首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic variation was surveyed at nine microsatellite loci and the mitochondrial control region (868 bp) to test for the presence of genetic stock structure in young-of-the-year Atlantic bluefin tuna (Thunnus thynnus thynnus) from the Mediterranean Sea. Bluefin tuna were sampled over a period of 5 years from the Balearic and Tyrrhenian seas in the western basin of the Mediterranean Sea, and from the southern Ionian Sea in the eastern basin of the Mediterranean Sea. Analyses of multilocus microsatellite genotypes and mitochondrial control region sequences revealed no significant heterogeneity among collections taken from the same location in different years; however, significant spatial genetic heterogeneity was observed across all samples for both microsatellite markers and mitochondrial control region sequences (FST=0.0023, P=0.038 and PhiST=0.0233, P=0.000, respectively). Significant genetic differentiation between the Tyrrhenian and Ionian collections was found for both microsatellite and mitochondrial markers (FST=0.0087, P=0.015 and PhiST=0.0367, P=0.030, respectively). These results suggest the possibility of a genetically discrete population in the eastern basin of the Mediterranean Sea.  相似文献   

2.
The Atlantic bluefin tuna (ABFT), Thunnus thynnus (Linnaeus, 1758), is an important commercial species managed as two different stocks, western and eastern Atlantic, with their spawning grounds in the Gulf of Mexico and in the Mediterranean Sea, respectively. The eastern Atlantic stock has been overexploited in the last decades, leading to the application of specific management measures introduced by the International Commission for the Atlantic Tuna (ICCAT). A clear understanding of the genetic structure of ABFT Mediterranean population should be pursued in order to support management decisions. To date the genetic studies on the Mediterranean ABFT, carried out with different molecular markers and sampling procedures, have produced unclear results. Here, we analysed ABFT samples from central and western Mediterranean Sea with mitochondrial sequences and 11 microsatellite loci to investigate, among the others, the area of the Strait of Messina, where environmental conditions seem to support a resident population of ABFT. Furthermore, genetic analyses of mitochondrial sequences were carried out including nucleotide sequences of Adriatic ABFT wild larvae retrieved from GenBank. Among the investigated areas a genetic differentiation was detected between the Strait of Messina and the Tyrrhenian Sea with microsatellite loci according to the exact G test, but not to the Bayesian analyses carried out with STRUCTURE. The analyses with mitochondrial sequences do not reveal any differentiation among sampled areas, however, a highly significant genetic divergence was observed between the Adriatic mitochondrial sequences retrieved from GenBank and the central‐western Mediterranean sequences obtained in the present work. Our results provide some evidence of population structure of Mediterranean ABFT adding pieces to a still unclear picture.  相似文献   

3.
Patterns of genetic variation within a species may be used to infer past events in the evolutionary history of marine species. In the present study we aimed to compare the genetic diversity of the red gorgonian Paramuricea clavata in the Atlantic Ocean and the Mediterranean Sea. For genetic markers we used microsatellites and a mitochondrial gene fragment. Our results revealed a distinct genetic composition and diversity between the Mediterranean and the Atlantic. The Mediterranean samples had higher microsatellite heterozygosity, allelic richness and private allelic richness. The hypotheses that can explain these patterns are the isolation of Atlantic populations and/or a founder effect. Additionally, a clear difference was obtained from the mitochondrial locus, since sequences from Atlantic and Mediterranean samples diverged by 1%, which is high for soft corals.  相似文献   

4.
To investigate the origin and maintenance of the genetic discontinuity between Atlantic and Mediterranean populations of the common sea bass (Dicentrarchus labrax) we analysed the genetic variation at a fragment of mitochondrial cytochrome b sequence for 18 population samples. The result were also compared with new or previously published microsatellite data. Seven mitochondrial haplotypes and an average nucleotidic divergence of 0.02 between Atlantic and Mediterranean populations that matches a Pleistocene allopatric isolation were found. The frequency variation at the cytochrome b locus was many times greater between Atlantic and Mediterranean populations (theta(C) = 0.67) than at microsatellite loci (theta(N)= 0.02). The examination of the different evolutionary forces at play suggests that a sex-biased hybrid breakdown is a likely explanation for part of the observed discrepancy between mitochondrial and nuclear loci. In addition, an analysis is made of the correlation between microsatellite loci points towards the possible existence of a hybrid zone in samples from the Alboran Sea.  相似文献   

5.
There is a general perception that central and northern Europe were colonized by range expansion from Mediterranean refugia at the end of the last glaciation. Data from various species support this scenario, but we question its universality. Our mitochondrial DNA studies on three widespread species of small mammal suggest that colonization may have occurred from glacial refugia in central Europe-western Asia. The haplotypes on the Mediterranean peninsulae are distinctive from those found elsewhere. Rather than contributing to the postglacial colonization of Europe, Mediterranean populations of widespread small mammals may represent long-term isolates undergoing allopatric speciation. This could explain the high endemism of small mammals associated with the Mediterranean peninsulae.  相似文献   

6.
Coastal and demersal chondrichthyans, such as the small-spotted catshark, are expected to exhibit genetic differentiation in areas of complex geomorphology like the Mediterranean Basin because of their limited dispersal ability. To test this hypothesis, we used a fragment of the mitochondrial cytochrome c oxidase subunit I gene and 12 nuclear microsatellite loci in order to investigate the genetic structure and historical demography of this species, and to identify potential barriers to gene flow. Samples were collected from the Balearic Islands, the Algerian Basin, the Ionian Sea, the Corinthian Gulf and various locations across the Aegean Sea. Additional sequences from the Atlantic and the Levantine Basin retrieved from GenBank were included in the mitochondrial DNA analysis. Both mitochondrial and nuclear microsatellite DNA data revealed a strong genetic subdivision, mainly between the western and eastern Mediterranean, whereas the Levantine Basin shared haplotypes with both areas. The geographic isolation of the Mediterranean basins seems to enforce the population genetic differentiation of the species, with the deep sea acting as a strong barrier to its dispersal. Contrasting historical demographic patterns were also observed in different parts of the species'' distribution, most notably a population growth trend in the western Mediterranean/Atlantic area and a slight decreasing one in the Aegean Sea. The different effects of the Pleistocene glacial periods on the habitat availability may explain the contrasting demographic patterns observed. The current findings suggest that the small-spotted catshark exhibits several genetic stocks in the Mediterranean, although further study is needed.  相似文献   

7.
Andreakis N  Kooistra WH  Procaccini G 《Gene》2007,406(1-2):144-151
Eight polymorphic nuclear microsatellite loci were identified from the invasive Indo-Pacific Mediterranean strain of Asparagopsis taxiformis. Microsatellite markers were tested against a panel of specimens collected along the Italian (Elba, Naples) and Californian (Catalina Island) coasts, all belonging to the same mitochondrial lineage. In addition, we used Hawaiian specimens, belonging to a closely related mitochondrial lineage. The markers amplified in all of the specimens but failed consistently in thalli of two more distantly related mitochondrial lineages of A. taxiformis as well as in specimens belonging to the sister species Asparagopsis armata. Since haploid female individuals among the Mediterranean specimens contained cystocarps, genotyping was performed on supposedly haploid female specimens and supposedly diploid cystocarps separately. As expected, external allelic contribution was detected in the cystocarps. However, even after removal of these reproductive structures, gametophyte thalli exhibited patterns consisting of up to three alleles in all of the tested populations indicating polyploidy. An elevated number of distinct genotypes (up to 85%) were found per population, suggesting high intra-population variation. Results showed high genetic similarity between the two Mediterranean populations screened and lower similarity between these two and the Californian one within the same mitochondrial lineage. Lowest similarity was found between these three and the Hawaiian population belonging to the other related mitochondrial lineage 1.  相似文献   

8.
Rajidae (colloquially known as skates and rays) experienced multiple and parallel adaptive radiations allowing high species diversity and great differences of species composition between regional faunas. Nevertheless, they show considerable conservation of bio-ecological, morphological and reproductive traits. The evolutionary history and dispersal of North-east Atlantic and Mediterranean rajid fauna were investigated throughout the sequence analysis of the control region and 16S rDNA mitochondrial genes. Molecular estimates of divergence times indicated recent origin and rapid dispersal of the present species. Compared with the ancient origin of the family (Late Cretaceous), the present species diversity arose in a relatively narrow time-window (12 Myr) from Middle Miocene to Early Pleistocene, likely by speciation processes related to dramatic geological and climatic events in the Mediterranean. Nucleotide substitution rates and phylogenetic relationships indicated Mediterranean endemic skates derived from sister species with wider distribution during Late Pliocene-Pleistocene. Skate phylogeny and systematics obtained using mitochondrial gene variation were largely consistent with those based on morpho-anatomical data.  相似文献   

9.
Restriction analysis of mitochondrial DNA (mtDNA) from 204 individuals of swordfish (Xiphias gladius) revealed no differentiation among samples from three sites in the Mediterranean Sea (Greece, Italy, Spain), but a high degree of differentiation between Mediterranean samples and a sample from the Gulf of Guinea. A fifth sample from the Atlantic side of the Straits of Gibraltar (Tarifa) consisted mostly of mitotypes that are common in the Mediterranean, but contained several of mtDNA types of the Guinea sample not found in the Mediterranean. We conclude that, in spite of free migration of swordfish across the Straits of Gibraltar, little genetic exchange occurs between the populations inhabiting the Mediterranean Sea and the tropical Atlantic ocean. This is the first evidence of genetic differentiation among geographic populations of this highly mobile species that supports a world-wide fishery.  相似文献   

10.
The distribution of the genetic diversity and the population structure of Pagellus erythrinus were analysed using mitochondrial control region sequences and cytochrome b restriction profiles in a total of 128 and 508 individuals, respectively, that were collected from 15 sampling sites in the central Mediterranean Sea and from one site in the Atlantic Ocean. No population genetic structure was detected within the central Mediterranean and thus, the commonly recognized transition zones in the area do not seem to affect population connectivity. The comparison between the Mediterranean samples and the single Atlantic sample suggests weak differentiation between the two basins. Three mitochondrial lineages were identified, each including individuals from almost every sampling site. The haplotype and nucleotide diversity values, mismatch distribution and demographic parameters indicate that the sympatry of these lineages can be ascribed to a period of isolation followed by genetic divergence, population expansion and secondary contact, all of which are likely to be associated with climatic oscillations that occurred during the middle and late Pleistocene.  相似文献   

11.
Six intraspecific lineages (Lineages 1–6) of Asparagopsis taxiformis have been previously established based on mitochondrial cox2‐cox3 intergenic spacer and a partial cox1 sequences. ‘Lineage 2’ (L2) was suggested to be a recent introduction to the Mediterranean Sea, but its source population has not yet been identified. In order to clarify the nature of northwestern Pacific populations, we performed extensive sampling in Japan (60 individuals from 16 locations) and molecular phylogenetic analyses based on mitochondrial sequences. Sixteen additional individuals, collected from eight locations in the Indo‐Pacific, Caribbean, and Mediterranean regions, were also analyzed. Combined sequence analyses revealed that the Japanese populations only consisted of L2. Out of 19 combined haplotypes identified within L2, two are shared between Japan and the Mediterranean Sea and the Hawaiian Islands, and 12 were identified as endemic to Japan. Genetic analyses of population differentiation suggested that Japanese populations are genetically isolated from the Mediterranean and the Hawaiian populations. A genetic disjunction appears to separate two subpopulations within Japan: one between Toi and Kagoshima and the other between Ojikajima Island and Kagoshima in the Kyushu area.  相似文献   

12.
We assessed the genetic structure of populations of the widely distributed sea cucumber Holothuria (Holothuria) mammata Grube, 1840, and investigated the effects of marine barriers to gene flow and historical processes. Several potential genetic breaks were considered, which would separate the Atlantic and Mediterranean basins, the isolated Macaronesian Islands from the other locations analysed, and the Western Mediterranean and Aegean Sea (Eastern Mediterranean). We analysed mitochondrial 16S and COI gene sequences from 177 individuals from four Atlantic locations and four Mediterranean locations. Haplotype diversity was high (H=0.9307 for 16S and 0.9203 for COI), and the haplotypes were closely related (π=0.0058 for 16S and 0.0071 for COI). The lowest genetic diversities were found in the Aegean Sea population. Our results showed that the COI gene was more variable and more useful for the detection of population structure than the 16S gene. The distribution of mtDNA haplotypes, the pairwise F(ST) values and the results of exact tests and amova revealed: (i) a significant genetic break between the population in the Aegean Sea and those in the other locations, as supported by both mitochondrial genes, and (ii) weak differentiation of the Canary and Azores Islands from the other populations; however, the populations from the Macaronesian Islands, Algarve and West Mediterranean could be considered to be a panmictic metapopulation. Isolation by distance was not identified in H. (H.) mammata. Historical events behind the observed findings, together with the current oceanographic patterns, were proposed and discussed as the main factors that determine the population structure and genetic signature of H. (H.) mammata.  相似文献   

13.
Historical biogeography of Mediterranean trout   总被引:6,自引:0,他引:6  
Complete sequencing of the mitochondrial control region was used to describe phylogenetic relationships of brown trout populations (Salmo trutta) in the Mediterranean river basins of Iberia and to review the historical biogeography of trout from the Mediterranean regions. Phylogenetic relationships among trout lineages suggested that the Danubian one is the most ancestral, in accordance with the eastern origin of most of the European freshwater fish species. Nested-clade and mismatch analyses suggested that the present distribution of haplotypes of the Adriatic and Mediterranean lineages resulted from population expansions originated, respectively, from central and western Europe, which favoured extensive secondary contacts between lineages. Reduced diversity detected within 50% of the analysed populations and large intrabasin differentiation indicated restricted gene flow in post-glacial periods.  相似文献   

14.
Microsatellite and mitochondrial DNA (mtDNA) variability data were used to study infestations of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) in Florida in 1997 and 1998. A total of 132 flies collected in monitoring traps or as larvae removed from fruit were examined at three polymorphic mtDNA restriction sites and two microsatellite loci. All of the flies sampled in Florida in 1997 displayed the mitochondrial AAB haplotype and represent a novel introduction of Mediterranean fruit flies into the state. All flies collected in central Florida in 1998 also displayed the AAB haplotype. Microsatellite analysis of these specimens from 1998 detected only alleles that were present in 1997. These results strongly indicate that the 1998 Florida outbreaks were derived from the Florida populations from the previous year. According to our analyses, the Mediterranean region is the most likely source for the 1997 Florida infestation. Flies from a small outbreak in Miami Springs, Dade County, FL, early in 1998 had a different mtDNA haplotype, characterized by the AAC restriction pattern. Microsatellites of these specimens showed significant differences in their allelic distribution from AAB flies, indicating an origin from a separate source population. South America is the most likely source for the Miami Springs flies.  相似文献   

15.
Population genetic structures of the mackerel (Scomber scombrus) and chub mackerel (Scomber japonicus) were studied in the Mediterranean Sea. Fragments of 272 bp (S. scomber) and 387 bp (S. japonicus) of the 5'-end of the mitochondrial control region were sequenced from spawning individuals collected off the coasts of Greece, Italy, Spain, and Portugal. High levels of mitochondrial control region haplotypic diversity (> 0.98) were found for both Scomber species. Nucleotide diversity was higher in the mackerel (0.022) than in the chub mackerel (0.017). Global F(ST) values were also higher and significant in the mackerel (0.024, P < 0.0001) as opposed to the chub mackerel (0.003, P > 0.05). Molecular variance analyses showed differential genetic structuring for these two closely related species. There is extensive gene flow between Mediterranean Sea and Atlantic Ocean populations of chub mackerel, which are organized into a larger panmictic unit. In contrast, Mediterranean Sea populations of mackerel show some degree of genetic differentiation and are structured along an east-west axis. The analysed eastern Mediterranean Sea mackerel populations (Greece, Italy) are clearly separated from that of the western Mediterranean Sea (Barcelona), which forms a panmictic unit with eastern Atlantic Ocean populations. The genetic structures of both species showed asymmetric migration patterns and indicated population expansion.  相似文献   

16.
Juvenile loggerhead sea turtles (Caretta caretta) from Atlantic nesting populations migrate into the western Mediterranean, where they share feeding grounds with turtles originating in the Mediterranean. In this scenario, male-mediated gene flow may lead to the homogenization of these distant populations. To test this hypothesis, we genotyped 7 microsatellites from 56 Atlantic individuals sampled from feeding grounds in the western Mediterranean and then compared the observed allele frequencies with published data of 112 individuals from Mediterranean nesting beaches. Mediterranean populations were found to be genetically differentiated from the Atlantic stock reaching the western Mediterranean (F(st) = 0.029, P < 0.001); therefore, the possible mating events between Atlantic and Mediterranean individuals are not sufficient to homogenize these 2 areas. The differentiation observed between these 2 areas demonstrates that microsatellites are sufficiently powerful for mixed stock analysis and that individual assignment (IA) tests can be performed in combination with mitochondrial DNA (mtDNA) analysis. In a set of 197 individuals sampled in western Mediterranean feeding grounds, 87% were robustly assigned to Atlantic or Mediterranean groups with the combined marker, as compared with only 52% with mtDNA alone. These findings provide a new approach for tracking the movements of these oceanic migrants and have strong implications for the conservation of the species.  相似文献   

17.
Dokulil  Martin T.  Teubner  Katrin 《Hydrobiologia》2003,503(1-3):29-35
We studied the genetic structure of populations of the Atlanto-Mediterranean ascidian Clavelina lepadiformis (Müller, 1776). A 369 bp segment of the COI mitochondrial gene was sequenced in Mediterranean and Atlantic populations from inside harbours, marinas and fjords (interior populations), and from the open rocky littoral (exterior populations). Previous work identified genetic differences between C. lepadiformis inhabiting Mediterranean harbours and the Mediterranean rocky littoral, however, the origin of these two clades remained speculative. Here we compared the Mediterranean populations with four Atlantic populations (two interior and two exterior). Gene differentiation and maximum likelihood analyses showed that the Atlantic forms were not divided into interior and exterior clades, and were closely related to the interior clade in the Mediterranean. The results support the hypothesis that both clades evolved allopatrically in the two seas, and that a recent colonisation of Mediterranean marinas from the Atlantic was caused by ship-hull transport. Colonisation of habitats by new genetic variants, morphologically indistinguishable from local populations, may be common among benthic invertebrates, and only genetic tools can uncover these cryptic invasions.  相似文献   

18.
The rhodophyte seaweed Asparagopsis armata Harvey is distributed in the northern and southern temperate zones, and its congener Asparagopsis taxiformis (Delile) Trevisan abounds throughout the tropics and subtropics. Here, we determine intraspecific phylogeographic patterns to compare potential causes of the disjunctions in the distributions of both species. We obtained specimens throughout their ranges and inferred phylogenies from the hypervariable domains D1-D3 of the nuclear rDNA LSU, the plastid spacer between the large and small subunits of RuBisCo and the mitochondrial cox 2-3 intergenic spacer. The cox spacer acquired base changes the fastest and the RuBisCo spacer the slowest. Median-joining networks inferred from the sequences revealed the absence of phylogeographic structure in the introduced range of A. armata, corroborating the species' reported recent introduction. A. taxiformis consisted of three nuclear, three plastid and four mitochondrial genetically distinct, lineages (1-4). Mitochondrial lineage 3 is found in the western Atlantic, the Canary Islands and the eastern Mediterranean. Mitochondrial lineages 1, 2, and 4 occur in the Indo-Pacific, but one of them (lineage 2) is also found in the central Mediterranean and southern Portugal. Phylogeographic results suggest separation of Atlantic and Indo-Pacific lineages resulted from the emergence of the Isthmus of Panama, as well as from dispersal events postdating the closure event, such as the invasion of the Mediterranean Sea by mitochondrial lineages 2 and 3. Molecular clock estimates using the Panama closure event as a calibration for the split of lineages 3 and 4 suggest that A. taxiformis diverged into two main cryptic species (1 + 2 and 3 + 4) about 3.2-5.5 million years ago (Ma), and that the separation of the mitochondrial lineages 1 and 2 occurred 1-2.3 Ma.  相似文献   

19.
The desiccation of the Mediterranean Sea during the Messinian Salinity Crisis 6.0-5.3 million years ago (Ma), caused a major extinction of the marine ichthyofauna of the Mediterranean. This was followed by an abrupt replenishment of the Mediterranean from the Atlantic after the opening of the Strait of Gibraltar. In this study, we combined demographic and phylogeographic approaches using mitochondrial and nuclear DNA markers to test the alternative hypotheses of where (Atlantic or Mediterranean) and when (before or after the Messinian Salinity Crisis) speciation occurred in the Mediterranean damselfish, Chromis chromis. The closely related geminate transisthmian pair Chromis multilineata and Chromis atrilobata was used as a way of obtaining an internally calibrated molecular clock. We estimated C. chromis speciation timing both by determining the time of divergence between C. chromis and its Atlantic sister species Chromis limbata (0.93-3.26 Ma depending on the molecular marker used, e.g. 1.23-1.39 Ma for the control region), and by determining the time of coalescence for C. chromis based on mitochondrial control region sequences (0.14-0.21 Ma). The time of speciation of C. chromis was always posterior to the replenishment of the Mediterranean basin, after the Messinian Salinity Crisis. Within the Mediterranean, C. chromis population structure and demographic characteristics revealed a genetic break at the Peloponnese, Greece, with directional and eastbound gene flow between western and eastern groups. The eastern group was found to be more recent and with a faster growing population (coalescent time = 0.09-0.13 Ma, growth = 485.3) than the western group (coalescent time = 0.13-0.20 Ma, growth = 325.6). Our data thus suggested a western origin of C. chromis, most likely within the Mediterranean. Low sea water levels during the glacial periods, the hydrographic regime of the Mediterranean and dispersal restriction during the short pelagic larval phase of C. chromis (18-19 days) have probably played an important role in C. chromis historical colonization.  相似文献   

20.
Eight samples of the hake, Merluccius merluccius L., from the Mediterranean basin (370 fishes total) and one from the Atlantic ocean (50 fishes) were analysed in order to assess genetic variability and describe genetic population structure. Five polymorphic protein coding loci were scored (ADH*, PGI‐1*, PGI‐2*, PGM* and SOD‐1*) in eight samples, together with a haplotype variation of four samples, obtained from polymerase chain reaction/restriction fragment length polymorphism (PCR–RFLP) analysis on the mitochondrial DNA control region. The average value for observed heterozygosity was typically higher than expected (showing an excess of heterozygotes among the samples) whereas the haplotype diversity at mtDNA was very low. Samples originating from inside the Mediterranean basin appeared genetically homogeneous but the sample originating from the Atlantic was heterogeneous compared with the Mediterranean populations. Nuclear and mitochondrial gene analysis showed similar results supporting that the Strait of Gibraltar may be considered as a breakpoint area to gene flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号