首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用半定量RT-PCR和流式细胞术,在基因和蛋白水平研究了白血病细胞系U937、HL60和Ramos细胞P2X7受体的表达。荧光染料Fura-2/AM负载后,用荧光分光光度计测定P2X7受体激动剂三磷酸腺苷(adenosine 5′-triphosphate,ATP)和苯甲酰苯甲酸ATP(2′,3′-O-(4-benzoyl)benzoyl-ATP,BzATP)刺激前后细胞内钙离子浓度的变化,以确认其功能。结果表明:U937和HL60细胞系表达P2X7受体的mRNA和蛋白,Ramos不表达;在激动剂的刺激下,可引发U937和HL60细胞胞内钙浓度的显著升高,但对Ramos没有作用。当去除胞外钙离子时,ATP和BzATP刺激均不能引起U937和HL60细胞胞内钙离子浓度的升高。提示U937和HL60细胞表达P2X7受体的基因和功能蛋白,Ramos细胞则不表达该受体。  相似文献   

2.
Excitatory ATP responses in rat cultured thoracolumbar sympathetic neurones are mediated by somatic P2X(2) receptors. The present study investigated a possible role of axonal P2X(2) as well as P2X(7) receptors on the same preparation. Confocal laser scanning microscopy demonstrated P2X(2) and P2X(7) immunoreactivity along the axons as well as P2X(7) immunoreactivity surrounding the cell nuclei. P2X(7) mRNA expression was detected in individual neurones using a single-cell RT-PCR approach. Adenosine triphosphate (ATP) caused a significant increase in axonal Ca(2+) concentration which was dependent on external Ca(2+) but insensitive to depletion of the cellular Ca(2+) pools by cyclopiazonic acid. Pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS; 30 micro m) virtually abolished the ATP response, whereas brilliant blue G (0.1 micro m), a selective P2X(7) receptor antagonist, had no effect. Dibenzoyl-ATP (BzATP; 100 micro m) induced a much smaller increase in axonal [Ca(2+)] concentration than ATP at equimolar concentrations. The response to BzATP was distinctly reduced by PPADS but not by brilliant blue G. The overall pharmacological profile of the axonal P2X receptors resembled closely that of the somatic P2X(2) receptors. In conclusion, the present data suggest the occurrence of axonal excitatory P2X(2) receptors in thoracolumbar sympathetic neurones. However, the functional significance of axonal and (peri)-nuclear P2X(7) receptors has still to be proven.  相似文献   

3.
This study characterizes and examines the P2 receptor-mediated signal transduction pathway of a rat brain-derived type 2 astrocyte cell line, RBA-2. ATP induced Ca2+ influx and activated phospholipase D (PLD). The ATP-stimulated Ca2+ influx was inhibited by pretreating cells with P2 receptor antagonist, pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), in a concentration-dependent manner. The agonist 2'- and 3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP) stimulated the largest increases in intracellular Ca2+ concentrations ([Ca2+]i); ATP, 2-methylthioadenosine triphosphate tetrasodium, and ATPgammaS were much less effective, whereas UTP, ADP, alpha,beta-methylene-ATP, and beta,gamma-methylene-ATP were ineffective. Furthermore, removal of extracellular Mg2+ enhanced the ATP- and BzATP-stimulated increases in [Ca2+]i. BzATP stimulated PLD in a concentration- and time-dependent manner that could be abolished by removal of extracellular Ca2+ and was inhibited by suramin, PPADS, and oxidized ATP. In addition, PLD activities were activated by the Ca2+ mobilization agent, ionomycin, in an extracellular Ca2+ concentration-dependent manner. Both staurosporine and prolonged phorbol ester treatment inhibited BzATP-stimulated PLD activity. Taken together, these data indicate that activation of the P2X7 receptors induces Ca2+ influx and stimulates a Ca2+-dependent PLD in RBA-2 astrocytes. Furthermore, protein kinase C regulates this PLD.  相似文献   

4.
The effects of 2'- and 3'-O-(4-benzoylbenzoyl)-ATP (BzATP) on intracellular Ca2+ mobilization and cyclic AMP accumulation were investigated using rat brain capillary endothelial cells which express an endogenous P2Y1 receptor, human platelets which are known to express a P2Y1 receptor, and Jurkat cells stably transfected with the human P2Y1 receptor. In endothelial cells, BzATP was a competitive inhibitor of 2-methylthio ADP (2-MeSADP) and ADP induced [Ca2+]i responses (Ki = 4.7 microM) and reversed the inhibition by ADP of adenylyl cyclase (Ki = 13 microM). In human platelets, BzATP inhibited ADP-induced aggregation (Ki = 5 microM), mobilization of intracellular Ca2+ stores (Ki = 6.3 microM), and inhibition of adenylyl cyclase. In P2Y1-Jurkat cells, BzATP inhibited ADP and 2-MeSADP-induced [Ca2+]i responses (Ki = 2.5 microM). It was concluded that BzATP is an antagonist of rat and human P2Y1 receptors and of platelet aggregation. In contrast to other P2Y1 receptor antagonists (A2P5P and A3P5P) which inhibit only ADP-induced Ca2+ mobilization, BzATP inhibits both the Ca2+- and the cAMP-dependent intracellular signaling pathways of ADP. These results provide further evidence that P2Y1 receptors contribute to platelet ADP responses.  相似文献   

5.
Under normal and pathological conditions, brain cells release nucleotides that regulate a wide range of cellular responses due to activation of P2 nucleotide receptors. In this study, the effect of extracellular nucleotides on IFN gamma-induced NO release in murine BV-2 microglial cells was investigated. BV-2 cells expressed mRNA for metabotropic P2Y and ionotropic P2X receptors. Among the P2 receptor agonists tested, ATP, ADP, 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP), and 2-methylthio-ATP (2-MeSATP), but not UTP, enhanced IFN gamma-induced iNOS expression and NO production, suggesting that the uridine nucleotide receptors P2Y2 and P2Y6 are not involved in this response. U0126, an antagonist for MEK1/2, a kinase that phosphorylates the extracellular signal-regulated kinases ERK1/2, decreased IFN gamma-induced NO production. BzATP, a potent P2X7 receptor agonist, was more effective than ATP, ADP, or 2-MeSATP at enhancing IFN gamma-induced ERK1/2 phosphorylation. Consistent with activation of the P2X7 receptor, periodate-oxidized ATP, a P2X7 receptor antagonist, and suramin, a non-specific P2 receptor antagonist, inhibited the effect of ATP or BzATP on IFN gamma-induced NO production, whereas pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), an antagonist of several P2X receptor subtypes, was ineffective. These results suggest that activation of P2X7 receptors may contribute to inflammatory responses in microglial cells seen in neurodegenerative diseases.  相似文献   

6.
7.
P2X7 receptors are ATP-gated ion channels and play important roles in microglial functions in the brain. Activation of P2X7 receptors by ATP or its agonist BzATP induces Ca2+ influx from extracellular space, followed by the formation of non-selective membrane pores that is permeable to larger molecules, such as fluorescent dye. To determine whether phospholipase C (PLC) is involved in the activation of P2X7 receptors in microglial cells, U73122, a specific inhibitor of PLC, and its inactive analogue U73343 were examined on ATP and BzATP-induced channel and pore formation in an immortalized C57BL/6 mouse microglial cell line (MG6-1). ATP induced both a transient and a sustained increase in the intracellular Ca2+ concentration ([Ca2+]i) in MG6-1 cells, whereas BzATP evoked only a sustained increase. U73122, but not U73343, inhibited the transient [Ca2+]i increase involving Ca2+ release from intracellular stores through PLC activation. In contrast, both U73122 and U73343 inhibited the sustained [Ca2+]i increase either prior or after the activation of P2X7 receptor channels by ATP and BzATP. In addition, these U-compounds inhibited the influx of ethidium bromide induced by ATP and BzATP, suggesting possible PLC-independent blockage of the process of P2X7-associated channel and pore formations by U-compounds in C57BL/6 mouse microglial cells.  相似文献   

8.
Nicotinic acetylcholine receptors (nAChRs) are implicated in the regulation ofintracellular Ca2+-dependent processes in cells both in normal and pathological states, alpha-Conotoxins isolated from Conus snails venom are a valuable tool for the study of pharmacological properties and functional role of nAChRs. In the present study the alpha-conotoxin MII analogue with the additional tyrosine attached to the N terminus (Y0-MII) was prepared. Also we synthesized analogs with the N-terminal glycine residue labeled with the Bolton- Hunter reagent (BH-MII) or fluorestsein isothiocyanate (FITC-MII). Fluorescence microscopy studies of the neuroblastoma SH-SY5Y cells loaded with Ca2+ indicator Fura-2 or with Ca2+ and Na+ indicators Fluo-4 and SBFI were performed to examine effect of MII modification on its ability to inhibit nicotin-induced increases in intracellular free Ca2+ and Na+ concentrations ([Ca2+] and [Na+]i respectively). Monitoring of individual cell [Ca2+]i and [Na+]i signals revealed different kinetics of [Ca2+]i and [Na+]i rise and decay in responses to brief nicotine (Nic) applications (10-30 microM, 3-5 min), which indicates to different mechanisms of Ca2+ and Na+ homeostasis control in SH-SY5Y cells. MII inhibited in concentration-dependent manner the both [Ca2+]i and [Na+]i increase induced by Nic. Additional tyrosine in the Y0-MII or, especially, more sizeable label in FITC-MII significantly reduced the inhibitory effect of MII. Whereas the efficiency of the Ca2+ response inhibition by BH-MII was found to be close to the efficiency of its inhibition by natural alpha-conotoxin MII, radioiodinated derivatives BH-MII can be used in radioligand assay.  相似文献   

9.
James G  Butt AM 《Cell calcium》2001,30(4):251-259
It is known that ATP acts as an extracellular messenger mediating Ca2+ signalling in glial cells. Here, the mechanisms involved in the ATP-evoked increase in glial [Ca2+]i were studied in situ, in the acutely isolated rat optic nerve. ATP and agonists for P2X (a,b-metATP) and P2Y (2MeSATP) purinoreceptors triggered raised glial [Ca2+]i, and there was no significant difference between cells identified morphologically as astrocytes and oligodendrocytes. Dose-response curves indicated that P2Y receptors were activated at nanomolar concentrations, whereas P2X purinoreceptors were only activated above 10 microM. The rank order of potency for several agonists indicated optic nerve glia expressed heterogeneous purinoreceptors, with P2Y1< or = P2Y2/4< or = P2X. The ATP evoked increase in [Ca2+]i was reversibly blocked by the P2X/Y purinoreceptor antagonist suramin (100 microM) and markedly reduced by thapsigargin (10 microM), which blocks IP3-dependent release of Ca2+ from intracellular stores. Removal of extracellular Ca2+ reduced the ATP evoked increase in [Ca2+]i and completely blocked its recovery, indicating that refilling of intracellular stores was ultimately dependent on Ca2+ influx from the extracellular milieu. The results implicate ATP as an important signal in CNS white matter astrocytes and oligodendrocytes in situ, and indicate that metabotropic P2Y purinoreceptors mobilize intracellular Ca2+ at physiological concentrations of ATP, whereas ionotropic P2X purinoreceptors induce Ca2+ influx across the plasmalemma only at high concentrations of ATP, such as occur following CNS injury.  相似文献   

10.
Membrane currents and changes in the intracellular Ca2+ concentration ([Ca2+]i) were measured in HEK293 cells transfected with the human P2X3 receptor (HEK293-hP2X3). RT-PCR and immunocytochemistry indicated the additional presence of endogenous P2Y1 and to some extent P2Y4 receptors. P2 receptor agonists induced inward currents in HEK293-hP2X3 cells with the rank order of potency alpha,beta-meATP approximately ATP > ADP-beta-S > UTP. A comparable rise in [Ca2+]i was observed after the slow superfusion of ATP, ADP-beta-S and UTP; alpha,beta-meATP was ineffective. These data, in conjunction with results obtained by using the P2 receptor antagonists TNP-ATP, PPADS and MRS2179 indicate that the current response to alpha,beta-meATP is due to P2X3 receptor activation, while the ATP-induced rise in [Ca2+]i is evoked by P2Y1 and P2Y4 receptor activation. TCE depressed the alpha,beta-meATP current in a manner compatible with a non-competitive antagonism. The ATP-induced increase of [Ca2+]i was much less sensitive to the inhibitory effect of TCE than the current response to alpha,beta-meATP. The present study indicates that in HEK293-hP2X3 cells, TCE, but not ethanol, potently inhibits ligand-gated P2X3 receptors and, in addition, moderately interferes with G protein-coupled P2Y1 and P2Y4 receptors. Such an effect may be relevant for the interruption of pain transmission in dorsal root ganglion neurons following ingestion of chloral hydrate or trichloroethylene.  相似文献   

11.
We characterized ATP-induced changes in intracellular Ca2+ concentration ([Ca2+]i) and membrane current in cultured rat myenteric neurons using ratiometric Ca2+ imaging with fura-2 and the whole cell patch-clamp technique, respectively. Neuronal cells were functionally identified by [Ca2+]i responses to high K+ and nicotine, which occurred only in cells positive for neuron-specific protein gene product 9.5 immunoreactivity. ATP evoked a dose-dependent increase of [Ca2+]i that was greatly decreased by the removal of extracellular Ca2+ concentration ([Ca2+]o). The amplitude of the [Ca2+]i response to ATP was reduced by half in the presence of voltage-dependent Ca2+ channel blockers. In [Ca2+]o-free solution, ATP produced a small transient rise in [Ca2+]i similar to that induced by P2Y agonists. At -60 mV, ATP evoked a slowly inactivating inward current that was suppressed by the removal of extracellular Na+ concentration. The current-voltage relation for ATP showed an inward rectification with the reversal potential of about 0 mV. The apparent rank order of potency for the purinoceptor agonist-induced increases of [Ca2+]i was ATP > or = adenosine 5'-O-3-triphosphate > or = CTP > or = 2-methylthio-ATP > benzoylbenzoyl-ATP. A similar potency order was obtained with current responses to these agonists. P2 antagonists inhibited inward currents induced by ATP. Ca2+ and Mg2+ suppressed the ATP-induced current, and Zn2+, Cu2+, and protons potentiated it. RT-PCR and immunocytochemical studies showed the expression of P2X2 receptors in cultured rat myenteric neurons. These results suggest that ATP mainly activates ionotropic P2X2 receptors, resulting in a [Ca2+]i increase dependent on [Ca2+]o in rat myenteric neurons. A small part of the ATP-induced [Ca2+]i increase may be also mediated via a P2Y receptor-related mechanism.  相似文献   

12.
Bronchial epithelial cells respond to extracellular nucleotides from the luminal and basolateral side activating Cl- secretion via [Ca2+]i increase. In this study we investigated the differences of apically (ap) and basolaterally (bl) stimulated [Ca2+]i signals in polarized human bronchial epithelial cells (16HBE14o-). Specifically we investigated the localization of 'capacitative Ca2+ entry' (CCE). 16HBE14o- cells grown on permeable filters were mounted into an Ussing chamber built for the simultaneous measurement of Fura-2 fluorescence and electrical properties. Application of ATP from both sides induced a rapid [Ca2+]i increase and subsequent sustained [Ca2+]i plateau due to transmembraneous Ca(2+)-influx. The use of different nucleotides revealed the following rank order or potency which was very similar for addition from the apical or basolateral side: UTP (EC50 ap: 4 microM, bl: 5 microM) > ATP (EC50 ap: 4 microM, bl: 10 microM) > ADP (n = 4-7 from both sides). 2-MeS-ATP, AMP, adenosine and beta gamma-methylene ATP were ineffective (n = 3 from both sides). The ATP- (ap and bl) induced Ca2+ influx was only abolished by removal of basolateral Ca2+. This was also true for receptor-independent activation of Ca(2+)-influx by intracellular Ca(2+)-store depletion with 2,5 Di-(tert-butyl)-1,4-benzohydroquinone (BHQ) (10 microM). Also in polarized T84 cells the basolateral carbachol and BHQ activated Ca2+ plateau was exclusively sensitive to removal of basolateral Ca2+. We propose that in all polarized epithelial cells the CCE entry pathway is located in the basolateral membrane. We furthermore suggest that Ca2+[i elevating agonists acting from the apical side of the epithelium lead to the opening of a basolateral CCE pathway.  相似文献   

13.
The purines ATP and adenosine can act as a coordinated team of transmitters. As extracellular adenosine is frequently derived from the enzymatic dephosphorylation of released ATP, the distinct actions of the two purines can be synchronized. In retinal ganglion cells (RGCs), stimulation of the P2X7 receptor for ATP leads to increased intracellular Ca2+ and death. Here we define the contrasting effects of adenosine and identify protective actions mediated by the A3 receptor. Adenosine attenuated the rise in Ca2+ produced by the P2X7 agonist 3'-O-(4-benzoylbenzoyl)ATP (BzATP). Adenosine was also neuroprotective, increasing the survival of ganglion cells exposed to BzATP. The A3 adenosine receptor agonist 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronimide (Cl-IB-MECA) mimicked the inhibition of the Ca2+ rise, whereas the A3 antagonist 3-Ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS-1191) reduced the protective effects of adenosine. Both Cl-IB-MECA and a second A3 receptor agonist IB-MECA reduced the cell loss triggered by BzATP. The actions of BzATP were mimicked by ATPgammaS, but not by ATP. In summary, adenosine can stop the rise in Ca2+ and cell death resulting from stimulation of the P2X7 receptor on RGCs, with the A3 adenosine receptor contributing to this protection. Hydrolysis of ATP into adenosine and perhaps inosine shifts the balance of purinergic action from that of death to the preservation of life.  相似文献   

14.
M3 muscarinic receptors expressed on SH-SY5Y human neuroblastoma cells are linked to phosphoinositide turnover and rises in [Ca2+]i. The rise in [Ca2+]i is biphasic with the peak phase being due to release from an intracellular Ins(1,4,5)P3-sensitive site and the plateau phase being due to Ca2+ entry across the plasma membrane. Ca2+ entry does not appear to involve voltage sensitive Ca2+ channels, a pertussis toxin sensitive G-protein-operated Ca2+ channel or Ins(1,4,5)P3/Ins(1,3,4,5)P4-operated Ca2+ channel. We suggest that carbachol-stimulated Ca2+ entry in SH-SY5Y human neuroblastoma cells occurs via receptor operated Ca2+ channels and through capacitive refilling.  相似文献   

15.
ATP produces a variety of Ca2+ responses in astrocytes. To address the complex spatio-temporal Ca2+ signals, we analyzed the ATP-evoked increase in intracellular Ca2+ concentration ([Ca2+]i) in cultured rat hippocampal astrocytes using fura-2 or fluo-3 based Ca2+ imaging techniques. ATP at less than 10 nM produced elementary Ca2+ release event "puffs" in a manner independent of extracellular Ca2+. Stimulation with higher ATP concentrations (3 or 10 micro M) resulted in global Ca2+ responses such as intercellular Ca2+ wave. These Ca2+ responses were mainly mediated by metabotropic P2Y receptors. ATP acting on both P2Y1 and P2Y2 receptors produced a transient Ca2+ release by inositol 1,4,5-trisphosphate (InsP3). When cells were stimulated with ATP much longer, the transient [Ca2+]i elevation was followed by sustained Ca2+ entry from the extracellular space. This sustained rise in [Ca2+]i was inhibited by Zn2+ (<10 micro M), an inhibitor of capacitative Ca2+ entry (CCE). CCE induced by cyclopiazonic acid or thapsigargin and Ca2+ entry evoked by ATP share the same pharmacological profile in astrocytes. Taken together, the hierarchical Ca2+ responses to ATP were observed in hippocampal astrocytes, i.e., puffs, global Ca2+ release by InsP3, and CCE in response to depletion of InsP3-sensitive Ca2+ stores. It should be noted that these Ca2+ signals and their modulation by Zn2+ could occur in the hippocampus in situ since both ATP and Zn2+ are rich in the hippocampus and could be released by excitatory stimulation.  相似文献   

16.
17.
18.
Purinoceptor (P2X and P2Y) mediated Ca2+ signaling in cultured human microglia was studied using Ca2+ sensitive fluorescence microscopy. ATP (at 100 microM) induced a transient increase in [Ca2+]i in both normal and Ca(2+)-free solution suggesting a primary contribution by release from intracellular stores. This conclusion was further supported by the failure of ATP to cause a divalent cationic influx in Mn2+ quenching experiments. However, when fluorescence quenching was repeated after removal of extracellular Na+, ATP induced a large influx of Mn2+, indicating that inward Na+ current through a non-selective P2X-coupled channel may normally suppress divalent cation influx. Inhibition of Mn2+ entry was also found when microglia were depolarized using elevated external K+ in Na(+)-free solutions. The possibility of P2X inhibition of Ca2+ influx was then investigated by minimizing P2X contributions of purinergic responses using either the specific P2Y agonist, ADP-beta-S in the absence of ATP or using ATP combined with PPADS, a specific inhibitor of P2X receptors. In quenching studies both procedures resulted in large increases in Mn2+ influx in contrast to the lack of effect observed with ATP. In addition, perfusion of either ATP plus PPADS or ADP-beta-S alone caused a significantly enhanced duration (about 200%) of the [Ca2+]i response relative to that induced by ATP. These results show that depolarization induced by P2X-mediated Na+ influx inhibits store-operated Ca2+ entry resulting from P2Y activation, thereby modulating purinergic signaling in human microglia.  相似文献   

19.
Purinergic receptor stimulation has potential therapeutic effects for cystic fibrosis (CF). Thus, we explored roles for P2Y and P2X receptors in stably increasing [Ca(2+)](i) in human CF (IB3-1) and non-CF (16HBE14o(-)) airway epithelial cells. Cytosolic Ca(2+) was measured by fluorospectrometry using the fluorescent dye Fura-2/AM. Expression of P2X receptor (P2XR) subtypes was assessed by immunoblotting and biotinylation. In IB3-1 cells, ATP and other P2Y agonists caused only a transient increase in [Ca(2+)](i) derived from intracellular stores in a Na(+)-rich environment. In contrast, ATP induced an increase in [Ca(2+)](i) that had transient and sustained components in a Na(+)-free medium; the sustained plateau was potentiated by zinc or increasing extracellular pH. Benzoyl-benzoyl-ATP, a P2XR-selective agonist, increased [Ca(2+)](i) only in Na(+)-free medium, suggesting competition between Na(+) and Ca(2+) through P2XRs. Biochemical evidence showed that the P2X(4) receptor is the major subtype shared by these airway epithelial cells. A role for store-operated Ca(2+) channels, voltage-dependent Ca(2+) channels, or Na(+)/Ca(2+) exchanger in the ATP-induced sustained Ca(2+) signal was ruled out. In conclusion, these data show that epithelial P2X(4) receptors serve as ATP-gated calcium entry channels that induce a sustained increase in [Ca(2+)](i). In airway epithelia, a P2XR-mediated Ca(2+) signal may have therapeutic benefit for CF.  相似文献   

20.
Using whole-cell patch-clamp technique and Fura-2 fluorescence measurement, the presence of ATP-activated ion channels and its dependence on intracellular Ca2+ concentration ([Ca2+]i) in the epithelial cells of the endolymphatic sac were investigated. In zero current-clamp configuration, the average resting membrane potential was -66.8+/-1.3 mV (n=18). Application of 30 microM ATP to the bath induced a rapid membrane depolarization by 43.1+/-2.4 mV (n=18). In voltage-clamp configuration, ATP-induced inward current at holding potential (VH) of -60 mV was 169.7+/-6.3 pA (n=18). The amplitude of ATP-induced currents increased in sigmoidal fashion over the concentration range between 0.3 and 300 microM with a Hill coefficient (n) of 1.2 and a dissociation constant (Kd) of 11.7 microM. The potency order of purinergic analogues in ATP-induced current, which was 2MeSATP>ATPgammas>/=ATP>alpha, beta-ATP>ADP=AMP>/=adenosine=UTP, was consistent with the properties of the P2Y receptor. The independence of the reversal potential of the ATP-induced current from Cl- concentration suggests that the current is carried by a cation channel. The relative ionic permeability ratio of the channel modulated by ATP for cations was Ca2+>Na+>Li+>Ba2+>Cs+=K+. ATP (10 microM) increased [Ca2+]i in an external Ca2+-free solution to a lesser degree than that in the external solution containing 1.13 mM CaCl2. ATP-induced increase in [Ca2+]i can be mimicked by application of ionomycin in a Ca2+-free solution. These results indicate that ATP increases [Ca2+]i through the P2Y receptor with a subsequent activation of the non-selective cation channel, and that these effects of ATP are dependent on [Ca2+]i and extracellular Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号