首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the intestinal epithelium, activation of phosphatidylinositol 3-kinase (PI3-kinase)/AKT pathways, via growth factor-mediated signaling, has been shown to regulate cell proliferation and inhibit apoptosis. An immune-activated receptor critical for Th2 immune responses, IL-4Ralpha can also activate PI3-kinase via insulin receptor substrate (IRS)-dependent signaling. Here, using the intestinal goblet cell-specific gene RELMbeta, we investigated the effect of PI3-kinase activation via Th2 immune responses on the goblet cell phenotype. IL-13 stimulation activated PI3-kinase and AKT signal transduction in LS174T cells. Not only did pharmacological inhibition of PI3-kinase and AKT1/2 inhibit RELMbeta induction by IL-13, but AKT inhibition also significantly reduced constitutive basal expression of RELMbeta, a response reproduced by the simultaneous pharmacological inhibition of both epidermal growth factor receptor and IGF-I receptor signaling. In vivo, the disruption of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), an inhibitor of PI3-kinase activation, led to the activation of RELMbeta expression in the small intestine. Furthermore, induction of an intestinal Th2 immune response by infection with a small intestinal nematode parasite, Heligmosomoides polygyrus, led to enhanced epithelial cell proliferation, activation of AKT as demonstrated by the loss of Foxo1 nuclear localization, and robust induction of RELMbeta expression in wild-type, but not IL-4Ralpha knockout, mice. These results demonstrate that Th2 immune responses can regulate goblet cell responses by activation of PI3-kinase and AKT pathways via IL-4Ralpha.  相似文献   

3.
Chronic infection by the gastrointestinal nematode Trichuris muris in susceptible AKR mice, which mount a Th1 response, is associated with IL-27p28 expression in the cecum. In contrast to wild-type mice, mice that lack the WSX-1/IL-27R gene fail to harbor a chronic infection, having significantly lower Th1 responses. The lower level of Ag-specific IFN-gamma-positive cells in WSX-1 knockout (KO) mice was found to be CD4(+) T cell specific, and the KO mice also had increased levels of IL-4-positive CD4(+) T cells. Polyclonal activation of mesenteric lymph node cells from naive WSX-1 KO or wild-type mice demonstrated that there was no inherent defect in the production of IFN-gamma by CD4(+) T cells, suggesting the decrease in these cells seen in infected WSX-1 KO mice is an in vivo Ag-driven effect. IL-12 treatment of WSX-1 KO mice failed to rescue the type 1 response, resulting in unaltered type-2-driven resistance. Infection of WSX-1 KO mice was also associated with a reduction of IL-27/WSX-1 downstream signaling gene expression within the cecum. These studies demonstrate an important role for WSX-1 signaling in the promotion of type 1 responses and chronic gastrointestinal nematode infection.  相似文献   

4.
Chronic infection with the intestinal nematode Trichuris muris is associated with an inappropriate type 1 cytokine response (production of predominantly IFN-gamma), whereas resistance to infection requires the induction of a protective type 2 response with the production of interleukin (IL)-4, IL-5, IL-9, and IL-13. T. muris inhabits an intracellular niche within murine intestinal epithelial cells of the caecum and in common with other intestinal helminth infections is associated with gross morphological changes in gut architecture. The purpose of this study was to characterise cytokine production during chronic infection in AKR and severe-combined-immunodeficient (SCID) mice and investigate what effect the anti-parasite response had on epithelial cell proliferation and so regulation of intestinal pathology. Pulse labeling with tritiated thymidine is employed to generate a sensitive cell position-linked proliferation index of the intestinal epithelium at various times postinfection. Infection in AKR mice is characterized by a marked elevation in antigen specific IFN-gamma production from restimulated mesenteric lymph node cells and a significant increase in proliferation of pluripotent epithelial stem cells and transit cells within the crypts. Similarly, elevated IFN-gamma production was observed in the mesenteric lymph nodes and intestinal mucosa of infected SCID mice, with epithelial cell hyperproliferation and the development of crypt hyperplasia in the caecum. Critically, in vivo depletion of IFN-gamma during infection in SCID mice resulted in no significant increase in epithelial cell proliferation and effectively precluded the development of crypt hyperplasia without altering infection outcome. Taken together, the data provides the first detailed cell position linked analysis of epithelial dysregulation during chronic T. muris infection and identifies a critical role for IFN-gamma, either directly or indirectly, in regulation of epithelial cell proliferation during the chronic intestinal inflammation associated with infection.  相似文献   

5.
IL-13 is a Th2-derived cytokine associated with pathological changes in asthma and ulcerative colitis. Moreover, it plays a major role in the control of gut nematode infection and associated immunopathology. The current paradigm is that these effects are due to T cell-derived IL-13. We show in this study that an innate source of IL-13, the intraepithelial NK cell, is responsible for the disruption of intestinal tissue architecture and induction of goblet cell hyperplasia that characterizes infection with the intestinal helminth Trichinella spiralis. IL-13 or IL-4Ralpha (but not IL-4) null mice failed to induce intestinal pathology. Unexpectedly, SCID and athymic mice developed the same pathology found in immunocompetent mice following infection. Moreover, immunodeficient mice expressed IL-13 in the intestine, and abnormal mucosal pathology was reduced by in vivo administration of a soluble IL-13 antagonist. IL-13 expression was induced in non-T intraepithelial CD3- NK cells. Epithelial cells expressed the IL-13 signaling receptor, IL-13Ralpha1, and after infection, IL-4Ralpha. Furthermore, the soluble IL-13 decoy receptor IL-13Ralpha2, which regulates IL-13 responses, was also induced upon infection. These data provide the first evidence that intestinal tissue restructuring during helminth infection is an innate event dependent on IL-13 production by NK cells resident in the epithelium of the intestine.  相似文献   

6.
CBA and B10.BR mice show variation in immune response to the intestinal nematode Trichuris muris. CBA mice develop strong resistance, eliminating worms from the intestine; B10BR mice are permissive and develop chronic infections. It is already known that resistance and permissiveness reflect differential T helper responses. The data reported here show that resistant CBA mice express good antigen-specific lymphocyte proliferative responses to infection, whereas cells from B10.BR mice are relatively anergic, although still responsive to Concanavalin A (ConA). The possibility that the altered proliferative responsiveness seen in infected B10.BR mice reflected quantitative or qualitative changes in T helper cells was examined by comparing cytokine production and expression of cell surface markers (CD4, CD8, and CD28) in mesenteric lymph node cells and spleen cells from both strains and comparing these with the characteristics of cells from resistant CBA mice and from CBA mice that had been rendered permissive to infection by a combination of irradiation and corticosteroid treatment. As expected, cells from B10.BR mice produced high levels of interferon-gamma (IFN-gamma), whereas those from CBA mice released high levels of IL-5, whether stimulated with adult worm somatic antigens, excretory/secretory antigens, or ConA. Immunosuppressed CBA mice produced high levels of both IFN-gamma and IL-5 throughout the experiment. FACS analysis revealed a decrease of CD4+ and an initial increase in CD8+ cells in all infected mice. No major changes occurred in the relative proportion of CD28(+) cells. Further evaluation of the CD28 costimulatory molecule, measured as mean fluorescence intensity, displayed down-regulation in permissive and immunosuppressed mice. The data obtained suggest that lymphocyte unresponsiveness and permissiveness to T. muris infection may be associated with a down-regulation or an initially reduced expression of costimulatory CD28 molecules.  相似文献   

7.
IL-33, a potent inducer of adaptive immunity to intestinal nematodes   总被引:2,自引:0,他引:2  
IL-33 (IL-1F11) binds ST2 (IL-1R4), both of which are associated with optimal CD4(+) Th2 polarization. Exogenous IL-33 drives induction of Th2-associated cytokines and associated pathological changes within the gut mucosa. Th2 polarization is also a prerequisite to expulsion of the intestinal-dwelling nematode Trichuris muris. In this study, we demonstrate that IL-33 mRNA is expressed early during parasite infection and susceptible mice can be induced to expel the parasite by a regime of exogenous IL-33 administration. IL-33 prevents an inappropriate parasite-specific Th1-polarized response and induces IL-4, IL-9, and IL-13. This redirection requires the presence of T cells and must occur at the initiation of the response to the pathogen. Interestingly, exogenous IL-33 also induced thymic stromal lymphopoietin mRNA within the infected caecum, an epithelial cell-restricted cytokine essential for the generation of Th2-driven parasite immunity. IL-33 also acts independently of T cells, altering intestinal pathology in chronically infected SCID mice, leading to an increased crypt length and intestinal epithelial cell proliferation, but reducing goblet cell hyperplasia. Thus, the ability of IL-33 to induce Th2 responses has functional relevance in the context of intestinal helminth infection, particularly during the initiation of the response.  相似文献   

8.
9.
Chronic helminth infections induce a type 2 immune response characterized by eosinophilia, high levels of IgE, and increased T cell production of type 2 cytokines. Because basophils have been shown to be substantial contributors of IL-4 in helminth infections, and because basophils are capable of inducing Th2 differentiation of CD4(+) T cells and IgE isotype switching in B cells, we hypothesized that basophils function to amplify type 2 immune responses in chronic helminth infection. To test this, we evaluated basophil function using the Litomosoides sigmodontis filaria model of chronic helminth infection in BALB/c mice. Time-course studies showed that eosinophilia, parasite Ag-specific CD4(+) T cell production of IL-4 and IL-5 and basophil activation and IL-4 production in response to parasite Ag all peak late (6-8 wk) in the course of L. sigmodontis infection, after parasite-specific IgE has become detectable. Mixed-gender and single-sex worm implantation experiments demonstrated that the relatively late peak of these responses was not dependent on the appearance of circulating microfilariae, but may be due to initial low levels of parasite Ag load and/or habitation of the developing worms in the pleural space. Depletion of basophils throughout the course of L. sigmodontis infection caused significant decreases in total and parasite-specific IgE, eosinophilia, and parasite Ag-driven CD4(+) T cell proliferation and IL-4 production, but did not alter total worm numbers. These results demonstrate that basophils amplify type 2 immune responses, but do not serve a protective role, in chronic infection of mice with the filarial nematode L. sigmodontis.  相似文献   

10.
11.
Gastrointestinal helminth infections are extremely prevalent in many human populations and are associated with downmodulated immune responsiveness. In the experimental model system of Heligmosomoides polygyrus, a chronic infection establishes in mice, accompanied by a modulated Th2 response and increased regulatory T cell (Treg) activity. To determine if dendritic cell (DC) populations in the lymph nodes draining the intestine are responsible for the regulatory effects of chronic infection, we first identified a population of CD11c(lo) nonplasmacytoid DCs that expand after chronic H. polygyrus infection. The CD11c(lo) DCs are underrepresented in magnetic bead-sorted preparations and spared from deletion in CD11c-diptheria toxin receptor mice. After infection, CD11c(lo) DCs did not express CD8, CD103, PDCA, or Siglec-H and were poorly responsive to TLR stimuli. In DC/T cell cocultures, CD11c(lo) DCs from naive and H. polygyrus-infected mice could process and present protein Ag, but induced lower levels of Ag-specific CD4(+) T cell proliferation and effector cytokine production, and generated higher percentages of Foxp3(+) T cells in the presence of TGF-β. Treg generation was also dependent on retinoic acid receptor signaling. In vivo, depletion of CD11c(hi) DCs further favored the dominance of the CD11c(lo) DC phenotype. After CD11c(hi) DC depletion, effector responses were inhibited dramatically, but the expansion in Treg numbers after H. polygyrus infection was barely compromised, showing a significantly higher regulatory/effector CD4(+) T cell ratio compared with that of CD11c(hi) DC-intact animals. Thus, the proregulatory environment of chronic intestinal helminth infection is associated with the in vivo predominance of a newly defined phenotype of CD11c(lo) tolerogenic DCs.  相似文献   

12.
Type 2 immune responses are essential in protection against intestinal helminth infections. In this study we show that IL-22, a cytokine important in defence against bacterial infections in the intestinal tract, is also a critical mediator of anti-helminth immunity. After infection with Nippostrongylus brasiliensis, a rodent hookworm, IL-22-deficient mice showed impaired worm expulsion despite normal levels of type 2 cytokine production. The impaired worm expulsion correlated with reduced goblet cell hyperplasia and reduced expression of goblet cell markers. We further confirmed our findings in a second nematode model, the murine whipworm Trichuris muris. T.muris infected IL-22-deficient mice had a similar phenotype to that seen in N.brasiliensis infection, with impaired worm expulsion and reduced goblet cell hyperplasia. Ex vivo and in vitro analysis demonstrated that IL-22 is able to directly induce the expression of several goblet cell markers, including mucins. Taken together, our findings reveal that IL-22 plays an important role in goblet cell activation, and thus, a key role in anti-helminth immunity.  相似文献   

13.
SAMP1/Fc mice develop spontaneous ileitis that shares many features with human Crohn's disease. One of the earliest features of ileitis in SAMP1/Fc mice is an increase in the number of ileal goblet and intermediate cells. Resistin-like molecule beta (RELMbeta) is a goblet cell-specific, cysteine-rich peptide previously shown to function as part of the innate immune response. In this study, we examined the role of expression of RELMbeta in the initiation of ileal inflammation in SAMP1/Fc mice. RELMbeta was highly induced in the ilea of SAMP1/Fc mice beginning at age 5 wk, coincident with the histological appearance of inflammation. RELMbeta was found in ileal goblet cells and some intermediate and Paneth cells. Surprisingly, RELMbeta mRNA levels were significantly increased in the ilea of 80% of germ-free SAMP1/Fc mice examined compared with specific pathogen-free AKR control mice of similar age. Ileitis was observed in germfree SAMP1/Fc mice, although it was attenuated relative to specific pathogen-free SAMP1/Fc mice. These data suggest that neither the early induction of RELMbeta expression nor ileal inflammation requires the presence of viable intestinal flora. Neither was the induction of RELMbeta dependent on the major Th1 or Th2 cytokines. However, RELMbeta stimulated naive bone marrow-derived macrophages to secrete significant amounts of TNF-alpha, IL-6, and RANTES. Our data suggest that RELMbeta is involved in the initiation of ileitis in SAMP1/Fc mice and may act through the induction of proinflammatory cytokines from resident immune cells within the mucosa.  相似文献   

14.
The control of acute and chronic Mycobacterium tuberculosis infection is dependent on CD4(+) T cells. In a variety of systems CD8(+) T cell effector responses are dependent on CD4(+) T cell help. The development of CD8(+) T cell-mediated immune responses in the absence of CD4(+) T cells was investigated in a murine model of acute tuberculosis. In vitro and in vivo, priming of mycobacteria-specific CD8(+) T cells was unaffected by the absence of CD4(+) T cells. Infiltration of CD8(+) T cells into infected lungs of CD4(-/-) or wild-type mice was similar. IFN-gamma production by lung CD8(+) T cells in CD4(-/-) and wild-type mice was also comparable, suggesting that emergence of IFN-gamma-producing mycobacteria-specific CD8(+) T cells in the lungs was independent of CD4(+) T cell help. In contrast, cytotoxic activity of CD8(+) T cells from lungs of M. tuberculosis-infected mice was impaired in CD4(-/-) mice. Expression of mRNA for IL-2 and IL-15, cytokines critical for the development of cytotoxic effector cells, was diminished in the lungs of M. tuberculosis-infected CD4(-/-) mice. As tuberculosis is frequently associated with HIV infection and a subsequent loss of CD4(+) T cells, understanding the interaction between CD4(+) and CD8(+) T cell subsets during the immune response to M. tuberculosis is imperative for the design of successful vaccination strategies.  相似文献   

15.
By using a T, B, or NK cell-deficient mouse strain (recombinase-activating gene (RAG)-1(-/-)/common cytokine receptor gamma-chain (gamma(C)R)), and T and B cell and IFN-gamma-deficient (RAG-1(-/-)/IFN-gamma(-/-)) mice, we have studied the generation of immunity against infection by Chlamydia pneumoniae. We found that IFN-gamma secreted by innate-cell populations protect against C. pneumoniae infection. However, NK cells were not needed for such IFN-gamma-dependent innate immune protection. Inoculation of wild type, but not IFN-gamma(-/-) bone marrow-derived macrophages protected RAG-1(-/-)/IFN-gamma(-/-) mice against C. pneumoniae infection. In line, pulmonary macrophages from RAG-1(-/-) C. pneumoniae-infected mice expressed IFN-gamma mRNA. Reconstitution of RAG-1(-/-)/gamma(c)R(-/-) or RAG-1(-/-)/IFN-gamma(-/-) mice with CD4(+) or CD8(+) cells by i.v. transfer of FACS sorted wild type spleen cells (SC) increased resistance to C. pneumoniae infection. On the contrary, no protection was observed upon transfer of IFN-gamma(-/-) CD4(+) or IFN-gamma(-/-) CD8(+) SC. T cell-dependent protection against C. pneumoniae was weaker when IFN-gammaR(-/-) CD4(+) or IFN-gammaR(-/-) CD8(+) SC were inoculated into RAG-1(-/-)/IFN-gamma(-/-) mice. Thus both nonlymphoid and T cell-derived IFN-gamma can play a central and complementary role in protection against C. pneumoniae. IFN-gamma secreted by nonlymphoid cells was not required for T cell-mediated protection against C. pneumoniae; however, IFN-gamma regulated T cell protective functions.  相似文献   

16.
The inducible costimulator protein (ICOS) was recently identified as a costimulatory molecule for T cells. Here we analyze the role of ICOS for the acquired immune response of mice against the intracellular bacterium Listeria monocytogenes. During oral L. monocytogenes infection, low levels of ICOS expression were detected by extracellular and intracellular Ab staining of Listeria-specific CD4(+) and CD8(+) T cells. Blocking of ICOS signaling with a soluble ICOS-Ig fusion protein markedly impaired the Listeria-specific T cell responses. Compared with control mice, the ICOS-Ig treated mice generated significantly reduced numbers of Listeria-specific CD8(+) T cells in spleen and liver, as determined by tetramer and intracellular cytokine staining. In contrast, the specific CD8(+) T cell response in the intestinal mucosa did not appear to be impaired by the ICOS-Ig treatment. Analysis of the CD4(+) T cell response revealed that ICOS-Ig treatment also affected the specific CD4(+) T cell response. When restimulated with listerial Ag in vitro, reduced numbers of CD4(+) T cells from infected and ICOS-Ig-treated mice responded with IFN-gamma production. The impaired acquired immune response in ICOS-Ig treated mice was accompanied by their increased susceptibility to L. monocytogenes infection. ICOS-Ig treatment drastically enhanced bacterial titers, and a large fraction of mice succumbed to the otherwise sublethal dose of infection. Thus, ICOS costimulation is crucial for protective immunity against the intracellular bacterium L. monocytogenes.  相似文献   

17.
To clarify the role of IL-15 at local sites, we engineered a transgenic (Tg) mouse (T3(b)-IL-15 Tg) to overexpress human IL-15 preferentially in intestinal epithelial cells by the use of T3(b)-promoter. Although IL-15 was expressed in the entire small intestine (SI) and large intestines of the Tg mice, localized inflammation developed in the proximal SI only. Histopathologic study revealed reduced villus length, marked infiltration of lymphocytes, and vacuolar degeneration of the villus epithelium, beginning at approximately 3-4 mo of age. The numbers of CD8(+) T cells, especially CD8alphabeta(+) T cells expressing NK1.1, were dramatically increased in the lamina propria of the involved SI. The severity of inflammation corresponded to increased numbers of CD8alphabeta(+)NK1.1(+) T cells and levels of production of the Th1-type cytokines IFN-gamma and TNF-alpha. Locally overexpressed IL-15 was accompanied by increased resistance of CD8alphabeta(+) NK1.1(+) T cells to activation-induced cell death. Our results suggest that chronic inflammation in the SI in this murine model is mediated by dysregulation of epithelial cell-derived IL-15. The model may contribute to understanding the role of CD8(+) T cells in human Crohn's disease involving the SI.  相似文献   

18.
Despite a growing understanding of the role of cytokines in immunity to the parasitic helminth Trichuris muris, the local effector mechanism culminating in the expulsion of worms from the large intestine is not known. We used flow cytometry and immunohistochemistry to characterize the phenotype of large intestinal intraepithelial lymphocytes (IEL) and lamina propria leukocytes (LPL) from resistant and susceptible strains of mouse infected with T. muris. Leukocytes accumulated in the epithelium and lamina propria after infection, revealing marked differences between the different strains of mouse. In resistant mice, which mount a Th2 response, the number of infiltrating CD4+, CD8+, B220+, and F4/80+ IEL and LPL was generally highest around the time of worm expulsion from the gut, at which point the inflammation was dominated by CD4+ IEL and F4/80+ LPL. In contrast, in susceptible mice, which mount a Th1 response, the number of IEL and LPL increased more gradually and was highest after a chronic infection had developed. At this point, CD8+ IEL and F4/80+ LPL were predominant. Therefore, this study reveals the local immune responses underlying the expulsion of worms or the persistence of a chronic infection in resistant and susceptible strains of mouse, respectively. In addition, for the first time, we illustrate isolated lymphoid follicles in the large intestine, consisting of B cells interspersed with CD4+ T cells and having a central zone of rapidly proliferating cells. Furthermore, we demonstrate the organogenesis of these structures in response to T. muris infection.  相似文献   

19.
Acute and lethal ileitis can be elicited in certain strains of inbred mice after oral infection with the intracellular protozoan parasite Toxoplasma gondii. The development of this inflammatory process is dependent upon the induction of a robust Th1 response, including overproduction of IFN-gamma, TNF-alpha, and NO, as has been reported in other experimental models of human inflammatory bowel disease. In this study we have investigated the role of CD4(+) T cells from the lamina propria (LP) in the early inflammatory events after T. gondii infection using isolated and primary cultured intestinal cells from infected mice and immortalized mouse mIC(cl2) intestinal epithelial cells. Primed LP CD4(+) T cells isolated from parasite-infected mice produce substantial quantities of both IFN-gamma and TNF-alpha. IFN-gamma- and TNF-alpha-producing LP CD4(+) T cells synergize with infected mIC(cl2) and enhance the production of several inflammatory chemokines including macrophage-inflammatory protein-2, monocyte chemoattractant protein-1, monocyte chemoattractant protein-3, macrophage-inflammatory protein-1alphabeta, and IFN-gamma-inducible protein-10. Furthermore, primed LP CD4(+) T cells cocultured with infected mIC(cl2) inhibited replication of the parasite in the intestinal epithelial cells. Thus, LP CD4(+) T cells can interact with parasite-infected intestinal epithelial cells and alter the expression of several proinflammatory products that have been associated with the development of intestinal inflammation. The interaction between these two components of the gut mucosal compartment (CD4(+) T cells and enterocytes) may play a role in the immunopathogenesis of this pathogen-driven experimental inflammatory bowel disease model.  相似文献   

20.
Leading hypotheses to explain helminth-mediated protection against autoimmunity postulate that type 2 or regulatory immune responses induced by helminth infections in the host limit pathogenic Th1-driven autoimmune responses. We tested these hypotheses by investigating whether infection with the filarial nematode Litomosoides sigmodontis prevents diabetes onset in IL-4-deficient NOD mice and whether depletion or absence of regulatory T cells, IL-10, or TGF-β alters helminth-mediated protection. In contrast to IL-4-competent NOD mice, IL-4-deficient NOD mice failed to develop a type 2 shift in either cytokine or Ab production during L. sigmodontis infection. Despite the absence of a type 2 immune shift, infection of IL-4-deficient NOD mice with L. sigmodontis prevented diabetes onset in all mice studied. Infections in immunocompetent and IL-4-deficient NOD mice were accompanied by increases in CD4(+)CD25(+)Foxp3(+) regulatory T cell frequencies and numbers, respectively, and helminth infection increased the proliferation of CD4(+)Foxp3(+) cells. However, depletion of CD25(+) cells in NOD mice or Foxp3(+) T cells from splenocytes transferred into NOD.scid mice did not decrease helminth-mediated protection against diabetes onset. Continuous depletion of the anti-inflammatory cytokine TGF-β, but not blockade of IL-10 signaling, prevented the beneficial effect of helminth infection on diabetes. Changes in Th17 responses did not seem to play an important role in helminth-mediated protection against autoimmunity, because helminth infection was not associated with a decreased Th17 immune response. This study demonstrates that L. sigmodontis-mediated protection against diabetes in NOD mice is not dependent on the induction of a type 2 immune shift but does require TGF-β.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号