首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hemopoietic CSF, granulocyte-macrophage CSF (GM-CSF) and granulocyte CSF (G-CSF), are cytokines that mediate the clonal proliferation and differentiation of progenitor cells into mature macrophages and/or granulocytes. We have employed an all-human cell culture system, specific ELISA for GM-CSF and G-CSF, and Northern analysis to investigate whether chondrocytes are a potential source of CSF in rheumatoid disease. We report that human rIL-1 stimulated in a dose-dependent manner the production of GM-CSF and G-CSF by human articular cartilage and chondrocyte monolayers in organ and cell culture, respectively. Increased levels of the CSF Ag were detected after 2 to 8 h stimulation with IL-1, and the optimum dose of IL-1 was 10 to 100 U/ml (0.06 to 0.6 nM IL-1 alpha; 0.02 to 0.2 nM IL-1 beta); neither CSF was detectable in nonstimulated cultures nor in IL-1-stimulated cultures treated with actinomycin D or cycloheximide, indicating the requirement for de novo RNA and protein synthesis. The IL-1-mediated increase in GM-CSF could also be inhibited by the corticosteroid, dexamethasone, but not by the cyclo-oxygenase inhibitor, indomethacin. Although having little effect when tested alone, TNF-alpha and lymphotoxin (TNF-beta) could synergize with IL-1 for the production of GM-CSF. Basic fibroblast growth factor, platelet-derived growth factor, and IFN-alpha and IFN-gamma each had no effect on GM-CSF levels. Results obtained by Northern analysis of chondrocyte total RNA reflected those found for the CSF Ag, namely that CSF mRNA levels were elevated in response to IL-1, but not TNF, and that there was synergy between these two cytokines. We propose that chondrocyte CSF production in response to IL-1, and the concurrent destruction of cartilage by IL-1, could provide a mechanism for the chronic nature of rheumatoid disease.  相似文献   

2.
Production of hemopoietic colony-stimulating factors by astrocytes.   总被引:8,自引:0,他引:8  
Astrocytes may play a central role in regulation of immune mediated processes in the central nervous system. By their inducible expression of MHC class II Ag and secretion of cytokines they may propagate expansion and activation of T and B lymphocytes invading the brain tissue. Here we report that astrocytes may also contribute to the macrophage response observed in inflammatory and degenerative diseases of the brain. Murine astrocytes secrete granulocyte-macrophage CSF (GM-CSF) as evidenced by induction of colony formation in bone marrow cells and growth of FDC-P1 cells. Both effects are neutralized with anti-GM-CSF- but not with anti-IL-3-antibodies. Some residual activity detected in the bone marrow assay after antibody treatment can be explained by concomitant production of granulocyte CSF (G-CSF). The mRNA of both G- and GM-CSF are identified by Northern blots in astrocytes. Furthermore, mRNA for IL-1 alpha and IL-1 beta are detected in comparable amounts in astrocytes and brain macrophages, the latter, however, comprising much more potent sources of TNF-alpha.  相似文献   

3.
This study reports that TNF-alpha is a potent mitogen for human bone marrow sternal cells in vitro (assessed by [(3)H]-thymidine incorporation into DNA and cell counts). In contrast, cytokines such as IL-1alpha, IL-1beta, IL-2, IL-3, IL-4, IL-6, LIF, SCF, M-CSF, G-CSF and GM-CSF had no effect. The effect of TNF-alpha on the growth of human bone marrow stromal cells could be of importance during inflammatory processes which take place in the marrow, for example marrow fibrosis.  相似文献   

4.
We have investigated the effect of growth factors, inflammatory and anti-inflammatory cytokines on the macrophage colony-stimulating factor (M-CSF) secretion by cultured human bone marrow stromal cells. Their production of M-CSF cultured in serum-free medium is enhanced in a time-dependent manner in response to tumour necrosis factor (TNF-)alpha and interleukin (IL-)4 but not to IL-1, IL-3, IL-6, IL-7, IL-10, SCF, granulocyte-macrophage colony-stimulating factor (GM-CSF), G-CSF, bFGF and transforming growth factor (TGF-)beta. The co-addition of IL-4 and TNF-alpha has a greater than additive effect on the secretion of M-CSF suggesting that they act synergistically. The anti-inflammatory molecules IL-10 and TGF-beta have no effect on the TNF-alpha-induced M-CSF synthesis by marrow stromal cells. In conclusion TNF-alpha and IL-4 are potent stimulators of the M-CSF synthesis by human bone marrow stromal cells, a result of importance regarding the role of M-CSF in the proliferation/differentiation of mononuclear-phagocytic cells and the role of marrow stromal cells as regulators of marrow haematopoiesis.  相似文献   

5.
6.
7.
8.
We investigated the response of purified and cloned human thymic epithelial cells (TEC) to IL-1, IL-4, and IFN-gamma stimulation in vitro. IL-1 alpha strongly up-regulated the production of granulocyte-macrophage CSF (GM-CSF), granulocyte CSF (G-CSF), IL-6, and IL-8, as measured by specific immunoenzymetric assays and by increased steady state mRNA levels. IL-4 or IFN-gamma did not induce these cytokines in TEC but in a sustained and dose-dependent manner down-regulated the IL-1-induced GM-CSF protein and mRNA levels. Only IFN-gamma, and not IL-4, suppressed the IL-1-induced G-CSF and IL-8 production, as shown at both the protein and mRNA levels. The inhibition was dose dependent, sustained for at least 96 h, and more pronounced for G-CSF than for IL-8. In contrast, both IL-4 and IFN-gamma enhanced the IL-1-induced IL-6 production. IL-4 and IFN-gamma had additive effects to increase IL-6 secretion and to more completely suppress the IL-1-induced GM-CSF. Analyses of cell surface molecules showed that intercellular adhesion molecule 1 (ICAM-1) expression on TEC was increased by IL-1 or IFN-gamma. IL-4 slightly down-regulated constitutive ICAM-1 levels but did not significantly modify the levels of expression induced by either IL-1 or IFN-gamma. MHC class II expression was induced by IFN-gamma but not by IL-1 or IL-4. The combination of IL-1 and IL-4 with IFN-gamma did not alter the levels of class II MHC Ag induced by IFN-gamma. In conclusion, TEC cytokine production and cell surface molecule expression are differentially regulated via a complex cytokine network. Our data suggest that developing T cells provide, in part, the signals controlling the function of their supporting stroma.  相似文献   

9.
Production of interleukin 1 beta (IL-1 beta), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-alpha), interleukin 2 (IL-2), interferon gamma (IFN-gamma) and granulocyte-macrophage colony-stimulating factor (GM-CSF) after stimulation by lipopolysaccharide (LPS) and phytohemagglutinin (PHA) was studied in 1/10 diluted whole blood (WB) culture and in peripheral blood mononuclear cell (PBMC) culture. Cytokines IL-1 beta, TNF-alpha and IL-6 are preferentially stimulated by LPS whereas IL-2, IFN-gamma and GM-CSF are stimulated by PHA. Combination of 5 micrograms/ml PHA and 25 micrograms/ml LPS gave the most reliable production of the six cytokines studied. IL-1 beta, TNF-alpha and IL-6 represent a homogeneous group of early-produced cytokines positively correlated among themselves and with the number of monocytes in the culture (LeuM3). Furthermore, IL-1 beta was negatively correlated with the number of T8 lymphocytes. IL-2, IFN-gamma and GM-CSF represent a group of late-produced cytokines. Kinetics and production levels of IL-6 and GM-CSF are similar in WB and PBMC cultures. In contrast, production levels of TNF-alpha and IFN-gamma are higher in WB than in PBMC whereas production levels of IL-6 and IL-2 are lower in WB than in PBMC. Individual variation in responses to PHA + LPS was always higher in PBMC cultures than in WB cultures. The capacity of cytokine production in relation to the number of mononuclear cells is higher in WB, or in PBMC having the same mononuclear cell concentration as WB, than in conventional cultures of concentrated PBMC (10(6)/ml). Because it mimics the natural environment, diluted WB culture may be the most appropriate milieu in which to study cytokine production in vitro.  相似文献   

10.
BSF-2/IL-6, GM-CSF and IL-1 beta mRNAs were induced by recombinant IL-1 in human astrocytoma cell line U373MG. The induction of BSF-2/IL-6 and IL-1 beta mRNAs did not require de novo protein synthesis while that of GM-CSF mRNA required a newly synthesized protein. Dexamethasone inhibited the induction of these cytokine mRNAs by IL-1. This process seems to require continued protein synthesis. These results suggest that the production of these cytokines are positively and negatively controlled by IL-1 and glucocorticoids, respectively, in astrocytes.  相似文献   

11.
Purified recombinant human B cell growth factor-1/IL-4 was evaluated, alone and in combination, with purified preparations of recombinant human (rhu) CSF or erythropoietin (Epo) for effects on colony formation by human bone marrow CFU-GM progenitor cells (GM) and burst forming unit-E progenitor cells. rhu IL-4 synergized with rhu G-CSF to enhance granulocyte colony formation, but had no effect on CFU-GM colony formation stimulated by rhu GM-CSF, rhu IL-3, or rhu CSF-1. Rhu IL-4 synergized with Epo to enhance BFU-E colony formation equal to that of Epo plus either rhu IL-3, rhu GM-CSF, or rhu G-CSF. Removal of adherent cells and T lymphocytes did not influence the synergistic activities of rhu IL-4. Rmu IL-4, synergized with rhu G-CSF, but not with rmu GM-CSF, rmu IL-3, or natural mu CSF-1, to enhance CFU-GM (mainly granulocyte) colony numbers by a greater than 90% pure preparation of murine CFU-GM. Also, rhu IL-4 at low concentrations enhanced release of CSF and at higher concentrations the release also of suppressor molecules from human monocytes and PHA-stimulated human T lymphocytes. Use of specific CSF antibodies suggested that rhu IL-4 was enhancing the release of G-CSF and CSF-1 from monocytes and the release of GM-CSF and possibly G-CSF from PHA-stimulated T lymphocytes. Use of antibodies for TNF-alpha, IFN-gamma, or TNF-beta as well as measurement of TNF and IFN titers suggested that the suppressor molecule(s) released from monocytes were acting with TNF-alpha and those released from PHA-stimulated T lymphocytes were acting with IFN-gamma. These results implicate B cell growth factor-1/IL-4 as a synergistic activity for hematopoietic progenitors and suggest that the actions can be on both progenitor and accessory cells.  相似文献   

12.
13.
14.
We investigated a broad spectrum of immunoactive mediators in a mouse model of influenza. ICR mice (4-5 wk old) that were infected with a 10 LD50 dose of influenza A/PR8/34 virus died after 6 days without evidence of bacterial superinfection. Maximal virus titers were reached by day 2 postinfection, whereas the multifocal pneumonia with mononuclear cell infiltration reached its maximum at the end of infection. We measured the cytokines IL-1 alpha, IL-1 beta, IL-2, IL-3, IL-4, IL-6, IFN-gamma, TNF-alpha, granulocyte (G)/macrophage (M)-CSF, G-CSF, M-CSF, and the lipid mediators leukotriene B4 and platelet-activating factor in the cellfree bronchoalveolar lavage fluid of mice during infection. We found an early increase of IL-1 alpha, IL-1 beta, IL-6, TNF-alpha, GM-CSF, IFN-gamma, and leukotriene B4. Levels of these factors peaked between 36 h and day 3 postinfection, with the exception of IL-6 that remained at elevated levels throughout infection. G-CSF and M-CSF increased slowly and reached a maximum by day 5 postinfection. We were unable to detect IL-2, IL-3, or IL-4. PAF remained at the same level throughout infection. Our results suggest that lung-resident cells, and possibly the alveolar macrophages, participate actively in the onset of the inflammatory response against the invading virus. The inability to detect the T cell products IL-2, IL-3, and IL-4 was unexpected considering the role of T cells in the elimination of the virus in infected mice. Our observation confirms thus earlier findings about the inability of specific T cell clones to elicit an unspecific antiviral effect.  相似文献   

15.
During pathological bone loss, factors that are both stimulatory and inhibitory for osteoclast differentiation are over-expressed. Despite the presence of inhibitory factors, osteoclast differentiation is significantly enhanced to bring about bone loss. To examine the hypothesis that stimulatory growth factors overcome the effects of inhibitory factors, we have examined the ability of IGF-I, IGF-II, IL-6, LIF, and TNF-alpha to overcome osteoclast differentiation inhibition by GM-CSF in vitro. Osteoclast numbers were significantly elevated by treatment with IGF-I, IGF-II, IL-6, LIF, or TNF-alpha alone whereas GM-CSF treatment of stromal cell and osteoclast co-cultures inhibited osteoclast formation. IL-6, LIF, or TNF-alpha, individually overcame GM-CSF inhibition whereas neither IGF-I nor IGF-II treatment overcame GM-CSF inhibition. Interestingly, GM-CSF addition with either IL-6 or TNF-alpha increased osteoclast numbers beyond that seen with either IL-6 or TNF-alpha alone. Combined treatment with TNF-alpha and IL-6 showed a significant increase in osteoclast numbers with GM-CSF addition. Examination of the impacts of these growth factors individually or in combinations on stromal cell M-CSF, RANKL, and OPG expression revealed a complex pattern involving alterations in the ratio of RANKL to OPG and/or M-CSF expression as candidate mechanisms of action.  相似文献   

16.
Mediators of fetal inflammation in extremely low gestational age newborns   总被引:2,自引:0,他引:2  
To establish levels of mediators of inflammation in cord blood and postnatal serum from extremely low gestational age newborns (ELGANs, < or =28 weeks), we measured sixteen markers of inflammation by recycling immunoaffinity chromatography in 15 ELGANs who had serum sampled at days 2-5. Median levels of IL-1, IL-6, IL-8, IL-11, IL-13, TNF-alpha, G-CSF, M-CSF, GM-CSF, MIP-1alpha, and RANTES were considerably higher than published values of these inflammatory mediators from term newborns. In three of eight ELGANS who had serial measurements taken, levels of IL-1, IL-6, IL-8, IL-11, TNF-alpha, G-CSF, and MIP-1alpha declined from initially very high levels to reach an apparent baseline towards the end of the first postnatal week. In these same three infants, GM-CSF and TGF-beta1 levels increased continuously during the first week. In the other five ELGANs, no consistent changes were observed. We speculate, that in some ELGANs, a fetal systemic inflammatory response is characterized by an antenatal wave of pro-inflammatory cytokines, followed by a second, postnatal wave of anti-inflammatory cytokines. Large epidemiologic studies are needed to clarify relationships among inflammation markers and their expression in the fetal and neonatal circulation over time. Such studies would also add to our understanding of the possible role of inflammatory mediators in the pathophysiology of the major complications of extreme prematurity.  相似文献   

17.
Pseudomonas aeruginosa infection, one of the major complications of burn wounds, may lead to sepsis and death. Using the Multi-Probe Template/RNase protection assay, we have compared the expression of different cytokine genes within the skin and livers of thermally injured mice infected with P. aeruginosa PAO1. Thermal injury alone enhanced or up-regulated certain cytokines, including macrophage colony-stimulating factor (M-CSF), interleukin 1 (IL-1)RI, IL-1 beta, macrophage inflammatory protein (MIP)-1 beta and MIP-2; while PAO1 challenge alone up-regulated tumour necrosis factor alpha (TNF-alpha) and transforming growth factor beta (TGF-beta) expression. The combination of thermal injury plus PAO1 infection enhanced the expression of several pro-inflammatory and haematopoietic cytokines [stem cell factor (SCF), leukocyte inhibitory factor (LIF), IL-6 and TNF-alpha]; induced the expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) and G-CSF by 5 h and the expression of additional cytokines, including TGF-beta, TNF-beta, lymphotoxin beta (LT-beta), interferon gamma (IFN-gamma), and IFN-beta by 40 h post-burn/infection. While the most intense cytokine expression occurred in the skin, the majority of cytokines tested were also expressed in the liver by 40 h post-burn/infection. These results suggest that in P. aeruginosa infection of burn wounds: (1) up-regulation of the expression of different cytokines, locally and within the livers of burned mice, is an indication of P. aeruginosa -induced sepsis; and (2) IL-6 and G-CSF play an important role in the host response mechanism.  相似文献   

18.
Astrocytes have the capacity to secrete or respond to a variety of cytokines including IL-1, IL-6, IL-3, and TNF-alpha. In this study, we have examined the capacity of astrocytes to secrete TNF-alpha in response to a variety of biologic stimuli, particularly cytokines such as IL-1 and IFN-gamma, which are known to be present in the central nervous system during neurologic diseases associated with inflammation. Rat astrocytes do not constitutively produce TNF-alpha, but have the ability to secrete TNF-alpha in response to LPS, and can be primed by IFN-gamma to respond to a suboptimal dose of LPS. IFN-gamma and IL-1 beta alone do not induce TNF-alpha production, however, the combined treatment of IFN-gamma and IL-1 beta results in a striking synergistic effect on astrocyte TNF-alpha production. Astrocyte TNF-alpha protein production induced by a combined treatment of either IFN-gamma/LPS or IFN-gamma/IL-1 beta occurs in a dose- and time-dependent manner, and appears to require a "priming signal" initiated by IFN-gamma, which then renders the astrocyte responsive to either a suboptimal dose of LPS or IL-1 beta. Astrocyte TNF-alpha production by IFN-gamma/LPS stimulation can be inhibited by the addition of anti-rat IFN-gamma antibody, whereas IFN-gamma/IL-1-induced TNF-alpha production is inhibited by antibody to either IFN-gamma or IL-1 beta. Polyclonal antisera reactive with mouse macrophage-derived TNF-alpha neutralized the cytotoxicity of IFN-gamma/LPS and IFN-gamma/IL-1 beta-induced astrocyte TNF-alpha, demonstrating similarities between these two sources of TNF-alpha. We propose that astrocyte-produced TNF-alpha may have a pivotal role in augmenting intracerebral immune responses and inflammatory demyelination due to its diverse functional effects on glial cells such as oligodendrocytes and astrocytes themselves.  相似文献   

19.
AIMS: To determine whether granulocyte macrophage-colony stimulating factor (GM-CSF) production by neuronal precursor (NT2) cells can be regulated by IL-1beta and TNF-alpha. BACKGROUND: We have previously demonstrated GM-CSF expression by neurons of the developing human brain, as well as by NT2 cells. IL-1beta and TNF-alpha upregulate GM-CSF production in glial cells, but GM-CSF regulation in neurons is as yet undefined. We hypothesized that IL-1beta and TNF-alpha would increase GM-CSF mRNA and protein production in NT2 cells. METHODS: The effect of IL-1beta and TNF-alpha on GM-CSF production was assessed by dose response (0 to 2,000 U/ml), and time course (0 to 48 hours incubation) experiments. GM-CSF mRNA and protein production were assessed by quantitative RT-PCR and by ELISA. The effect of these cytokines on cell turnover was determined by BrdU incorporation. RESULTS: IL-1beta increased GM-CSF mRNA and protein expression by NT2 cells. This effect was time and dose dependent, and the effective dose ranging from (20-200 U/ml). TNF-alpha increased GM-CSF mRNA expression to a lesser extent than did IL-1beta (maximal stimulation at 200 U/ml), and a minimal increase in net protein accumulation was noted. Neither cytokine increased NT2 cell turnover. CONCLUSIONS: IL-1beta and TNF-alpha both increase GM-CSF mRNA expression by NT2 cells, but only IL-1beta increases net GM-CSF protein accumulation.  相似文献   

20.
Granulocyte (G)-CSF and granulocyte-macrophage (GM)-CSF enhance phagocyte survival and function and are produced by fibroblasts and endothelial cells after induction by inflammatory mediators such as IL-1. Our ability to detect G-CSF and GM-CSF activity in the conditioned medium of the human astroglial tumor cell line, U87MG, and molecularly clone the cDNA for G-CSF from a U87MG cDNA library raised the possibility that astroglial cells are capable of G-CSF and GM-CSF production within the central nervous system; if so, the production of these CSF by astroglial cells may be inducible by IL-1. We examined the effects of IL-1 alpha and IL-1 beta on the production of G-CSF and GM-CSF by U87MG and U373MG, another astroglial tumor cell line that does not constitutively produce CSF. We demonstrate that both U87MG and U373MG can be induced to produce G-CSF and GM-CSF by exposure to IL-1 alpha and IL-1 beta. This response, measured by accumulation of increased CSF mRNA, is rapid, sensitive and due to the enhanced stability of CSF message following IL-1 exposure. The implications of these findings to the immunopathogenesis of central nervous system infections are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号