首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EBV transformation of human B cells in vitro results in establishment of immortalized cell lines (lymphoblastoid cell lines (LCL)) that express viral transformation-associated latent genes and exhibit a fixed, lymphoblastoid phenotype. In this report, we show that CD4(+) T cells can modify the differentiation state of EBV-transformed LCL. Coculture of LCL with EBV-specific CD4(+) T cells resulted in an altered phenotype, characterized by elevated CD38 expression and decreased proliferation rate. Relative to control LCL, the cocultured LCL were markedly less susceptible to lysis by EBV-specific CD8(+) CTL. In contrast, CD4(+) T cell-induced differentiation of LCL did not diminish sensitivity of LCL to lysis by CD8(+) CTL specific for an exogenously loaded peptide Ag or lysis by alloreactive CD8(+) CTL, suggesting that differentiation is not associated with intrinsic resistance to CD8(+) T cell cytotoxicity and that evasion of lysis is confined to EBV-specific CTL responses. CD4(+) T cell-induced differentiation of LCL and concomitant resistance of LCL to lysis by EBV-specific CD8(+) CTL were associated with reduced expression of viral latent genes. Finally, transwell cocultures, in which direct LCL-CD4(+) T cell contact was prevented, indicated a major role for CD4(+) T cell cytokines in the differentiation of LCL.  相似文献   

2.
We have targeted CD22 as a novel tumor-associated Ag for recognition by human CTL genetically modified to express chimeric TCR (cTCR) recognizing this surface molecule. CD22-specific cTCR targeting different epitopes of the CD22 molecule promoted efficient lysis of target cells expressing high levels of CD22 with a maximum lytic potential that appeared to decrease as the distance of the target epitope from the target cell membrane increased. Targeting membrane-distal CD22 epitopes with cTCR(+) CTL revealed defects in both degranulation and lytic granule targeting. CD22-specific cTCR(+) CTL exhibited lower levels of maximum lysis and lower Ag sensitivity than CTL targeting CD20, which has a shorter extracellular domain than CD22. This diminished sensitivity was not a result of reduced avidity of Ag engagement, but instead reflected weaker signaling per triggered cTCR molecule when targeting membrane-distal epitopes of CD22. Both of these parameters were restored by targeting a ligand expressing the same epitope, but constructed as a truncated CD22 molecule to approximate the length of a TCR:peptide-MHC complex. The reduced sensitivity of CD22-specific cTCR(+) CTL for Ag-induced triggering of effector functions has potential therapeutic applications, because such cells selectively lysed B cell lymphoma lines expressing high levels of CD22, but demonstrated minimal activity against autologous normal B cells, which express lower levels of CD22. Thus, our results demonstrate that cTCR signal strength, and consequently Ag sensitivity, can be modulated by differential choice of target epitopes with respect to distance from the cell membrane, allowing discrimination between targets with disparate Ag density.  相似文献   

3.
Two subsets of human CTL have been defined based upon phenotype and function: CD4(-) CD8(-) double-negative (DN) CTL lyse susceptible targets via Fas-Fas ligand interaction and CD8(+) CTL via the granule exocytosis pathway. CD8(+) CTL, but not DN CTL, can mediate an antimicrobial activity against Mycobacterium tuberculosis-infected target cells that is dependent on cytotoxic granules that contain granulysin. We investigated the role of nuclear apoptosis for the antimicrobial effector function of CD1-restricted CTL using the caspase inhibitor N:-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. We found that DN CTL-induced target cell lysis was completely dependent on caspase activation, whereas the cytolytic activity of CD8(+) CTL was caspase independent. However, both DN and CD8(+) CTL-induced nuclear apoptosis required caspase activation. More important, the antimicrobial effector function of CD8(+) CTL was not diminished by inhibition of caspase activity. These data indicate that target cell nuclear apoptosis is not a requirement for CTL-mediated killing of intracellular M. tuberculosis.  相似文献   

4.
Lipid rafts accumulate in the immunological synapse formed by an organized assembly of the TCR/CD3, LFA-1, and signaling molecules. However, the precise role of lipid rafts in the formation of the immunological synapse is unclear. In this study, we show that LFA-1 on CTL is constitutively active and mediates Ag-independent binding of CTL to target cells expressing its ligands. LFA-1 and CD3 on CTL, but not resting T cells, colocalize in lipid rafts. Binding of LFA-1 on CTL to targets initiates the formation of the immunological synapse, which is formed by LFA-1, CD3, and ganglioside GM1 distributed in the periphery of the cell contact site and cholesterol is more widely distributed. The formation of this synapse is Ag independent, but the recognition of Ag by the TCR induces accumulation of tyrosine phosphorylated proteins in the synapse as well as redistribution of the microtubule organization center toward the cell contact site. Our results suggest that LFA-1 recruits lipid rafts and the TCR/CD3 to the synapse, and facilitates efficient and rapid activation of CTL.  相似文献   

5.
CD8(+) T cells play an essential role in immunity to Chlamydia pneumoniae (Cpn). However, the target Ags recognized by Cpn-specific CD8(+) T cells have not been identified, and the mechanisms by which this T cell subset contributes to protection remain unknown. In this work we demonstrate that Cpn infection primes a pathogen-specific CD8(+) T cell response in mice. Eighteen H-2(b) binding peptides representing sequences from 12 Cpn Ags sensitized target cells for MHC class I-restricted lysis by CD8(+) CTL generated from the spleens and lungs of infected mice. Peptide-specific IFN-gamma-secreting CD8(+) T cells were present in local and systemic compartments after primary infection, and these cells expanded after pathogen re-exposure. CD8(+) T cell lines to the 18 Cpn epitope-bearing peptides were cytotoxic, displayed a memory phenotype, and secreted IFN-gamma and TNF-alpha, but not IL-4. These CTL lines lysed Cpn-infected macrophages, and the lytic activity was inhibited by brefeldin A, indicating endogenous processing of CTL Ags. Finally, Cpn peptide-specific CD8(+) CTL suppressed chlamydial growth in vitro by direct lysis of infected cells and by secretion of IFN-gamma and other soluble factors. These studies provide information on the mechanisms by which CD8(+) CTL protect against Cpn, furnish the tools to investigate their possible role in immunopathology, and lay the foundation for future work to develop vaccines against acute and chronic Cpn infections.  相似文献   

6.
Cross-presentation of self Ags by APCs is key to the initiation of organ-specific autoimmunity. As MHC class I molecules are essential for the initiation of diabetes in nonobese diabetic (NOD) mice, we sought to determine whether the initial insult that allows cross-presentation of beta cell autoantigens in diabetes is caused by cognate interactions between naive CD8(+) T cells and beta cells. Naive splenic CD8(+) T cells from transgenic NOD mice expressing a diabetogenic TCR killed peptide-pulsed targets in the absence of APCs. To ascertain the role of CD8(+) T cell-induced beta cell lysis in the initiation of diabetes, we expressed a rat insulin promoter (RIP)-driven adenovirus E19 transgene in NOD mice. RIP-E19 expression inhibited MHC class I transport exclusively in beta cells and rendered these cells resistant to lysis by CD8(+) (but not CD4(+)) T cells, both in vitro and in vivo. Surprisingly, RIP-E19 expression impaired the accumulation of CD8(+) T cells in islets and delayed the onset of islet inflammation, without affecting the timing or magnitude of T cell cross-priming in the pancreatic lymph nodes, which is the earliest known event in diabetogenesis. These results suggest that access of beta cell autoantigens to the cross-presentation pathway in diabetes is T cell independent, and reveal a previously unrecognized function of MHC class I molecules on target cells in autoimmunity: local retention of disease-initiating clonotypes.  相似文献   

7.
Lytic granule exocytosis is the major effector function used by CD8(+) CTL in response to intracellular pathogens and tumors. Despite recent progress in the field, two important aspects of this cytotoxic mechanism remain poorly understood. First, TCR-signaling pathway(s) that selectively induces granule exocytosis in CTL has not been defined to date. Second, it is unclear how Ag receptor-induced signals are converted into mobilization of lytic granules. We recently demonstrated that protein kinase C delta (PKC delta) selectively regulates TCR-induced lytic granule polarization in mouse CD8(+) CTL. To better understand how PKC delta facilitates granule movement, here we studied dynamics of intracellular localization of PKC delta in living CD8(+) CTL. Strikingly, we found that PKC delta localizes to the secretory lysosomes and polarizes toward immunological synapse during the process of target cell killing. Also, biochemical and structure-function studies demonstrated that upon TCR ligation, PKC delta becomes rapidly phosphorylated on the activation loop and regulates granule exocytosis in a kinase-dependent manner. Altogether, our current studies provide new insights concerning the regulation of TCR-induced lytic granule exocytosis by revealing novel intracellular localization of PKC delta, providing the first example of colocalization of a kinase with secretory lysosomes in CD8(+) CTL and demonstrating that PKC delta directly transduces TCR signals leading to polarized granule secretion.  相似文献   

8.
Microglia are important immunoregulatory cells within the central nervous system (CNS). Viral infection of primary microglia and splenic macrophage clones revealed that both exhibited a heterogeneous, but relatively low, sensitivity to cytolysis mediated by CD8(+) cytotoxic T lymphocytes (CTL). The majority of clones were poor in processing and presenting epitopes, despite triggering lysis when coated with peptide. These characteristics were retained by stable microglia lines. Reduced lysis did not correlate with class I expression and IFN-gamma treatment only partially enhanced recognition. In contrast, targeting the epitope into the endoplasmic reticulum restored cytolysis to levels achieved with exogenous peptide. An inherent resistance to cytolysis was revealed by efficient engagement of T cells in competition assays and the inability of saturating peptide to enhance cytolysis. These data suggest that microglia heterogeneity in antigen processing, in addition to low sensitivity to CTL lysis, contributes to limited CD8(+) T cell responses and viral CNS persistence.  相似文献   

9.
Recent evidence has shown that cloned, murine CTL cell lines are resistant to the cytotoxic components of the toxic granules they release upon specific interaction with their target cells. Inasmuch as the resistance might be due to selection in culture over many months by repeated exposure to these cytolytic components (which are released repeatedly as a result of the cultured CTL being periodically stimulated by target cells), we asked whether primary CTL are also resistant. The primary CTL were elicited in vivo by i.p. injection of allogeneic tumor cells or in vitro by 5- to 6-day MLC or by 48-h exposure to the lectin Con A. The responding cells were separated into purified CD8+ (i.e., CD4-, CD8+) and purified CD4+ (i.e., CD4+, CD8-) T cell populations that were analyzed for cytolytic activity and for resistance to lysis by toxic secretory granules derived from cloned CTL cell lines. The CD8+ T cells were highly cytolytic and relatively resistant; they retained their cytolytic activity and were lysed to a minimal extent (0 to 10%) by quantities of isolated granules that lysed 80 to 90% of the P815 tumor cell line (tested as a representative standard cell line). The CD4+ T cells, in contrast, had only minimal cytolytic activity and were far more susceptible to granule-mediated lysis. Although the resistance of primary CD8+ T cells is impressive, it is not as pronounced as the resistance of the cloned CTL cell lines, indicating that during long-term culture there is some selection for increased resistance to granule-mediated lysis. In contrast to T cells (especially CD8+ T cells), Ia+ macrophages, isolated from primary immune peritoneal exudates, were highly susceptible to granule-mediated lysis.  相似文献   

10.
The binding of costimulatory ligand CD80 to CD28 or CTLA-4 on T cells plays an important role in the regulation of the T cell response. We have examined the role of the cytoplasmic domain of CD80 in murine T cell costimulation and its organization in the immunological synapse (IS). Removal of CD80 cytoplasmic tail decreased its effectiveness in costimulating T cell proliferative response and early IL-2 production in response to agonist MHC-peptide complexes. Immunofluorescent study showed a decreased tailless CD80 accumulation in the IS of naive T cells. The two forms of CD80 accumulated differently at the IS; the tailless CD80 was colocalized with the TCR whereas the full-length CD80 was segregated from the TCR. In addition, we showed that CD80, CD28, and protein kinase Ctheta colocalized in the presence or absence of the CD80 cytoplasmic tail. Thus, the cytoplasmic tail of CD80 regulates its spatial localization at the IS and that of its receptors and T cell signaling molecules such as protein kinase Ctheta, and thereby facilitates full T cell activation.  相似文献   

11.
CD8(+) cytotoxic T lymphocytes (CTL) can recognize and kill target cells expressing only a few cognate major histocompatibility complex (MHC) I-peptide complexes. This high sensitivity requires efficient scanning of a vast number of highly diverse MHC I-peptide complexes by the T cell receptor in the contact site of transient conjugates formed mainly by nonspecific interactions of ICAM-1 and LFA-1. Tracking of single H-2K(d) molecules loaded with fluorescent peptides on target cells and nascent conjugates with CTL showed dynamic transitions between states of free diffusion and immobility. The immobilizations were explained by association of MHC I-peptide complexes with ICAM-1 and strongly increased their local concentration in cell adhesion sites and hence their scanning by T cell receptor. In nascent immunological synapses cognate complexes became immobile, whereas noncognate ones diffused out again. Interfering with this mobility modulation-based concentration and sorting of MHC I-peptide complexes strongly impaired the sensitivity of antigen recognition by CTL, demonstrating that it constitutes a new basic aspect of antigen presentation by MHC I molecules.  相似文献   

12.
CTLs can acquire MHC class I-peptide complexes from their target cells, whereas CD4(+) T cells obtain MHC class II-peptide complexes from APCs in a TCR-specific manner. As a consequence, Ag-specific CTL can kill each other (fratricide) or CD4(+) T cells become APCs themselves. The purpose of the acquisition is not fully understood and may be either inhibition or prolongation of an immunological response. In this study, we demonstrate that human CD4(+) Th cells are able to capture membrane fragments from APC during the process of immunological synapse formation. The fragments contain not only MHC class II-peptide complexes but also MHC class I-peptide complexes, rendering these cells susceptible to CTL killing in an Ag-specific manner. The control of CD4(+) Th cells by Ag-specific CTL, therefore, maybe another mechanism to regulate CD4(+) T cell expansion in normal immune responses or cause immunopathology during the course of viral infections such as HIV.  相似文献   

13.
Mutations in ras proto-oncogenes are commonly found in a diversity of malignancies and may encode unique, non-self epitopes for T cell-mediated antitumor activity. In a BALB/c (H-2(d)) murine model, we have identified a single peptide sequence derived from the ras oncogenes that contained both CD8(+) and CD4(+) T cell epitopes in a nested configuration. This peptide reflected ras sequence 4-16, and contained the substitution of Gly to Val at position 12 ?i.e., 4-16(Val12)?. Mice immunized with this 13-mer peptide induced a strong antigen (Ag)-specific CD4(+) proliferative response in vitro. In contrast, mice inoculated with the wild-type ras sequence failed to generate a peptide-specific T cell response. Additionally, mice immunized with the ras 4-16(Val12) peptide concomitantly displayed an Ag-specific CD8(+) cytotoxic T lymphocyte (CTL) response, as determined by lysis of syngeneic tumor target cells incubated with the nominal 9-mer nested epitope peptide ?i.e., 4-12(Val12)?, as well as lysis of tumor target cells expressing the corresponding ras codon 12 mutation. Analysis of the Valpha- and Vbeta-chains of the T cell receptor (TCR) expressed by these CTL revealed usage of the Valpha1 and Vbeta9 subunits, consistent with the TCR phenotype of anti-ras Val12 CTL lines produced by in vivo immunization with the nominal peptide epitope alone. Moreover, immunization with the nested epitope peptide, as compared to immunization with either the 9-mer CTL peptide alone or an admixture of the 9-mer CTL peptide with an overlapping 13-mer CD4(+) T cell helper peptide ?i.e., 5-17(Val12)? lacking the class I N-terminus anchor site, enhanced the production of the CD8(+) T cell response. Finally, immunization with plasmid DNA encoding the ras 4-16(Val12) sequence led to the induction of both Ag-specific proliferative and cytotoxic responses. Overall, these results suggested that a single peptide immunogen containing nested mutant ras-specific CD4(+) and CD8(+) T cell epitopes: (1) can be processed in vivo to induce both subset-specific T lymphocyte responses; and (2) leads to the generation of a quantitatively enhanced CD8(+) CTL response, likely due to the intimate coexistence of CD4(+) help, which may have implications in peptide- or DNA-based immunotherapies.  相似文献   

14.
CD8(+) cytotoxic T lymphocytes (CTLs) generated by immunization with allogeneic cells or viral infection are able to lyse allogeneic or virally infected in vitro cells (e.g., lymphoma and mastocytoma). In contrast, it is reported that CD8(+) T cells are not essential for allograft rejection (e.g., heart and skin), and that clearance of influenza or the Sendai virus from virus-infected respiratory epithelium is normal or only slightly delayed after a primary viral challenge of CD8-knockout mice. To address this controversy, we generated H-2(d)-specific CD8(+) CTLs by a mixed lymphocyte culture and examined the susceptibility of a panel of H-2(d) cells to CTL lysis. KLN205 squamous cell carcinoma, Meth A fibrosarcoma, and BALB/c skin components were found to be resistant to CTL-mediated lysis. This resistance did not appear to be related to a reduced expression of MHC class I molecules, and all these cells could block the recognition of H-2(d) targets by CTLs in cold target inhibition assays. We extended our observation by persistently infecting the same panel of cell lines with defective-interfering Sendai virus particles. The Meth A and KLN205 lines infected with a variant Sendai virus were resistant to lysis by Sendai virus-specific CTLs. The Sendai virus-infected Meth A and KLN205 lines were able to block the lysis of Sendai virus-infected targets by CTLs in cold target inhibition assays. Taken together, these results suggest that not all in vivo tissues may be sensitive to CTL lysis.  相似文献   

15.
Pancreatic cancer is being pursued as an immunotherapy target using antigen-specific vaccine approaches activating CD8(+) CTL and CD4(+) T-helper cells. CD8(+) CTL exert their anti-tumor effects in an HLA-restricted manner and only tumor cells carrying a matched HLA class I sub-type are targets for antigen-specific CTL. In the process of characterizing CD8(+) T cell responses against pancreatic cancer, we screened a number of human pancreatic tumor cell lines for HLA-A0201 positive (HLA-A2(+)) cell lines to be used in the evaluation of CTL function. This analysis revealed some new findings and discrepancies in the literature on the HLA sub-type of some commonly used pancreatic cell lines. We found that Capan-1 cells, originally reported to be HLA-A0201(+), actually only express HLA-A010101 and HLA-A300101 and were targets for HLA-A0201-restricted CTL only after transduction with an HLA-A0201-expressing lentivirus. Panc-1 cells were found to be HLA-A0201 positive, in agreement with published reports, while CF-Pac-1 cells were found to express both HLA-A020101 and HLA-A030101. We also found a normal human pancreatic ductal epithelial cell line, HPDE, to be HLA-A0201 positive. Our findings were verified with two different sequence-based typing methods, antibody staining followed by flow cytometry analysis, and functional analysis using an HLA-A0201-restricted peptide-specific T cell response.  相似文献   

16.
Engagement of peptide-MHC by the TCR induces a conformational change in CD3epsilon that exposes a proline-rich sequence (PRS) and recruits the cytoskeletal adaptor Nck. This event, which precedes phosphorylation of the CD3epsilon ITAM, has been implicated in synapse formation and T cell function. However, there is compelling evidence that responsiveness to TCR ligation is CD3epsilon PRS independent. In this study, we show that the CD3epsilon PRS is necessary for peptide-MHC-induced phosphorylation of CD3epsilon and for recruitment of protein kinase Ctheta to the immune synapse in differentiated CD8+ T lymphocytes. However, whereas these two events are dispensable for functional T cell responsiveness to high-avidity ligands, they are required for responsiveness to low-avidity ones. Thus, in at least certain T cell clonotypes, the CD3epsilon PRS amplifies weak TCR signals by promoting synapse formation and CD3epsilon phosphorylation.  相似文献   

17.
Activation of CD4(+) Th cells requires their cognate interaction with APCs bearing specific relevant MHC class II-peptide complexes. This cognate interaction culminates in the formation of an immunological synapse that contains the various proteins and lipids required for efficient T cell activation. We now show that APC lipid raft membrane microdomains contain specific class II-peptide complexes and serve as platforms that deliver these raft-associated class II molecules to the immunological synapse. APC rafts are required for T cell:APC conjugate formation and T cell activation at low densities of relevant class II-peptide complexes, a requirement that can be overcome at high class II-peptide density. Analysis of confocal microscopy images revealed that over time APC lipid rafts, raft-associated relevant class II-peptide complexes, and even immunologically irrelevant class II molecules accumulate at the immunological synapse. As the immunological synapse matures, relevant class II-peptide complexes are sorted to a central region of the interface, while irrelevant class II molecules are excluded from this site. We propose that T cell activation is facilitated by recruitment of MHC class II-peptide complexes to the immunological synapse by virtue of their constitutive association with lipid raft microdomains.  相似文献   

18.
The requirement for protein kinase C (PKC) during triggering of murine CD8+ CTL was investigated. To this, CTL were depleted for PKC by pretreatment with PMA. This procedure neither influenced alpha/beta-TCR, CD3-epsilon, CD8, CD2, and lymphocyte function-associated Ag-1 expression, nor CTL-target cell conjugate formation. Although cytolytic effector function of PKC-depleted CTL triggered via alpha/beta-TCR structures was completely inhibited, target cell lysis induced via CD3-epsilon remained unaffected. Furthermore this PKC-independent cytolysis pathway was not associated with the release of serine esterases. Analyses at the clonal level revealed that PKC depletion blocked the cytolytic response of up to 95% of alpha/beta-TCR triggered CTL clones. The data suggest the existence of a distinct signaling pathway triggered via CD3-epsilon that is not associated with exocytosis of serine esterases and probably independent of PKC.  相似文献   

19.
The molecular properties of immunosuppressive n-3 polyunsaturated fatty acids (PUFA) have not been fully elucidated. Using CD4(+) T cells from wild-type control and fat-1 transgenic mice (enriched in n-3 PUFA), we show that membrane raft accumulation assessed by Laurdan (6-dodecanoyl-2-dimethyl aminonaphthalene) labeling was enhanced in fat-1 cells following immunological synapse (IS) formation by CD3-specific Ab expressing hybridoma cells. However, the localization of protein kinase Ctheta, phospholipase Cgamma-1, and F-actin into the IS was suppressed. In addition, both the phosphorylation status of phospholipase Cgamma-1 at the IS and cell proliferation as assessed by CFSE labeling and [(3)H]thymidine incorporation were suppressed in fat-1 cells. These data imply that lipid rafts may be targets for the development of dietary agents for the treatment of autoimmune and chronic inflammatory diseases.  相似文献   

20.
The function of the CD8 molecule in lympholysis mediated by cytotoxic T cells was investigated by examining possible contributions of ligands on the target cell to the inhibition of lysis observed with CD8-specific mAb. In order to evaluate a variety of target cells, including those not expressing the nominal Ag (NA) for which the CTL was specific, lysis was effected by cross-linking the CTL and the target cells with anti-CD3 mAb. Such CD3 redirected cytotoxicity was demonstrated to be inhibited by anti-CD8 mAb when low anti-CD3 mAb concentrations were used. The possibility that inhibition by anti-CD8 mAb resulted for competition for the FcR between the anti-CD3 mAb and anti-CD8 mAb was eliminated by targeting TNP-modified cells with an antibody heteroconjugate prepared from Fab fragments of anti-CD3 and anti-DNP antibodies. Inhibition of the lysis of target cells not expressing NA including those deficient in class I expression, demonstrated that neither NA nor class I expression was required for anti-CD8 mAb inhibition. Whether the anti-CD8 mAb inhibition required CD8 Ag interaction with any ligand on the target cell was further investigated by measuring exocytosis of enzyme granule from CTL activated with CD3-coated poly-styrene beads. CD8-specific mAb inhibited such CTL activation in this target cell-free system. A CD8(+), MHC class II-specific CTL clone, was used to show differential inhibition by anti-CD8 mAb, depending on the target cell, therefore providing evidence that anti-CD8 mAb binding does not generate an absolute off signal. These data are consistent with the hypothesis that anti-CD8 mAb affect the lytic process independent of the recognition of a ligand on the target cell by CD8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号