首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteoporosis is a serious disease caused by decreased bone mass. There is constant matrix remodeling in bones, by which bone formation is performed by osteoblastic cells, whereas bone resorption is accomplished by osteoclast cells. We investigated the effect of a Japanese apricot (Prunus mume SIBE. et ZUCC.) extract on the proliferation and osteoblastic differentiation in pre-osteoblastic MC3T3-E1 cells. An alkaline phosphatase (ALP) activity assay, cell proliferation assay, alizarin red staining and expression analysis of osteoblastic genes were carried out to assess the proliferation and osteoblastic differentiation. The water-soluble fraction of Prunus mume (PWF) increased the ALP activity, cell proliferation and mineralization. The gene expression of osteopontin and bone morphogenetic protein-2, which are markers in the early period of osteoblastic differentiation, were significantly enhanced by the PWF treatment. PWF therefore stimulated the proliferation and osteoblastic differentiation of cells and may have potential to prevent osteoporosis.  相似文献   

2.
The effects of luteolin on the function of osteoblastic MC3T3-E1 cells and the production of local factors in osteoblasts were investigated. Luteolin (1microM) caused a significant elevation of collagen content, alkaline phosphatase (ALP) activity, and osteocalcin secretion in the cells (P<0.05). The effect of luteolin in increasing collagen content and ALP activity was completely prevented by the presence of 10(-6)M cycloheximide and 10(-6)M tamoxifen, suggesting that luteolin's effect results from a newly synthesized protein component and might be partly involved in estrogen action. We then examined the effect of luteolin on the 3-morpholinosydnonimine (SIN-1)-induced production of oxidative stress markers [nitric oxide (NO) and prostaglan E(2) (PGE(2))] and cytokines [tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6)] in osteoblasts. Luteolin (1 and 10microM) decreased the SIN-1-induced production of NO, PGE(2), TNF-alpha, and IL-6 in osteoblasts. These results suggest that inflammatory mediators can be regulated by luteolin stimulating osteoblastic function.  相似文献   

3.
4.
5.
Although zinc (Zn) is known to participate in bone formation, its exact role in the remodeling of this tissue has not been fully clarified. The present study was designed to investigate whether Zn has a role at the resorptive sites in vitro. We investigated the migration of osteoblastic MC3T3-E1 cells in response to Zn using a Boyden chamber assay. Exposure of MC3T3-E1 cells to Zn stimulated the migration of MC3T3-E1 cells. Checkerboard analysis revealed that the migration of MC3T3-E1 cells toward Zn was a directional (chemotaxis) rather than a random (chemokinesis) motion. Pretreatment of MC3T3-E1 cells with pertussis toxin completely blocked the chemotactic response of cells to Zn, indicating that it is mediated by G-protein-coupled receptors. Because the bone is one of the major Zn storage sites, we suggest that Zn released from bone-resorptive sites plays an important role in the recruitment of osteoblasts and bone renewal.  相似文献   

6.
Covalent intermolecular cross-linking of collagen is initiated by the action of lysyl oxidase (LOX) on the telopeptidyl lysine and hydroxylysine residues. Recently, several LOX isoforms, i.e., LOX-like proteins 1-4 (LOXL1-4), have been identified but their specific tissue distribution and functions are still largely unknown. In this study, mRNA expression of LOX and LOXL1-4 in MC3T3-E1 osteoblastic cells was screened by RT-PCR and quantitatively analyzed by real-time PCR during cell differentiation and matrix mineralization. The results demonstrated that LOX and all LOXLs, except LOXL2, were expressed in this cell line and that the expression pattern during cell differentiation and matrix mineralization was distinct from one another. This indicates that the expression of LOX and its isoforms is highly regulated during osteoblast differentiation, suggesting their distinct roles in collagen matrix stabilization and subsequent mineralization.  相似文献   

7.
Glucocorticoids are widely used as anti-inflammatory and chemotherapeutic agents. However, prolonged use of glucocorticoids leads to osteoporosis. This study was designed to examine the mechanism of dexamethasone (DEX)-induced apoptosis in murine osteoblastic MC3T3-E1 cells. Total RNA was extracted from MC3T3-E1 cells treated with 10(-7) M DEX for 6 h. DEX exerted a variety of effects on apoptotic gene expression in osteoblasts. Ribonuclease protection assays (RPA) revealed that DEX upregulated mRNA levels of caspases-1, -3, -6, -8, -11, -12, and bcl-XL. Western blot analysis showed enhanced processing of these caspases, with the appearance of their activated enzymes 8 h after DEX treatment. In addition, DEX also induced the activation of caspase-9. DEX elevated the levels of cleaved poly(ADP-ribose) polymerase and lamin A, a caspase-3 and a caspase-6 substrate, respectively. Expression of bcl-XL protein level was upregulated by DEX. Cytochrome c release was detected in the cytosol of DEX-treated cells. Furthermore, caspase-3 enzyme activity was elevated by 2-fold after DEX treatment for 7 h. Finally, early apoptotic cells were detected in cells treated with DEX for 3 h. Our results demonstrate that DEX-induced apoptosis involves gene activation of a number of caspases.  相似文献   

8.
Wang QP  Xie H  Yuan LQ  Luo XH  Li H  Wang D  Meng P  Liao EY 《Amino acids》2009,36(1):57-63
Progesterone (P) has been suggested as a bone-trophic hormone. Previous studies have shown that P promoted bone formation by stimulating the proliferation and differentiation of osteoblasts. But, the effect of P on apoptosis of osteoblast in vitro has not been reported. We propose that P may promote bone formation by suppressing the apoptosis of osteoblast. The present study was performed to investigate the effect of P on apoptosis of murine MC3T3-E1 osteoblastic cells. Cell apoptosis was measured by acidine orange/ethidium bromide (AO/EB) staining and sandwich-enzyme-immunoassay. Progesterone receptor (PR), cytochrome c, caspase-9 and caspase-3 protein levels were determined by Western blot analysis. The enzyme substrate was also used to assess the activation of caspase-3 and caspase-9. Progesterone suppressed MC3T3-E1 cells apoptosis induced by serum deprivation, and this effect was blocked by a PR antagonist RU486. Furthermore, the suppressive effects of P on cytochrome c release and caspase-9 and caspase-3 activation in serum-deprived MC3T3-E1 cells were also reversed by RU486. Our study demonstrated that P protects osteoblast against apoptosis through PR and the downstream mitochondrial pathway. Thus, the data suggest that the effects of P on osteoblast apoptosis may contribute to the mechanisms by which P exerts its action on bone formation.  相似文献   

9.
Thrombospondin 1 (TSP1) is a multifunctional extracellular glycoprotein present mainly in the fetal and adult skeleton. Although an inhibitory effect of TSP1 against pathological mineralization in cultured vascular pericytes has been shown, its involvement in physiological mineralization by osteoblasts is still unknown. To determine the role of TSP1 in biomineralization, mouse osteoblastic MC3T3-E1 cells were cultured in the presence of antisense phosphorothioate oligodeoxynucleotides complementary to the TSP1 sequence. The 18- and 24-mer antisense oligonucleotides caused concentration-dependent increases in the number of mineralized nodules, acid-soluble calcium deposition in the cell/matrix layer, and alkaline phosphatase activity within 9 days, without affecting cell proliferation. The corresponding sense or scrambled oligonucleotides did not affect these parameters. In the antisense oligonucleotide-treated MC3T3-E1 cells, thickened extracellular matrix, well-developed cell processes, increased intracellular organelles, and collagen fibril bundles were observed. On the other hand, the addition of TSP1 to the culture decreased the production of a mineralized matrix by MC3T3-E1 cells. Furthermore, MC3T3-E1 clones overexpressing mouse TSP1 were established and assayed for TSP1 protein and their capacity to mineralize. TSP1 dose-dependently inhibited mineralization by these cells both in vitro and in vivo. These results indicate that TSP1 functions as an inhibitory regulator of bone mineralization and matrix production by osteoblasts to sustain bone homeostasis.  相似文献   

10.
11.
Mitochondrial dysfunction, particularly respiratory chain disruption, is often responsible for aging-related bone diseases. In this study, the protective effects of glabridin, an isoflavan isolated from licorice root, against pharmacological inhibition of the respiratory chain were studied using osteoblastic MC3T3-E1 cells treated with antimycin A, which inhibits complex III of the electron transport system. Glabridin restored mitochondrial membrane potential dissipation, ATP loss, inactivation of complex IV, intracellular calcium elevation, and cytochrome c release that was induced by antimycin A treatment. This compound also prevented cell death. These results imply that glabridin protects osteoblasts from antimycin A-induced cell death via improved mitochondrial function. Glabridin scavenged ROS and mitochondrial superoxide anions generated by antimycin A. In addition, glabridin prevented antimycin A-induced nitrotyrosine increase and thioredoxin reductase inactivation, suggesting that glabridin may be useful for protecting mitochondria against a burst of oxidative stress. Since phosphoinositide 3-kinase (PI3K) and cAMP-response element-binding protein (CREB) signaling is known to be pro-survival, we determined whether PI3K and CREB activation is associated with the cytoprotective effects of glabridin in the MC3T3-E1 cells. Glabridin restored antimycin A-induced inactivation of PI3K and CREB, suggesting that PI3K and CREB-dependent pathways may be involved in glabridin-induced cytoprotective responses. Our study demonstrates that glabridin reduces mitochondrial dysfunction induced during aging, and could significantly prevent osteoblast damage in osteoporotic patients.  相似文献   

12.
13.
14.
We have previously shown that the extracellular calcium-sensing receptor (CaR) is expressed in various bone marrow-derived cell lines and plays an important role in stimulating their proliferation and chemotaxis. It has also been reported that the CaR modulates matrix production and mineralization in chondrogenic cells. However, it remains unclear whether the CaR plays any role in regulating osteoblast differentiation. In this study, we found that mineralization of the mouse osteoblastic MC3T3-E1 cells was increased when the cells were exposed to high calcium (2.8 and 3.8 mM) or a specific CaR activator, NPS-R467 (1 and 3 microM). Next, we stably transfected MC3T3-E1 cells with either a CaR antisense vector (AS clone) or a vector containing the inactivating R185Q variant of the CaR (DN clone) that has previously been shown to exert a dominant negative action. Alkaline phosphatase activities were decreased compared with controls in both the AS and DN clones. However, the levels of type I procollagen and osteopontin mRNA in the AS clone, as detected by Northern blotting, were almost the same as in the controls. On the other hand, the expression of osteocalcin, which is expressed at a later stage of osteoblastic differentiation, was significantly reduced in both the AS and DN clones. Mineralization was also decreased in both clones. In conclusion, this study showed that the abolition of CaR function results in diminishing alkaline phosphatase activity, osteocalcin expression, and mineralization in mouse osteoblastic cells. This suggests that the CaR may be involved in osteoblastic differentiation.  相似文献   

15.
Bone formation involves several tightly regulated gene expression patterns of bone-related proteins. To determine the expression patterns of bone-related proteins during the MC3T3-E1 osteoblast-like cell differentiation, we used Northern blotting, enzymatic assay, and histochemistry. We found that the expression patterns of bone-related proteins were regulated in a temporal manner during the successive developmental stages including proliferation (days 4–10), bone matrix formation/maturation (days 10–16), and mineralization stages (days 16 –30). During the proliferation period (days 4–10), the expression of cell-cycle related genes such as histone H3 and H4, and ribosomal protein S6 was high. During the bone matrix formation/maturation period (days 10–16), type I collagen expression and biosynthesis, fibronectin, TGF-β1 and osteonectin expressions were high and maximal around day 16. During this maturation period, we found that the expression patterns of bone matrix proteins were two types: one is the expression pattern of type I collagen and TGF-β1, which was higher in the maturation period than that in both the proliferation and mineralization periods. The other is the expression pattern of fibronectin and osteonectin, which was higher in the maturation and mineralization periods than in the proliferation period. Alkaline phosphatase activity was high during the early matrix formation/maturation period (day 10) and was followed by a decrease to a level still significantly above the baseline level seen at day 4. During the mineralization period (days 16–30), the number of nodules and the expression of osteocalcin were high. Osteocalcin gene expression was increased up to 28 days. Our results show that the expression patterns of bone-related proteins are temporally regulated during the MC3T3-E1 cell differentiation and their regulations are unique compared with other systems. Thus, this cell line provides a useful in vitro system to study the developmental regulation of bone-related proteins in relation to the different stages during the osteoblast differentiation. © 1996 Wiley-Liss, Inc.  相似文献   

16.
The effect of forskolin on collagen production in osteoblasts was investigated by using clonal osteoblastic MC3T3-E1 cells cultured in a-minimum essential medium containing 0.1% bovine serum albumin. Forskolin increased the adenylate cyclase activity in membranes pelleted from homogenates of the cell line in a dose-dependent manner. The drug caused a 13-fold stimulation at 10(-4) M, indicating that the compound directly acts on adenylate cyclase, leading to an increase in the intracellular cAMP content of the cells. Collagen accumulation in the cultures was elevated by one-day treatment with 5 X 10(-5) M forskolin to about twice that in the controls. The stimulation was mainly due to an elevation in collagen synthesis but not to an inhibition of intracellular collagen degradation because forskolin dose-dependently increased collagen synthesis; it also significantly increased the amount of low-molecular-weight hydroxyproline found in the cultures. Cells treated with forskolin produced mainly type I collagen, as found in bone matrix in situ, with only small amounts of other types of collagen. Furthermore, forskolin time-dependently inhibited DNA synthesis in the cells, indicating that the increase in type I collagen synthesis by forskolin was not due to stimulated cell proliferation. These results suggest that cAMP is closely linked to the differentiation of osteoblasts in vitro.  相似文献   

17.
Methylglyoxal (MG) is a reactive α-oxoaldehyde that increases under diabetic conditions and subsequently contributes to the complications associated with this disease. Piceatannol is a naturally occurring analogue of resveratrol that possesses multiple biological functions. The present study investigated the effects of piceatannol on MG-induced cytotoxicity in MC3T3-E1 osteoblastic cells. Piceatannol significantly restored MG-induced reductions in cell viability and reduced lactate dehydrogenase release in MG-treated MC3T3-E1 osteoblastic cells, which suggests that it suppressed MG-induced cytotoxicity. Piceatannol also increased glyoxalase I activity and glutathione levels in MG-treated cells, which indicates that it enhanced the glyoxalase system and thus cellular protection. The present study also showed that piceatannol inhibited the generation of inflammatory cytokines and reactive oxygen species and ameliorated mitochondrial dysfunction induced by MG. Furthermore, piceatannol treatment significantly reduced the levels of endoplasmic reticulum stress and autophagy induced by MG. Therefore, piceatannol could be a potent option for the development of antiglycating agents for the treatment of diabetic osteopathy.  相似文献   

18.
The active component on the proliferation of osteoblastic MC3T3-E1 cells was purified and identified from bovine milk. The growth-promoting activity was measured by [(3)H]thymidine incorporation on the cell. The purified protein showed a molecular size of 17 kDa on SDS-PAGE. Its amino-terminal amino acid sequence was very similar to the internal sequence of bovine high molecular weight (HMW) kininogen, which comprises fragment 1.2. The promotion of proliferation was specific for osteoblastic MC3T3-E1 cells, not for fibroblast BALB/3T3 cells. In blood coagulation, HMW kininogen is considered to be cleaved by a specific enzyme kallikrein. HMW kininogen then releases two peptides, a biologically active peptide bradykinin and fragment 1.2, but the fate of fragment 1.2 is unknown. This milk-derived protein that comprises to fragment 1.2 showed a growth-promoting activity of osteoblasts. We propose the possibility that milk plays an important role in bone formation by supplying the active agent for osteoblasts as well as supplying calcium.  相似文献   

19.
《Free radical research》2013,47(2):206-217
Abstract

Methylglyoxal is a reactive dicarbonyl compound produced by glycolytic processing and identified as a precursor of advanced glycation end products. The elevated methylglyoxal levels in patients with diabetes are believed to contribute to diabetic complications, including bone defects. The objective of this study was to evaluate the effect of methylglyoxal on the function of osteoblastic MC3T3-E1 cells. The data indicated that methylglyoxal decreased osteoblast differentiation and induced osteoblast cytotoxicity. Pretreatment of MC3T3-E1 cells with aminoguanidine (a carbonyl scavenger), Trolox (an antioxidant), and cyclosporin A (a blocker of the mitochondrial permeability transition pore) prevented methylglyoxal-induced cytotoxicity in MC3T3-E1 cells. However, BAPTA/AM (an intracellular Ca2+ chelator) and dantrolene (an inhibitor of endoplasmic reticulum Ca2+ release) did not reverse the cytotoxic effect of methylglyoxal. Methylglyoxal increased the formation of intracellular reactive oxygen species, mitochondrial superoxide, and cardiolipin peroxidation in osteoblastic MC3T3-E1 cells. Methylglyoxal also decreased the mitochondrial membrane potential and intracellular ATP and nitric oxide levels, suggesting that carbonyl stress-induced loss of mitochondrial integrity contributes to the cytotoxicity of methylglyoxal. Furthermore, the results demonstrated that methylglyoxal induced protein adduct formation, inactivation of glyoxalase I, and activation of glyoxalase II. Aminoguanidine reversed all aforementioned effects of methylglyoxal. Taken together, these data support the notion that high methylglyoxal concentrations have detrimental effects on osteoblasts through a mechanism involving oxidative stress and mitochondrial dysfunction.  相似文献   

20.
Achyranthes bidentata (A. bidentata) Blume is a medicinal herb with the property of strengthening bones and muscles and ensuring proper downward flow of blood in terms of the therapeutic theory of traditional medicine. In the present study, the effect of A. bidentata root extract (AE) on osteoblast function was investigated in osteoblastic MC3T3-E1 cells. AE caused a significant elevation of alkaline phosphatase activity, collagen synthesis, osteocalcin production, and mineralization in the cells (P < 0.05). AE also decreased the production of TNF-α, IL-6, and RANKL induced by antimycin A, mitochondrial electron transport inhibitor. Exposure of MC3T3-E1 cells to antimycin A caused significant reduction of cell viability and mineralization. However, pretreatment with AE prior to antimycin A exposure significantly reduced antimycin A-induced cell damage by preventing mitochondrial membrane potential dissipation, ATP loss, ROS release, and nitrotyrosine increase, suggesting that AE may be useful for protecting mitochondria against a burst of oxidative stress. Moreover, AE increased the phosphorylation of cAMP-response element-binding protein inhibited by antimycin A. Our study demonstrates that A. bidentata could significantly prevent osteoblast damage in aged patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号