首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cancer cachexia is a wasting syndrome characterised by the loss of fat and/or muscle mass in advanced cancer patients. It has been well-established that cancer cells themselves can induce cachexia via the release of several pro-cachectic and pro-inflammatory factors. However, it is unclear how this process is regulated and the key cachexins that are involved. In this study, we validated C26 and EL4 as cachexic and non-cachexic cell models, respectively. Treatment of adipocytes and myotubes with C26 conditioned medium induced lipolysis and atrophy, respectively. We profiled soluble secreted proteins (secretome) as well as small extracellular vesicles (sEVs) released from cachexia-inducing (C26) and non-inducing (EL4) cancer cells by label-free quantitative proteomics. A total of 1268 and 1022 proteins were identified in the secretome of C26 and EL4, respectively. Furthermore, proteomic analysis of sEVs derived from C26 and EL4 cancer cells revealed a distinct difference in the protein cargo. Functional enrichment analysis using FunRich highlighted the enrichment of proteins that are implicated in biological processes such as muscle atrophy, lipolysis, and inflammation in both the secretome and sEVs derived from C26 cancer cells. Overall, our characterisation of the proteomic profiles of the secretory factors and sEVs from cachexia-inducing and non-inducing cancer cells provides insights into tumour factors that promote weight loss by mediating protein and lipid loss in various organs and tissues. Further investigation of these proteins may assist in highlighting potential therapeutic targets and biomarkers of cancer cachexia.  相似文献   

2.
Leading hypotheses to explain helminth-mediated protection against autoimmunity postulate that type 2 or regulatory immune responses induced by helminth infections in the host limit pathogenic Th1-driven autoimmune responses. We tested these hypotheses by investigating whether infection with the filarial nematode Litomosoides sigmodontis prevents diabetes onset in IL-4-deficient NOD mice and whether depletion or absence of regulatory T cells, IL-10, or TGF-β alters helminth-mediated protection. In contrast to IL-4-competent NOD mice, IL-4-deficient NOD mice failed to develop a type 2 shift in either cytokine or Ab production during L. sigmodontis infection. Despite the absence of a type 2 immune shift, infection of IL-4-deficient NOD mice with L. sigmodontis prevented diabetes onset in all mice studied. Infections in immunocompetent and IL-4-deficient NOD mice were accompanied by increases in CD4(+)CD25(+)Foxp3(+) regulatory T cell frequencies and numbers, respectively, and helminth infection increased the proliferation of CD4(+)Foxp3(+) cells. However, depletion of CD25(+) cells in NOD mice or Foxp3(+) T cells from splenocytes transferred into NOD.scid mice did not decrease helminth-mediated protection against diabetes onset. Continuous depletion of the anti-inflammatory cytokine TGF-β, but not blockade of IL-10 signaling, prevented the beneficial effect of helminth infection on diabetes. Changes in Th17 responses did not seem to play an important role in helminth-mediated protection against autoimmunity, because helminth infection was not associated with a decreased Th17 immune response. This study demonstrates that L. sigmodontis-mediated protection against diabetes in NOD mice is not dependent on the induction of a type 2 immune shift but does require TGF-β.  相似文献   

3.
Advanced cancer patients exhibit cachexia, a condition characterized by a significant reduction in the body weight predominantly from loss of skeletal muscle and adipose tissue. Cachexia is one of the major causes of morbidity and mortality in cancer patients. Decreased food intake and multi-organ energy imbalance in cancer patients worsen the cachexia syndrome. Cachectic cancer patients have a low tolerance for chemo- and radiation therapies and also have a reduced quality of life. The presence of tumors and the current treatment options for cancer further exacerbate the cachexia condition, which remains an unmet medical need. The onset of cachexia involves crosstalk between different organs leading to muscle wasting. Recent advancements in understanding the molecular mechanisms of skeletal muscle atrophy/hypertrophy and adipose tissue wasting/browning provide a platform for the development of new targeted therapies. Therefore, a better understanding of this multifactorial disorder will help to improve the quality of life of cachectic patients. In this review, we summarize the metabolic mediators of cachexia, their molecular functions, affected organs especially with respect to muscle atrophy and adipose browning and then discuss advanced therapeutic approaches to cancer cachexia.  相似文献   

4.
IKKbeta/NF-kappaB activation causes severe muscle wasting in mice   总被引:29,自引:0,他引:29  
Muscle wasting accompanies aging and pathological conditions ranging from cancer, cachexia, and diabetes to denervation and immobilization. We show that activation of NF-kappaB, through muscle-specific transgenic expression of activated IkappaB kinase beta (MIKK), causes profound muscle wasting that resembles clinical cachexia. In contrast, no overt phenotype was seen upon muscle-specific inhibition of NF-kappaB through expression of IkappaBalpha superrepressor (MISR). Muscle loss was due to accelerated protein breakdown through ubiquitin-dependent proteolysis. Expression of the E3 ligase MuRF1, a mediator of muscle atrophy, was increased in MIKK mice. Pharmacological or genetic inhibition of the IKKbeta/NF-kappaB/MuRF1 pathway reversed muscle atrophy. Denervation- and tumor-induced muscle loss were substantially reduced and survival rates improved by NF-kappaB inhibition in MISR mice, consistent with a critical role for NF-kappaB in the pathology of muscle wasting and establishing it as an important clinical target for the treatment of muscle atrophy.  相似文献   

5.
Cachexia, the metabolic dysregulation leading to sustained loss of muscle and adipose tissue, is a devastating complication of cancer and other chronic diseases. Interleukin-6 and related cytokines are associated with muscle wasting in clinical and experimental cachexia, although the mechanisms by which they might induce muscle wasting are unknown. One pathway activated strongly by IL-6 family ligands is the JAK/STAT3 pathway, the function of which has not been evaluated in regulation of skeletal muscle mass. Recently, we showed that skeletal muscle STAT3 phosphorylation, nuclear localization, and target gene expression are activated in C26 cancer cachexia, a model with high IL-6 family ligands. Here, we report that STAT3 activation is a common feature of muscle wasting, activated in muscle by IL-6 in vivo and in vitro and by different types of cancer and sterile sepsis. Moreover, STAT3 activation proved both necessary and sufficient for muscle wasting. In C(2)C(12) myotubes and in mouse muscle, mutant constitutively activated STAT3-induced muscle fiber atrophy and exacerbated wasting in cachexia. Conversely, inhibiting STAT3 pharmacologically with JAK or STAT3 inhibitors or genetically with dominant negative STAT3 and short hairpin STAT3 reduced muscle atrophy downstream of IL-6 or cancer. These results indicate that STAT3 is a primary mediator of muscle wasting in cancer cachexia and other conditions of high IL-6 family signaling. Thus STAT3 could represent a novel therapeutic target for the preservation of skeletal muscle in cachexia.  相似文献   

6.
7.
8.
Cross-presentation of self Ags by APCs is key to the initiation of organ-specific autoimmunity. As MHC class I molecules are essential for the initiation of diabetes in nonobese diabetic (NOD) mice, we sought to determine whether the initial insult that allows cross-presentation of beta cell autoantigens in diabetes is caused by cognate interactions between naive CD8(+) T cells and beta cells. Naive splenic CD8(+) T cells from transgenic NOD mice expressing a diabetogenic TCR killed peptide-pulsed targets in the absence of APCs. To ascertain the role of CD8(+) T cell-induced beta cell lysis in the initiation of diabetes, we expressed a rat insulin promoter (RIP)-driven adenovirus E19 transgene in NOD mice. RIP-E19 expression inhibited MHC class I transport exclusively in beta cells and rendered these cells resistant to lysis by CD8(+) (but not CD4(+)) T cells, both in vitro and in vivo. Surprisingly, RIP-E19 expression impaired the accumulation of CD8(+) T cells in islets and delayed the onset of islet inflammation, without affecting the timing or magnitude of T cell cross-priming in the pancreatic lymph nodes, which is the earliest known event in diabetogenesis. These results suggest that access of beta cell autoantigens to the cross-presentation pathway in diabetes is T cell independent, and reveal a previously unrecognized function of MHC class I molecules on target cells in autoimmunity: local retention of disease-initiating clonotypes.  相似文献   

9.
10.
In the nonobese diabetic (NOD) mouse, pathogenic and suppressor CD4(+) T cells can be distinguished by the constitutive expression of CD25. In this study, we demonstrate that the progression of autoimmune diabetes in NOD mice reflects modifications in both T cell subsets. CD4(+)CD25(+) suppressor T cells from 8-, but not 16-wk-old NOD mice delayed the onset of diabetes transferred by 16-wk-old CD25-depleted spleen cells. These results were paralleled by the inhibition of alloantigen-induced proliferation of CD4(+)CD25(-) cells, indicating an age-dependent decrease in suppressive activity. In addition, CD4(+)CD25(-) pathogenic T cells became progressively less sensitive to immunoregulation by CD4(+)CD25(+) T cells during diabetes development. CD4(+)CD25(-) T cells showed a higher proliferation and produced more IFN-gamma, but less IL-4 and IL-10, whereas CD4(+)CD25(+) T suppressor cells produced significantly lower levels of IL-10 in 16- compared with 8-wk-old NOD mice. Consistent with these findings, a higher frequency of Th1 cells was observed in the pancreas of 16-wk-old compared with 8-wk-old NOD mice. An increased percentage of CD4(+)CD25(-) T cells expressing CD54 was present in 16-wk-old and in diabetic NOD, but not in BALB/c mice. Costimulation via CD54 increased the proliferation of CD4(+)CD25(-) T cells from 16-, but not 8-wk-old NOD mice, and blocking CD54 prevented their proliferation, consistent with the role of CD54 in diabetes development. Thus, the pathogenesis of autoimmune diabetes in NOD mice is correlated with both an enhanced pathogenicity of CD4(+)CD25(-) T cells and a decreased suppressive activity of CD4(+)CD25(+) T cells.  相似文献   

11.
T cells specific for proinsulin and islet-specific glucose-6-phosphatase catalytic subunit related protein (IGRP) induce diabetes in nonobese diabetic (NOD) mice. TCR transgenic mice with CD8(+) T cells specific for IGRP(206-214) (NOD8.3 mice) develop accelerated diabetes that requires CD4(+) T cell help. We previously showed that immune responses against proinsulin are necessary for IGRP(206-214)-specific CD8(+) T cells to expand. In this study, we show that diabetes development is dramatically reduced in NOD8.3 mice crossed to NOD mice tolerant to proinsulin (NOD-PI mice). This indicates that immunity to proinsulin is even required in the great majority of NOD8.3 mice that have a pre-existing repertoire of IGRP(206-214)-specific cells. However, protection from diabetes could be overcome by inducing islet inflammation either by a single dose of streptozotocin or anti-CD40 agonist Ab treatment. This suggests that islet inflammation can substitute for proinsulin-specific CD4(+) T cell help to activate IGRP(206-214)-specific T cells.  相似文献   

12.
Viruses can cause a severe lymphopenia early in infection and a subsequent, lasting loss of pre-existing CD8(+) memory T cells. We therefore questioned how well virus Ag-specific memory CD8(+) T cells could reconstitute mice rendered lymphopenic as a consequence of genetics, irradiation, or viral or poly(I:C)-induced cytokines. In each case, reconstitution of the CD8(+) compartment was associated with limited division of virus-specific memory T cells and a reduction in their proportion. This indicates that foreign Ag-experienced CD44(high)CD8(+) memory T cells may respond differently to homeostatic signals than other CD44(high)CD8(+) cells, and that events inducing lymphopenia may lead to a permanent reduction in T cell memory.  相似文献   

13.
Cancer cachexia remains a challenging clinical problem with complex pathophysiology and unreliable diagnostic tools. A blood test to detect this metabolic derangement would aid in early treatment of these patients. A 1H NMR-based metabolomics approach was used to determine the unique metabolic fingerprint of cachexia and to search for biomarkers in serum samples taken from an established murine model of cancer cachexia. Male CD2F1 mice received a subcutaneous flank injection of C26 adenocarcinoma cells to induce experimental cancer-related cachexia. Two molecular markers of muscle atrophy, upregulation of the E3 ubiquitin ligase Muscle Ring Finger 1 (MuRF1) and aberrant glycosylation of β-dystroglycan (β-DG), were used to confirm muscle wasting in the tumor-bearing mice. Serum samples were collected for metabolomic analysis during the development of the cachexia: at baseline, when the tumor was palpable, and when the mice demonstrated cachexia. The unsupervised statistical analysis demonstrated a distinct metabolic profile with the onset of cachexia. The critical metabolic changes associated with cachexia included increased levels of very low density lipoprotein (VLDL) and low density lipoprotein (LDL), with decreased serum glucose levels. Regression analysis demonstrated a very high correlation of the presence of aberrant glycosylation of β-DG with the unique metabolic profile of cachexia. This study demonstrates for the first time that metabolomics has potential as a diagnostic tool in cancer cachexia, and in further elucidating simultaneous metabolic pathway alterations due to this syndrome. In addition, variations in VLDL and LDL deserve more investigation as surrogate serum biomarkers for cancer cachexia.  相似文献   

14.
CD4(+)CD25(+) regulatory T (T(reg)) cells have a crucial role in maintaining immune tolerance. Mice and humans born lacking T(reg) cells develop severe autoimmune disease, and depletion of T(reg) cells in lymphopenic mice induces autoimmunity. Interleukin (IL)-2 signaling is required for thymic development, peripheral expansion and suppressive activity of T(reg) cells. Animals lacking IL-2 die of autoimmunity, which is prevented by administration of IL-2-responsive T(reg) cells. In light of the emerging evidence that one of the primary physiologic roles of IL-2 is to generate and maintain T(reg) cells, the question arises as to the effects of IL-2 therapy on them. We monitored T(reg) cells during immune reconstitution in individuals with cancer who did or did not receive IL-2 therapy. CD4(+)CD25(hi) cells underwent homeostatic peripheral expansion during immune reconstitution, and in lymphopenic individuals receiving IL-2, the T(reg) cell compartment was markedly increased. Mouse studies showed that IL-2 therapy induced expansion of existent T(reg) cells in normal hosts, and IL-2-induced T(reg) cell expansion was further augmented by lymphopenia. On a per-cell basis, T(reg) cells generated by IL-2 therapy expressed similar levels of FOXP3 and had similar potency for suppression compared to T(reg) cells present in normal hosts. These studies suggest that IL-2 and lymphopenia are primary modulators of CD4(+)CD25(+) T(reg) cell homeostasis.  相似文献   

15.
Although B cells play a pathogenic role in the initiation of type 1 diabetes (T1D) in NOD mice, it is not known whether activated B cells can maintain tolerance and transfer protection from T1D. In this study, we demonstrate that i.v. transfusion of BCR-stimulated NOD spleen B cells into NOD mice starting at 5-6 wk of age both delays onset and reduces the incidence of T1D, whereas treatment initiated at 9 wk of age only delays onset of T1D. This BCR-activated B cell-induced protection from T1D requires IL-10 production by B cells, as transfusion of activated B cells from NOD.IL-10(-/-) mice does not confer protection from T1D. Consistent with this result, severe insulitis was observed in the islets of NOD recipients of transfused NOD.IL-10(-/-) BCR-stimulated B cells but not in the islets of NOD recipients of transfused BCR-stimulated NOD B cells. The therapeutic effect of transfused activated NOD B cells correlates closely with the observed decreased islet inflammation, reduced IFN-gamma production and increased production of IL-4 and IL-10 by splenocytes and CD4(+) T cells from NOD recipients of BCR-stimulated NOD B cells relative to splenocytes and CD4(+) T cells from PBS-treated control NOD mice. Our data demonstrate that transfused BCR-stimulated B cells can maintain long-term tolerance and protect NOD mice from T1D by an IL-10-dependent mechanism, and raise the possibility that i.v. transfusion of autologous IL-10-producing BCR-activated B cells may be used therapeutically to protect human subjects at risk for T1D.  相似文献   

16.
Cancer cachexia describes the progressive skeletal muscle wasting and weakness in many cancer patients and accounts for >20% of cancer-related deaths. We tested the hypothesis that antibody-directed myostatin inhibition would attenuate the atrophy and loss of function in muscles of tumor-bearing mice. Twelve-week-old C57BL/6 mice received a subcutaneous injection of saline (control) or Lewis lung carcinoma (LLC) tumor cells. One week later, mice received either once weekly injections of saline (control, n = 12; LLC, n = 9) or a mouse chimera of anti-human myostatin antibody (PF-354, 10 mg·kg?1·wk?1, LLC+PF-354, n = 11) for 5 wk. Injection of LLC cells reduced muscle mass and maximum force of tibialis anterior (TA) muscles by 8-10% (P < 0.05), but the muscle atrophy and weakness were prevented with PF-354 treatment (P > 0.05). Maximum specific (normalized) force of diaphragm muscle strips was reduced with LLC injection (P < 0.05) but was not improved with PF-354 treatment (P > 0.05). PF-354 enhanced activity of oxidative enzymes in TA and diaphragm muscles of tumor-bearing mice by 118% and 89%, respectively (P < 0.05). Compared with controls, apoptosis that was not of myofibrillar or satellite cell origin was 140% higher in TA muscle cross sections from saline-treated LLC tumor-bearing mice (P < 0.05) but was not different in PF-354-treated tumor-bearing mice (P > 0.05). Antibody-directed myostatin inhibition attenuated the skeletal muscle atrophy and loss of muscle force-producing capacity in a murine model of cancer cachexia, in part by reducing apoptosis. The improvements in limb muscle mass and function highlight the therapeutic potential of antibody-directed myostatin inhibition for cancer cachexia.  相似文献   

17.
Progression of spontaneous autoimmune diabetes is associated with development of a disease-countering negative-feedback regulatory loop that involves differentiation of low-avidity autoreactive CD8(+) cells into memory-like autoregulatory T cells. Such T cells blunt diabetes progression by suppressing the presentation of both cognate and noncognate Ags to pathogenic high-avidity autoreactive CD8(+) T cells in the pancreas-draining lymph nodes. In this study, we show that development of autoregulatory CD8(+) T cell memory is CD4(+) T cell dependent. Transgenic (TG) NOD mice expressing a low-affinity autoreactive TCR were completely resistant to autoimmune diabetes, even after systemic treatment of the mice with agonistic anti-CD40 or anti-4-1BB mAbs or autoantigen-pulsed dendritic cells, strategies that dramatically accelerate diabetes development in TG NOD mice expressing a higher affinity TCR for the same autoantigenic specificity. Furthermore, whereas abrogation of RAG-2 expression, hence endogenous CD4(+) T cell and B cell development, decelerated disease progression in high-affinity TCR-TG NOD mice, it converted the low-affinity TCR into a pathogenic one. In agreement with these data, polyclonal CD4(+) T cells from prediabetic NOD mice promoted disease in high-affinity TCR-TG NOD.Rag2(-/-) mice, but inhibited it in low-affinity TCR-TG NOD.Rag2(-/-) mice. Thus, in chronic autoimmune responses, CD4(+) Th cells contribute to both promoting and suppressing pathogenic autoimmunity.  相似文献   

18.
Humoral and tumoral factors collectively promote cancer-induced skeletal muscle wasting by increasing protein degradation. Although several humoral proteins, namely TNFα (tumour necrosis factor α) and IL (interleukin)-6, have been shown to induce skeletal muscle wasting, there is a lack of information regarding the tumoral factors that contribute to the atrophy of muscle during cancer cachexia. Therefore, in the present study, we have characterized the secretome of C26 colon cancer cells to identify the tumoral factors involved in cancer-induced skeletal muscle wasting. In the present study, we show that myostatin, a procachectic TGFβ (transforming growth factor β) superfamily member, is abundantly secreted by C26 cells. Consistent with myostatin signalling during cachexia, treating differentiated C2C12 myotubes with C26 CM (conditioned medium) resulted in myotubular atrophy due to the up-regulation of muscle-specific E3 ligases, atrogin-1 and MuRF1 (muscle RING-finger protein 1), and enhanced activity of the ubiquitin-proteasome pathway. Furthermore, the C26 CM also activated ActRIIB (activin receptor type?II B)/Smad and NF-κB (nuclear factor κB) signalling, and reduced the activity of the IGF-I (insulin-like growth factor 1)/PI3K (phosphoinositide 3-kinase)/Akt pathway, three salient molecular features of myostatin action in skeletal muscles. Antagonists to myostatin prevented C26 CM-induced wasting in muscle cell cultures, further confirming that tumoral myostatin may be a key contributor in the pathogenesis of cancer cachexia. Finally, we show that treatment with C26 CM induced the autophagy-lysosome pathway and reduced the number of mitochondria in myotubes. These two previously unreported observations were recapitulated in skeletal muscles collected from C26 tumour-bearing mice.  相似文献   

19.
Autoreactive CD4(+) T cells play a major role in the pathogenesis of autoimmune diabetes in nonobese diabetic (NOD) mice. We recently showed that the non-MHC genetic background controlled enhanced entry into the IFN-gamma pathway by NOD vs B6.G7 T cells. In this study, we demonstrate that increased IFN-gamma, decreased IL-4, and decreased IL-10 production in NOD T cells is CD4 T cell intrinsic. NOD CD4(+) T cells purified and stimulated with anti-CD3/anti-CD28 Abs generated greater IFN-gamma, less IL-4, and less IL-10 than B6.G7 CD4(+) T cells. The same results were obtained in purified NOD.H2(b) vs B6 CD4(+) T cells, demonstrating that the non-MHC NOD genetic background controlled the cytokine phenotype. Moreover, the increased IFN-gamma:IL-4 cytokine ratio was independent of the genetic background of APCs, since NOD CD4(+) T cells generated increased IFN-gamma and decreased IL-4 compared with B6.G7 CD4(+) T cells, regardless of whether they were stimulated with NOD or B6.G7 APCs. Cell cycle analysis showed that the cytokine differences were not due to cycle/proliferative differences between NOD and B6.G7, since stimulated CD4(+) T cells from both strains showed quantitatively identical entry into subsequent cell divisions (shown by CFSE staining), although NOD cells showed greater numbers of IFN-gamma-positive cells with each subsequent cell division. Moreover, 7-aminoactinomycin D and 5-bromo-2'-deoxyuridine analysis showed indistinguishable entry into G(0)/G(1), S, and G(2)/M phases of the cell cycle for both NOD and B6.G7 CD4(+) cells, with both strains generating IFN-gamma predominantly in the S phase. Therefore, the NOD cytokine effector phenotype is CD4(+) T cell intrinsic, genetically controlled, and independent of cell cycle machinery.  相似文献   

20.
The interplay of CD4(+) and CD8(+) T cells targeting autoantigens is responsible for the progression of a number of autoimmune diseases, including type 1 diabetes mellitus (T1D). Understanding the molecular mechanisms that regulate T cell activation is crucial for designing effective therapies for autoimmune diseases. We probed a panel of Abs with T cell-modulating activity and identified a mAb specific for the H chain of CD98 (CD98hc) that was able to suppress T cell proliferation. The anti-CD98hc mAb also inhibited Ag-specific proliferation and the acquisition of effector function by CD4(+) and CD8(+) T cells in vitro and in vivo. Injection of the anti-CD98hc mAb completely prevented the onset of cyclophosphamide-induced diabetes in NOD mice. Treatment of diabetic NOD mice with anti-CD98hc reversed the diabetic state to normal levels, coincident with decreased proliferation of CD4(+) T cells. Furthermore, treatment of diabetic NOD mice with CD98hc small interfering RNA resolved T1D. These data indicate that strategies targeting CD98hc might have clinical application for treating T1D and other T cell-mediated autoimmune diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号