therefore far from complete. The use of text-mining tools to identify relevant publications and to assist in the initial information extraction could help to improve the efficiency of the curation process and, as a consequence, the database coverage of data available in the literature. The 2006 BioCreative competition was aimed at evaluating text-mining procedures in comparison with manual annotation of protein-protein interactions.

Results

To aid the BioCreative protein-protein interaction task, IntAct and MINT (Molecular INTeraction) provided both the training and the test datasets. Data from both databases are comparable because they were curated according to the same standards. During the manual curation process, the major cause of data loss in mining the articles for information was ambiguity in the mapping of the gene names to stable UniProtKB database identifiers. It was also observed that most of the information about interactions was contained only within the full-text of the publication; hence, text mining of protein-protein interaction data will require the analysis of the full-text of the articles and cannot be restricted to the abstract.

Conclusion

The development of text-mining tools to extract protein-protein interaction information may increase the literature coverage achieved by manual curation. To support the text-mining community, databases will highlight those sentences within the articles that describe the interactions. These will supply data-miners with a high quality dataset for algorithm development. Furthermore, the dictionary of terms created by the BioCreative competitors could enrich the synonym list of the PSI-MI (Proteomics Standards Initiative-Molecular Interactions) controlled vocabulary, which is used by both databases to annotate their data content.
  相似文献   

2.

Background:

Genome sciences have experienced an increasing demand for efficient text-processing tools that can extract biologically relevant information from the growing amount of published literature. In response, a range of text-mining and information-extraction tools have recently been developed specifically for the biological domain. Such tools are only useful if they are designed to meet real-life tasks and if their performance can be estimated and compared. The BioCreative challenge (Critical Assessment of Information Extraction in Biology) consists of a collaborative initiative to provide a common evaluation framework for monitoring and assessing the state-of-the-art of text-mining systems applied to biologically relevant problems.

Results:

The Second BioCreative assessment (2006 to 2007) attracted 44 teams from 13 countries worldwide, with the aim of evaluating current information-extraction/text-mining technologies developed for one or more of the three tasks defined for this challenge evaluation. These tasks included the recognition of gene mentions in abstracts (gene mention task); the extraction of a list of unique identifiers for human genes mentioned in abstracts (gene normalization task); and finally the extraction of physical protein-protein interaction annotation-relevant information (protein-protein interaction task). The 'gold standard' data used for evaluating submissions for the third task was provided by the interaction databases MINT (Molecular Interaction Database) and IntAct.

Conclusion:

The Second BioCreative assessment almost doubled the number of participants for each individual task when compared with the first BioCreative assessment. An overall improvement in terms of balanced precision and recall was observed for the best submissions for the gene mention (F score 0.87); for the gene normalization task, the best results were comparable (F score 0.81) compared with results obtained for similar tasks posed at the first BioCreative challenge. In case of the protein-protein interaction task, the importance and difficulties of experimentally confirmed annotation extraction from full-text articles were explored, yielding different results depending on the step of the annotation extraction workflow. A common characteristic observed in all three tasks was that the combination of system outputs could yield better results than any single system. Finally, the development of the first text-mining meta-server was promoted within the context of this community challenge.
  相似文献   

3.

Background:

Research scientists and companies working in the domains of biomedicine and genomics are increasingly faced with the problem of efficiently locating, within the vast body of published scientific findings, the critical pieces of information that are needed to direct current and future research investment.

Results:

In this report we describe approaches taken within the scope of the second BioCreative competition in order to solve two aspects of this problem: detection of novel protein interactions reported in scientific articles, and detection of the experimental method that was used to confirm the interaction. Our approach to the former problem is based on a high-recall protein annotation step, followed by two strict disambiguation steps. The remaining proteins are then combined according to a number of lexico-syntactic filters, which deliver high-precision results while maintaining reasonable recall. The detection of the experimental methods is tackled by a pattern matching approach, which has delivered the best results in the official BioCreative evaluation.

Conclusion:

Although the results of BioCreative clearly show that no tool is sufficiently reliable for fully automated annotations, a few of the proposed approaches (including our own) already perform at a competitive level. This makes them interesting either as standalone tools for preliminary document inspection, or as modules within an environment aimed at supporting the process of curation of biomedical literature.
  相似文献   

4.

Background:

The biomedical literature is the primary information source for manual protein-protein interaction annotations. Text-mining systems have been implemented to extract binary protein interactions from articles, but a comprehensive comparison between the different techniques as well as with manual curation was missing.

Results:

We designed a community challenge, the BioCreative II protein-protein interaction (PPI) task, based on the main steps of a manual protein interaction annotation workflow. It was structured into four distinct subtasks related to: (a) detection of protein interaction-relevant articles; (b) extraction and normalization of protein interaction pairs; (c) retrieval of the interaction detection methods used; and (d) retrieval of actual text passages that provide evidence for protein interactions. A total of 26 teams submitted runs for at least one of the proposed subtasks. In the interaction article detection subtask, the top scoring team reached an F-score of 0.78. In the interaction pair extraction and mapping to SwissProt, a precision of 0.37 (with recall of 0.33) was obtained. For associating articles with an experimental interaction detection method, an F-score of 0.65 was achieved. As for the retrieval of the PPI passages best summarizing a given protein interaction in full-text articles, 19% of the submissions returned by one of the runs corresponded to curator-selected sentences. Curators extracted only the passages that best summarized a given interaction, implying that many of the automatically extracted ones could contain interaction information but did not correspond to the most informative sentences.

Conclusion:

The BioCreative II PPI task is the first attempt to compare the performance of text-mining tools specific for each of the basic steps of the PPI extraction pipeline. The challenges identified range from problems in full-text format conversion of articles to difficulties in detecting interactor protein pairs and then linking them to their database records. Some limitations were also encountered when using a single (and possibly incomplete) reference database for protein normalization or when limiting search for interactor proteins to co-occurrence within a single sentence, when a mention might span neighboring sentences. Finally, distinguishing between novel, experimentally verified interactions (annotation relevant) and previously known interactions adds additional complexity to these tasks.
  相似文献   

5.

Background:

The goal of text mining is to make the information conveyed in scientific publications accessible to structured search and automatic analysis. Two important subtasks of text mining are entity mention normalization - to identify biomedical objects in text - and extraction of qualified relationships between those objects. We describe a method for identifying genes and relationships between proteins.

Results:

We present solutions to gene mention normalization and extraction of protein-protein interactions. For the first task, we identify genes by using background knowledge on each gene, namely annotations related to function, location, disease, and so on. Our approach currently achieves an f-measure of 86.4% on the BioCreative II gene normalization data. For the extraction of protein-protein interactions, we pursue an approach that builds on classical sequence analysis: motifs derived from multiple sequence alignments. The method achieves an f-measure of 24.4% (micro-average) in the BioCreative II interaction pair subtask.

Conclusion:

For gene mention normalization, our approach outperforms strategies that utilize only the matching of genes names against dictionaries, without invoking further knowledge on each gene. Motifs derived from alignments of sentences are successful at identifying protein interactions in text; the approach we present in this report is fully automated and performs similarly to systems that require human intervention at one or more stages.

Availability:

Our methods for gene, protein, and species identification, and extraction of protein-protein are available as part of the BioCreative Meta Services (BCMS), see http://bcms.bioinfo.cnio.es/.
  相似文献   

6.

Background:

We participated in three of the protein-protein interaction subtasks of the Second BioCreative Challenge: classification of abstracts relevant for protein-protein interaction (interaction article subtask [IAS]), discovery of protein pairs (interaction pair subtask [IPS]), and identification of text passages characterizing protein interaction (interaction sentences subtask [ISS]) in full-text documents. We approached the abstract classification task with a novel, lightweight linear model inspired by spam detection techniques, as well as an uncertainty-based integration scheme. We also used a support vector machine and singular value decomposition on the same features for comparison purposes. Our approach to the full-text subtasks (protein pair and passage identification) includes a feature expansion method based on word proximity networks.

Results:

Our approach to the abstract classification task (IAS) was among the top submissions for this task in terms of measures of performance used in the challenge evaluation (accuracy, F-score, and area under the receiver operating characteristic curve). We also report on a web tool that we produced using our approach: the Protein Interaction Abstract Relevance Evaluator (PIARE). Our approach to the full-text tasks resulted in one of the highest recall rates as well as mean reciprocal rank of correct passages.

Conclusion:

Our approach to abstract classification shows that a simple linear model, using relatively few features, can generalize and uncover the conceptual nature of protein-protein interactions from the bibliome. Because the novel approach is based on a rather lightweight linear model, it can easily be ported and applied to similar problems. In full-text problems, the expansion of word features with word proximity networks is shown to be useful, although the need for some improvements is discussed.
  相似文献   

7.

Background

Protein-protein interactions are important for several cellular processes. Understanding the mechanism of protein-protein recognition and predicting the binding sites in protein-protein complexes are long standing goals in molecular and computational biology.

Methods

We have developed an energy based approach for identifying the binding site residues in protein–protein complexes. The binding site residues have been analyzed with sequence and structure based parameters such as binding propensity, neighboring residues in the vicinity of binding sites, conservation score and conformational switching.

Results

We observed that the binding propensities of amino acid residues are specific for protein-protein complexes. Further, typical dipeptides and tripeptides showed high preference for binding, which is unique to protein-protein complexes. Most of the binding site residues are highly conserved among homologous sequences. Our analysis showed that 7% of residues changed their conformations upon protein-protein complex formation and it is 9.2% and 6.6% in the binding and non-binding sites, respectively. Specifically, the residues Glu, Lys, Leu and Ser changed their conformation from coil to helix/strand and from helix to coil/strand. Leu, Ser, Thr and Val prefer to change their conformation from strand to coil/helix.

Conclusions

The results obtained in this study will be helpful for understanding and predicting the binding sites in protein-protein complexes.
  相似文献   

8.

Background

Protein complexes can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of protein complexes detection algorithms.

Methods

We have developed novel semantic similarity method, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. Following the approach of that of the previously proposed clustering algorithm IPCA which expands clusters starting from seeded vertices, we present a clustering algorithm OIIP based on the new weighted Protein-Protein interaction networks for identifying protein complexes.

Results

The algorithm OIIP is applied to the protein interaction network of Sacchromyces cerevisiae and identifies many well known complexes. Experimental results show that the algorithm OIIP has higher F-measure and accuracy compared to other competing approaches.
  相似文献   

9.

Background:

The goal of the gene normalization task is to link genes or gene products mentioned in the literature to biological databases. This is a key step in an accurate search of the biological literature. It is a challenging task, even for the human expert; genes are often described rather than referred to by gene symbol and, confusingly, one gene name may refer to different genes (often from different organisms). For BioCreative II, the task was to list the Entrez Gene identifiers for human genes or gene products mentioned in PubMed/MEDLINE abstracts. We selected abstracts associated with articles previously curated for human genes. We provided 281 expert-annotated abstracts containing 684 gene identifiers for training, and a blind test set of 262 documents containing 785 identifiers, with a gold standard created by expert annotators. Inter-annotator agreement was measured at over 90%.

Results:

Twenty groups submitted one to three runs each, for a total of 54 runs. Three systems achieved F-measures (balanced precision and recall) between 0.80 and 0.81. Combining the system outputs using simple voting schemes and classifiers obtained improved results; the best composite system achieved an F-measure of 0.92 with 10-fold cross-validation. A 'maximum recall' system based on the pooled responses of all participants gave a recall of 0.97 (with precision 0.23), identifying 763 out of 785 identifiers.

Conclusion:

Major advances for the BioCreative II gene normalization task include broader participation (20 versus 8 teams) and a pooled system performance comparable to human experts, at over 90% agreement. These results show promise as tools to link the literature with biological databases.
  相似文献   

10.

Background

Currently a huge amount of protein-protein interaction data is available from high throughput experimental methods. In a large network of protein-protein interactions, groups of proteins can be identified as functional clusters having related functions where a single protein can occur in multiple clusters. However experimental methods are error-prone and thus the interactions in a functional cluster may include false positives or there may be unreported interactions. Therefore correctly identifying a functional cluster of proteins requires the knowledge of whether any two proteins in a cluster interact, whether an interaction can exclude other interactions, or how strong the affinity between two interacting proteins is.

Methods

In the present work the yeast protein-protein interaction network is clustered using a spectral clustering method proposed by us in 2006 and the individual clusters are investigated for functional relationships among the member proteins. 3D structural models of the proteins in one cluster have been built – the protein structures are retrieved from the Protein Data Bank or predicted using a comparative modeling approach. A rigid body protein docking method (Cluspro) is used to predict the protein-protein interaction complexes. Binding sites of the docked complexes are characterized by their buried surface areas in the docked complexes, as a measure of the strength of an interaction.

Results

The clustering method yields functionally coherent clusters. Some of the interactions in a cluster exclude other interactions because of shared binding sites. New interactions among the interacting proteins are uncovered, and thus higher order protein complexes in the cluster are proposed. Also the relative stability of each of the protein complexes in the cluster is reported.

Conclusions

Although the methods used are computationally expensive and require human intervention and judgment, they can identify the interactions that could occur together or ones that are mutually exclusive. In addition indirect interactions through another intermediate protein can be identified. These theoretical predictions might be useful for crystallographers to select targets for the X-ray crystallographic determination of protein complexes.
  相似文献   

11.

Background:

The tasks in BioCreative II were designed to approximate some of the laborious work involved in curating biomedical research papers. The approach to these tasks taken by the University of Edinburgh team was to adapt and extend the existing natural language processing (NLP) system that we have developed as part of a commercial curation assistant. Although this paper concentrates on using NLP to assist with curation, the system can be equally employed to extract types of information from the literature that is immediately relevant to biologists in general.

Results:

Our system was among the highest performing on the interaction subtasks, and competitive performance on the gene mention task was achieved with minimal development effort. For the gene normalization task, a string matching technique that can be quickly applied to new domains was shown to perform close to average.

Conclusion:

The technologies being developed were shown to be readily adapted to the BioCreative II tasks. Although high performance may be obtained on individual tasks such as gene mention recognition and normalization, and document classification, tasks in which a number of components must be combined, such as detection and normalization of interacting protein pairs, are still challenging for NLP systems.
  相似文献   

12.

Background

The biomedical domain is witnessing a rapid growth of the amount of published scientific results, which makes it increasingly difficult to filter the core information. There is a real need for support tools that 'digest' the published results and extract the most important information.

Results

We describe and evaluate an environment supporting the extraction of domain-specific relations, such as protein-protein interactions, from a richly-annotated corpus. We use full, deep-linguistic parsing and manually created, versatile patterns, expressing a large set of syntactic alternations, plus semantic ontology information.

Conclusion

The experiments show that our approach described is capable of delivering high-precision results, while maintaining sufficient levels of recall. The high level of abstraction of the rules used by the system, which are considerably more powerful and versatile than finite-state approaches, allows speedy interactive development and validation.
  相似文献   

13.
Wang J  Xie D  Lin H  Yang Z  Zhang Y 《Proteome science》2012,10(Z1):S18

Background

Many biological processes recognize in particular the importance of protein complexes, and various computational approaches have been developed to identify complexes from protein-protein interaction (PPI) networks. However, high false-positive rate of PPIs leads to challenging identification.

Results

A protein semantic similarity measure is proposed in this study, based on the ontology structure of Gene Ontology (GO) terms and GO annotations to estimate the reliability of interactions in PPI networks. Interaction pairs with low GO semantic similarity are removed from the network as unreliable interactions. Then, a cluster-expanding algorithm is used to detect complexes with core-attachment structure on filtered network. Our method is applied to three different yeast PPI networks. The effectiveness of our method is examined on two benchmark complex datasets. Experimental results show that our method performed better than other state-of-the-art approaches in most evaluation metrics.

Conclusions

The method detects protein complexes from large scale PPI networks by filtering GO semantic similarity. Removing interactions with low GO similarity significantly improves the performance of complex identification. The expanding strategy is also effective to identify attachment proteins of complexes.
  相似文献   

14.

Background

Protein ubiquitination catalyzed by E3 ubiquitin ligases play important modulatory roles in various biological processes. With the emergence of high-throughput mass spectrometry technology, the proteomics research community embraced the development of numerous experimental methods for the determination of ubiquitination sites. The result is an accumulation of ubiquitinome data, coupled with a lack of available resources for investigating the regulatory networks among E3 ligases and ubiquitinated proteins. In this study, by integrating existing ubiquitinome data, experimentally validated E3 ligases and established protein-protein interactions, we have devised a strategy to construct a comprehensive map of protein ubiquitination networks.

Results

In total, 41,392 experimentally verified ubiquitination sites from 12,786 ubiquitinated proteins of humans have been obtained for this study. Additional 494 E3 ligases along with 1220 functional annotations and 28588 protein domains were manually curated. To characterize the regulatory networks among E3 ligases and ubiquitinated proteins, a well-established network viewer was utilized for the exploration of ubiquitination networks from 40892 protein-protein interactions. The effectiveness of the proposed approach was demonstrated in a case study examining E3 ligases involved in the ubiquitination of tumor suppressor p53. In addition to Mdm2, a known regulator of p53, the investigation also revealed other potential E3 ligases that may participate in the ubiquitination of p53.

Conclusion

Aside from the ability to facilitate comprehensive investigations of protein ubiquitination networks, by integrating information regarding protein-protein interactions and substrate specificities, the proposed method could discover potential E3 ligases for ubiquitinated proteins. Our strategy presents an efficient means for the preliminary screen of ubiquitination networks and overcomes the challenge as a result of limited knowledge about E3 ligase-regulated ubiquitination.
  相似文献   

15.

Background

The increasing number of protein sequences and 3D structure obtained from genomic initiatives is leading many of us to focus on proteomics, and to dedicate our experimental and computational efforts on the creation and analysis of information derived from 3D structure. In particular, the high-throughput generation of protein-protein interaction data from a few organisms makes such an approach very important towards understanding the molecular recognition that make-up the entire protein-protein interaction network. Since the generation of sequences, and experimental protein-protein interactions increases faster than the 3D structure determination of protein complexes, there is tremendous interest in developing in silico methods that generate such structure for prediction and classification purposes. In this study we focused on classifying protein family members based on their protein-protein interaction distinctiveness. Structure-based classification of protein-protein interfaces has been described initially by Ponstingl et al. [1] and more recently by Valdar et al. [2] and Mintseris et al. [3], from complex structures that have been solved experimentally. However, little has been done on protein classification based on the prediction of protein-protein complexes obtained from homology modeling and docking simulation.

Results

We have developed an in silico classification system entitled HODOCO (Homology modeling, Docking and Classification Oracle), in which protein Residue Potential Interaction Profiles (RPIPS) are used to summarize protein-protein interaction characteristics. This system applied to a dataset of 64 proteins of the death domain superfamily was used to classify each member into its proper subfamily. Two classification methods were attempted, heuristic and support vector machine learning. Both methods were tested with a 5-fold cross-validation. The heuristic approach yielded a 61% average accuracy, while the machine learning approach yielded an 89% average accuracy.

Conclusion

We have confirmed the reliability and potential value of classifying proteins via their predicted interactions. Our results are in the same range of accuracy as other studies that classify protein-protein interactions from 3D complex structure obtained experimentally. While our classification scheme does not take directly into account sequence information our results are in agreement with functional and sequence based classification of death domain family members.
  相似文献   

16.

Background:

Reliable information extraction applications have been a long sought goal of the biomedical text mining community, a goal that if reached would provide valuable tools to benchside biologists in their increasingly difficult task of assimilating the knowledge contained in the biomedical literature. We present an integrated approach to concept recognition in biomedical text. Concept recognition provides key information that has been largely missing from previous biomedical information extraction efforts, namely direct links to well defined knowledge resources that explicitly cement the concept's semantics. The BioCreative II tasks discussed in this special issue have provided a unique opportunity to demonstrate the effectiveness of concept recognition in the field of biomedical language processing.

Results:

Through the modular construction of a protein interaction relation extraction system, we present several use cases of concept recognition in biomedical text, and relate these use cases to potential uses by the benchside biologist.

Conclusion:

Current information extraction technologies are approaching performance standards at which concept recognition can begin to deliver high quality data to the benchside biologist. Our system is available as part of the BioCreative Meta-Server project and on the internet http://bionlp.sourceforge.net.
  相似文献   

17.

Background

Protein complexes play an important role in biological processes. Recent developments in experiments have resulted in the publication of many high-quality, large-scale protein-protein interaction (PPI) datasets, which provide abundant data for computational approaches to the prediction of protein complexes. However, the precision of protein complex prediction still needs to be improved due to the incompletion and noise in PPI networks.

Results

There exist complex and diverse relationships among proteins after integrating multiple sources of biological information. Considering that the influences of different types of interactions are not the same weight for protein complex prediction, we construct a multi-relationship protein interaction network (MPIN) by integrating PPI network topology with gene ontology annotation information. Then, we design a novel algorithm named MINE (identifying protein complexes based on Multi-relationship protein Interaction NEtwork) to predict protein complexes with high cohesion and low coupling from MPIN.

Conclusions

The experiments on yeast data show that MINE outperforms the current methods in terms of both accuracy and statistical significance.
  相似文献   

18.

Background

Multimeric protein complexes have a role in many cellular pathways and are highly interconnected with various other proteins. The characterization of their domain composition and organization provides useful information on the specific role of each region of their sequence.

Results

We identified a new module, the PAM domain (P CI/PINT a ssociated m odule), present in single subunits of well characterized multiprotein complexes, like the regulatory lid of the 26S proteasome, the COP-9 signalosome and the Sac3-Thp1 complex. This module is an around 200 residue long domain with a predicted TPR-like all-alpha-helical fold.

Conclusions

The occurrence of the PAM domain in specific subunits of multimeric protein complexes, together with the role of other all-alpha-helical folds in protein-protein interactions, suggest a function for this domain in mediating transient binding to diverse target proteins.
  相似文献   

19.

Background

Despite the broad use of FRET techniques, available methods for analyzing protein-protein interaction are subject to high labor and lack of systematic analysis. We propose an open source software allowing the quantitative analysis of fluorescence lifetime imaging (FLIM) while integrating the steady-state fluorescence intensity information for protein-protein interaction studies.

Findings

Our developed open source software is dedicated to fluorescence lifetime imaging microscopy (FLIM) data obtained from Becker & Hickl SPC-830. FLIM-FRET analyzer includes: a user-friendly interface enabling automated intensity-based segmentation into single cells, time-resolved fluorescence data fitting to lifetime value for each segmented objects, batch capability, and data representation with donor lifetime versus acceptor/donor intensity quantification as a measure of protein-protein interactions.

Conclusions

The FLIM-FRET analyzer software is a flexible application for lifetime-based FRET analysis. The application, the C#. NET source code, and detailed documentation are freely available at the following URL: http://FLIM-analyzer.ip-korea.org.
  相似文献   

20.

Background

CASKIN2 is a neuronal signaling scaffolding protein comprised of multiple ankyrin repeats, two SAM domains, and one SH3 domain. The CASKIN2 SH3 domain for an NMR structural determination because its peptide-binding cleft appeared to deviate from the repertoire of aromatic enriched amino acids that typically bind polyproline-rich sequences.

Results

The structure demonstrated that two non-canonical basic amino acids (K290/R319) in the binding cleft were accommodated well in the SH3 fold. An K290Y/R319W double mutant restoring the typical aromatic amino acids found in the binding cleft resulted in a 20 °C relative increase in the thermal stability. Considering the reduced stability, we speculated that the CASKIN2 SH3 could be a nonfunctional remnant in this scaffolding protein.

Conclusions

While the NMR structure demonstrates that the CASKIN2 SH3 domain is folded, its cleft has suffered two substitutions that prevent it from binding typical polyproline ligands. This observation led us to additionally survey and describe other SH3 domains in the Protein Data Bank that may have similarly lost their ability to promote protein-protein interactions.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号