首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two phase partitioning bioreactors (TPPBs) operate by partitioning toxic substrates to or from an aqueous, cell-containing phase by means of second immiscible phase. Uptake of toxic substrates by the second phase effectively reduces their concentration within the aqueous phase to sub-inhibitory levels, and transfer of molecules between the phases to maintain equilibrium results in the continual feeding of substrate based on the metabolic demand of the microorganisms. Conventionally, a single pure species of microorganism, and a pure organic solvent, have been used in TPPBs. The present work has demonstrated the benefits of using a mixed microbial population for the degradation of phenol in a TPPB that uses solid polymer beads (comprised of ethylene vinyl acetate, or EVA) as the second phase. Polymer modification via an increase in vinyl acetate concentration was also shown to increase phenol uptake. Microbial consortia were isolated from three biological sources and, based on an evaluation of their kinetic performance, a superior consortium was chosen that offered improved degradation when compared to a pure strain of Pseudomonas putida ATCC 11172. The new microbial consortium used within a TPPB was capable of degrading high concentrations of phenol (2000mgl–1), with decreased lag time (10h) and increased specific rate of phenol degradation (0.71g phenolg–1cellh). Investigation of the four-member consortium showed that it consisted of two Pseudomonas sp., and two Acinetobacter sp., and tests conducted upon the individual isolates, as well as paired organisms, confirmed the synergistic benefit of their existence within the consortium. The enhanced effects of the use of a microbial consortium now offer improved degradation of phenol, and open the possibility of the degradation of multiple toxic substrates via a polymer-mediated TPPB system.  相似文献   

2.
3.
In this work the biotransformation of α-pinene oxide to isonovalal using resting cells of Pseudomonas fluorescens NCIMB 11671 was evaluated in a membrane bioreactor for biotransformations (MBB). Since the membrane area required to obtain optimum productivities was calculated to be very large (1,000 m2 m−3), and not possible to fit into the laboratory reactor used, we initially evaluated performance with lower membrane areas (71 m2 m−3) in a batch system with both the substrate and product in the organic phase. This resulted in low productivities due to mass transfer limitations, so an optimum feeding rate of 0.1 g α-pinene oxide h−1 gcells −1 added directly to the reactor contents was determined in batch culture to minimise inhibition. The MBB was then operated continuously for the production of isonovalal, and a final concentration of 108 g l−1 was obtained in the organic reservoir after nearly 400 h of operation (0.32 g-isonovalal l−1 h−1), and the reaction was found not to be mass transfer limited. Finally, the relative viability of the cells was measured using fluorescent probes, and their half-life was found to be almost 2 months, confirming the ability of the MBB to facilitate biotransformations with inhibitory substrates and products.  相似文献   

4.
5.
A solid–liquid two-phase partitioning bioreactor (TPPB) in which the non-aqueous phase consisted of polymer (HYTREL) beads was used to degrade a model mixture of phenols [phenol, o-cresol, and 4-chlorophenol (4CP)] by a microbial consortium. In one set of experiments, high concentrations (850 mg l−1 of each of the three substrates) were reduced to sub-inhibitory levels within 45 min by the addition of the polymer beads, followed by inoculation and rapid (8 h) consumption of the total phenolics loading. In a second set of experiments, the beneficial effect of using polymer beads to launch a fermentation inhibited by high substrate concentrations was demonstrated by adding 1,300 and 2,000 mg l−1 total substrates (equal concentrations of each phenolic) to a pre-inoculated bioreactor. At these levels, no cell growth and no degradation were observed; however, after adding polymer beads to the systems, the ensuing reduced substrate concentrations permitted complete destruction of the target molecules, demonstrating the essential role played by the polymer sequestering phase when applied to systems facing inhibitory substrate concentrations. In addition to establishing alternative modes of TPPB operation, the present work has demonstrated the differential partitioning of phenols in a mixture between the aqueous and polymeric phases. The polymeric phase was also observed to absorb a degradation intermediate (arising from the incomplete biodegradation of 4CP), which opens the possibility of using solid–liquid TPPBs during biosynthetic transformation to sequester metabolic byproducts.  相似文献   

6.
The synthesis of α-pinene oxide was studied in a three-phase system where immobilized Candida antarctica lipase B (Novozyme 435) was used to catalyze the formation of peroxyoctanoic acid from the parent carboxylic acid and hydrogen peroxide in toluene. The peroxycarboxylic acid formed was then used in situ for the oxidation of α-pinene to the corresponding epoxide. When hydrogen peroxide was added in the reaction mixture gradually over 6 h, conversions increased up to 31.6%. Initial rates of α-pinene oxidation increased from 85 to 708 mmol L?1 h?1 when the amount of H2O2 increased from 5 to 60 mmol. When the lipase was exposed to 75 mmol H2O2 for 0.5 h before its addition in the reaction mixture, its activity decreased to about 50%. The reusability of lipase was studied in five reaction cycles and was found to depend on the concentration of the hydrogen peroxide used.  相似文献   

7.
Summary A new method has been developed for the use of enzymes as catalysts in organic solvents. The enzyme and cofactor are entrapped in a lyotropic liquid crystal which is insoluble in an organic solvent. The biocatalyst is significantly stabilized in this biphasic reaction system and product recovery is facilitated.  相似文献   

8.
Recently, research on the use of binary aqueous-organic liquid phase systems for the treatment of polluted air has significantly increased. This paper reports the removal of α-pinene from a waste air stream in a continuous stirred tank bioreactor (CSTB), using either a single-liquid aqueous phase or a mixed aqueous-organic liquid phase. The influence of gas flow rate, load and pollutant concentration was evaluated as well as the effect of the organic to aqueous phase ratio. Continuous experiments were carried out at different inlet α-pinene concentrations, ranging between 0.03 and 25.1 g m?3 and at four different flow rates, corresponding to residence times (RTs) of 120 s, 60 s, 36 s and 26 s. The maximum elimination capacities (ECs) reached in the CSTB were 382 g m?3 h?1 (without silicone oil) and 608 g m?3 h?1 (with 5%v/v silicone oil), corresponding to a 1.6-fold improvement using an aqueous-organic liquid phase. During shock-loads experiments, the performance and stability of the CSTB were enhanced with 5% silicone oil, quickly recovering almost 100% removal efficiency (RE), when pre-shock conditions were restored. The addition of silicone oil acted as a buffer for high α-pinene loads, showing a more stable behaviour in the case of two-liquid-phase systems.  相似文献   

9.
Pseudomonas fluorescens NCIMB 11671 metabolises α-pinene via α-pinene oxide and 2-methyl-5-isopropylhexa-2,5-dienal. Mutants unable to grow on α-pinene and/or α-pinene oxide have been isolated by N-methyl-N′-nitro-N-nitrosoguanidine mutagenesis, including an unexpected phenotype able to grow on α-pinene but not on α-pinene oxide. The mutants have been classified on the basis of their α-pinene monooxygenase, α-pinene oxide lyase and aldehyde dehydrogenase activities. Biotransformation of α-pinene by the wild-type and mutant strains has revealed evidence for alternative routes for pinene metabolism to that already proposed. Received: 24 August 1995/Received revision: 20 December 1995/Accepted: 8 January 1996  相似文献   

10.
In the past few years, numerous research projects have focused on identifying and understanding scaling properties in the gene content of prokaryote genomes and the intricacy of their regulation networks. Yet, and despite the increasing amount of data available, the origins of these scalings remain an open question. The RAevol model, a digital genetics model, provides us with an insight into the mechanisms involved in an evolutionary process. The results we present here show that (i) our model reproduces qualitatively these scaling laws and that (ii) these laws are not due to differences in lifestyles but to differences in the spontaneous rates of mutations and rearrangements. We argue that this is due to an indirect selective pressure for robustness that constrains the genome size.  相似文献   

11.
Xu X  Fang J  Wang W  Guo J  Chen P  Cheng J  Shen Z 《Transgenic research》2008,17(4):645-650
An alpha-amylase gene from Bacillus stearothermophilus under the control of the promoter of a major rice-seed storage protein was introduced into rice. The transgenic line with the highest alpha-amylase activity reached about 15,000 U/g of seeds (one unit is defined as the amount of enzyme that produces 1 mumol of reducing sugar in 1 min at 70 degrees C). The enzyme produced in the seeds had an optimum pH of 5.0-5.5 and optimum temperature of 60-70 degrees C. Without extraction or purification, the power of transgenic rice seeds was able to liquify 100 times its weight of corn powder in 2 h. Thus, the transgenic rice could be used for industrial starch liquefaction.  相似文献   

12.
We have previously shown that two synthetic antimicrobial peptides with alternating α- and β-amino acid residues, designated simply as α/β-peptide I and α/β-peptide II, had toxicity toward bacteria and affected the morphology of bacterial membranes in a manner that correlated with their effects on liposomes with lipid composition similar to those of the bacteria. In the present study we account for the weak effects of α/β-peptide I on liposomes or bacteria whose membranes are enriched in phosphatidylethanolamine (PE) and why such membranes are particularly susceptible to damage by α/β-peptide II. The α/β-peptide II has marked effects on unilamellar vesicles enriched in PE causing vesicle aggregation and loss of their internal aqueous contents. The molecular basis of these effects is the ability of α/β-peptide II to induce phase segregation of anionic and zwitterionic lipids as shown by fluorescence and differential scanning calorimetry. This phase separation could result in the formation of defects through which polar materials could pass across the membrane as well as form a PE-rich membrane domain that would not be a stable bilayer. α/β-Peptide II is more effective in this regard because, unlike α/β-peptide I, it has a string of two or three adjacent cationic residues that can interact with anionic lipids. Although α/β-peptide I can destroy membrane barriers by converting lamellar to non-lamellar structures, it does so only weakly with unilamellar vesicles or with bacteria because it is not as efficient in the aggregation of these membranes leading to the bilayer-bilayer contacts required for this phase conversion. This study provides further understanding of why α/β-peptide II is more toxic to micro-organisms with a high PE content in their membrane as well as for the lack of toxicity of α/β-peptide I with these cells, emphasizing the potential importance of the lipid composition of the cell surface in determining selective toxicity of anti-microbial agents.  相似文献   

13.
Rocking disposable bioreactors are a newer approach to smaller-scale cell growth that use a cyclic rocking motion to induce mixing and oxygen transfer from the headspace gas into the liquid. Compared with traditional stirred-tank and pneumatic bioreactors, rocking bioreactors operate in a very different physical mode and in this study the oxygen transfer pathways are reassessed to develop a fundamental mass transfer (kLa) model that is compared with experimental data. The model combines two mechanisms, namely surface aeration and oxygenation via a breaking wave with air entrainment, borrowing concepts from ocean wave models. Experimental data for across the range of possible operating conditions (rocking speed, angle, and liquid volume) confirms the validity of the modeling approach, with most predictions falling within ±20% of the experimental values. At low speeds (up to 20 rpm) the surface aeration mechanism is shown to be dominant with a of around 3.5 hr−1, while at high speeds (40 rpm) and angles the breaking wave mechanism contributes up to 91% of the overall (65 hr−1). This model provides an improved fundamental basis for understanding gas–liquid mass transfer for the operation, scale-up, and potential design improvements for rocking bioreactors.  相似文献   

14.
Summary Concentration-response functions for-ionone were established for four German shepherds (Figs. 3 and 4). The dogs were tested in a three choice behavioral apparatus (Fig. 2), and trained, by a restricted operant procedure, to establish an approach-avoidance discrimination between odor and air. Odorant concentrations were presented from an olfactometer calibrated by gas chromatography. Minimum detectable concentrations fell within the range 4.0×104.5–4.0×106.5 molecules/cm3. Concentration-response curves for three of the dogs show a clear double reversal in slope which is statistically significant and which divides the curve into a slowly descending upper limb, best fitted by a parabolic function, and a rapidly descending lower limb, best fitted by a cubic function (Figs. 5 and 6). There is evidence that this division might reflect a dual receptor mechanism. When performance during testing stabilized for a given concentration and the concentration was then lowered by a certain magnitude, the new performance level depended markedly on that magnitude. No evidence was found to suggest that adaptation to the test odor influenced performance. As defined by a differential threshold fraction (Flow/Flow) one dog's ability to discriminate between differences in flow rate fell in the range 0.12–0.08.We thank the U.S. Air Force, Air Force Office of Scientific Research for their generous support of this work (Grant No. 73-2425 to D.G.Moulton).-ionone was donated by Givaudan Inc. (Dr. J. Dorsky). We also thank Mr. Paul Phillips for able technical assistance and Dr. T. Burlingame for gas chromatographic measurements.  相似文献   

15.
Summary A procedure for the measurement of fungal and bacterial -amylase in crude culture filtrates and commercial enzyme preparations is described. The procedure employs end-blocked (non-reducing end)p-nitrophenyl maltoheptaoside in the presence of amyloglucosidase and -glucosidase, and is absolutely specific for -amylase. The assay procedure is simple, reliable and accurate.  相似文献   

16.
In this study, a possible mechanism of selection of side-chain rotamers based on the rotamer distributions in known coiled-coil proteins is suggested. According to this mechanism, interhelical hydrophobic, polar, and packing interactions bring alpha-helices closer to each other and this effect squeezes side chains out of the helix-helix interface. As a result, in dimeric coiled coils and long alpha-alpha-hairpins where alpha-helices are packed in a face-to-face manner, most side chains occupying the a-positions have t-rotamers and those in the d-positions g(-)-rotamers. In tetramers, where alpha-helices are packed side-by-side, most side chains in the a-positions adopt g(-)-rotamers and those in the d-positions t-rotamers.  相似文献   

17.
Two identical biotrickling filters named BTFa and BTFb were run in parallel to examine their performances in removing hydrogen sulfide. BTFa was filled with ceramic granules, and BTFb was filled with volcanic rocks. The results showed that BTFb was more robust than BTFa under acidic conditions. At empty bed residence times (EBRTs) of 20 and 15?s, the removal efficiency of BTFa was close to 100%. At EBRTs of 10 and 5?s, the removal efficiency of BTFa slightly decreased. The removal efficiencies of BTFa decreased by different degrees at the end of each stage, dropping to 94%, 81%, 60%, and 71%, respectively. However, the H(2)S removal efficiency in BTFb consistently reached 99% throughout the experiment. Pyrosequencing analyses indicated that members of Thiomonas dominated in both BTFs, but the relative abundance of Acidithiobacillus was higher in BTFb than in BTFa.  相似文献   

18.
The posttranslational methylation of N-terminal α-amino groups (α-N-methylation) is a ubiquitous reaction found in all domains of life. Although this modification usually occurs on protein substrates, recent studies have shown that it also takes place on ribosomally synthesized natural products. Here we report an investigation of the bacterial α-N-methyltransferase CypM involved in the biosynthesis of the peptide antibiotic cypemycin. We demonstrate that CypM has low substrate selectivity and methylates a variety of oligopeptides, cyclic peptides such as nisin and haloduracin, and the ε-amino group of lysine. Hence it may have potential for enzyme engineering and combinatorial biosynthesis. Bayesian phylogenetic inference of bacterial α-N-methyltransferases suggests that they have not evolved as a specific group based on the chemical transformations they catalyze, but that they have been acquired from various other methyltransferase classes during evolution.  相似文献   

19.
Liquid–liquid phase separation (LLPS) is now recognized as a common mechanism underlying regulation of enzyme activity in cells. Insights from studies in cells are complemented by in vitro studies aimed at developing a better understanding of mechanisms underlying such control. These mechanisms are often based on the influence of LLPS on the physicochemical properties of the enzyme's environment. Biochemical mechanisms underlying such regulation include the potential for concentrating reactants together, tuning reaction rates, and controlling competing metabolic pathways. LLPS is thus a powerful tool with extensive utilities at the cell's disposal, e.g. for consolidating cell survival under stress or rerouting metabolic pathways in response to the energy state of the cell. Here, we examin the evidence for how LLPS affects enzyme catalysis and begin to understand emerging concepts and expand our understanding of enzyme catalysis in living cells.  相似文献   

20.
Biomechanics and Modeling in Mechanobiology - Liquid–liquid phase separation has emerged as a fundamental mechanism underlying intracellular organization, with evidence for it being reported...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号