首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Green fluorescent protein (GFP) is useful for studying protein trafficking in plant cells. This utility could potentially be extended to develop an efficient secretory reporter system or to enable on-line monitoring of secretory recombinant protein production in plant cell cultures. Toward this end, the aim of the present study was to: (1) demonstrate and characterize high levels of secretion of fluorescent GFP from transgenic plant cell culture; and (2) examine the utility of GFP fluorescence for monitoring secreted recombinant protein production. In this study we expressed in tobacco cell cultures a secretory GFP construct made by splicing an Arabidopsis basic chitinase signal sequence to GFP. Typical extracellular GFP accumulation was 12 mg/L after 10 to 12 days of culture. The secreted GFP is functional and it accounts for up to 55% of the total GFP expressed. Findings from culture treatments with brefeldin A suggest that GFP is secreted by the cultured tobacco cells via the classical endoplasmic reticulum-Golgi pathway. Over the course of flask cultures, medium fluorescence increased with the secreted GFP concentrations that were determined using either Western blot or enzyme-linked immunoassay. Real-time monitoring of secreted GFP in plant cell cultures by on-line fluorescence detection was verified in bioreactor cultures in which the on-line culture fluorescence signals showed a linear dependency on the secreted GFP concentrations.  相似文献   

2.
Monitoring cell culture performance requires maximizing the number and the quality of measured parameters and in situ 2D fluorescence spectroscopy could allow intensification of simultaneous data acquisition. The use of a multiwavelength fluorescence probe is proposed for monitoring GFP-producing cultures in bioreactor. The yeast Pichia pastoris and NSO mammalian cells were studied as model systems. Tryptophan, NAD(P)H and riboflavins (riboflavin, FMN, FAD) signals were effective for on-line yeast biomass estimation during the growth phase. During the GFP production phase, in situ measurements of the GFP concentration from the fluorescence probe were well correlated with off-line analyses. Tryptophan and NAD(P)H signals diverged from that of biomass during GFP production. With NSO mammalian cells, results showed that the culture parameters have to be optimized for the use of a fluorescence probe. The use of serum and phenol-red interfered with NAD(P)H and riboflavins fluorescence signals. Nevertheless, it appears that a multiwavelength probe could be useful for culture monitoring of biomass, cell activity and recombinant protein expression in an optimized culture medium.  相似文献   

3.
Summary In this paper a new probe allowing the measurement of NAD(P)H-dependent culture fluorescence in a bioreactor is presented. This sterilizable probe can be inserted in every bioreactor using a standard fitting of 25 mm. Under well defined conditions high specificity and sensitivity as well as high stability are further advantages of this probe. Application examples are given to demonstrate the operation possibilities of this fluorescence probe. In batch growth the culture fluorescence can be used for on-line estimation of biomass concentration. Metabolic alterations due to substrate of oxygen deficiency can easily be detected by fluorometric measurements. In kinetic studies the fluorescence probe is of great use because of a very small time delay.  相似文献   

4.
Fluorescent proteins (FPs), such as green fluorescent protein (GFP) and its variants, are well-developed visible markers for analyzing bioprocesses. Accurate measurement of fluorescence emitted from FPs in whole cells is complicated by the inner filter effect (IFE), which is caused by intracellular light absorption and scattering by cell particles. The IFE causes nonlinearity between fluorescence intensity and fluorophore concentrations in FP-harboring cells and can significantly influence the accuracy of FP-based analysis, especially at high cell densities. A mathematical model based on detection of fluorescence intensity using a fluorescence spectrophotometer was developed to provide a simple correction for the IFE in fluorescence intensity detection in high-density cultures. The parameters of this model were determined in three different FP-harboring bacterial strains to give the “real fluorescence” intensity without the IFE. Using these parameters, accurate analysis of FP-labeled Escherichia coli at high cell density in pure culture and in mixed cultures with fluorescent and nonfluorescent strains was easily and successfully achieved.  相似文献   

5.
Culture conductivity and on-line NADH fluorescence were used to measure cellular growth in plant cell suspension cultures ofPodophyllum hexandrum. An inverse correlation between dry cell weight and medium conductivity was observed during shake flask cultivation. A linear relationship between dry cell weight and culture NADH fluorescence was obtained during the exponential phase of batch cultivation in a bioreactor under the pH stat (pH 6) conditions. It was observed that conductivity measurement were suitable for biomass characterisation under highly dynamic uncontrolled shake flask cultivation conditions. However, if the acid/alkali feeding is done for pH control the conductivity measurement could not be applied. On the other hand the NADH fluorescence measurement allowed online-in situ biomass monitoring of rather heterogenous plant cell suspension cultures in bioreactor even under the most desirable pH stat conditions.  相似文献   

6.
Several modifications of a wild-type green fluorescent protein (GFP) gene were combined into a single construct, driven by the ubi-1 promoter and intron region, and transformed into maize. Green fluorescence, indicative of GFP expression, was observed in stably transformed callus as well as in leaves and roots of regenerated plants and their progeny. Cell wall autofluorescence made GFP expression difficult to observe in sections of leaves and roots. However, staining sections with toluidine blue allowed detection of GFP in transgenic tissue. Bright GFP fluorescence was observed in approximately 50% of the pollen of transgenic plants. These results suggest that GFP can be used as a reporter gene in transgenic maize; however, further modification, i.e., to alter the emission spectra, would increase its utility. Received: 17 December 1997 / Revision received: 6 March 1998 / Accepted: 20 March 1998  相似文献   

7.
The green fluorescent protein (GFP) holds promise as a field-level transgene marker. One obstacle to the use of GFP is fluorescence variability observed within leaf canopies. In growth chamber and field experiments, GFP fluorescence in transgenic oilseed rape (Brassica napus) was shown to be variable at each leaf position over time and among different leaves on the same plant. A leaf had its highest GFP fluorescence after emergence and, subsequently, its fluorescence intensity decreased. GFP fluorescence intensity was directly correlated with the concentration of soluble protein. The concentration of the genetically linked recombinant Bacillus thuringiensis (Bt) cry1Ac endotoxin protein also was examined, and GFP fluorescence was positively correlated with Bt throughout development. The results show that GFP can be used as an accurate transgene marker but that aspects of plant developmental should be taken into account when interpreting fluorescence measurements.Communicated by M.C. Jordan  相似文献   

8.
Green fluorescent protein (GFP) is an attractive reporter for bioprocess monitoring. Although expression of GFP in plants has been widely reported, research on the use of GFP in plant cell cultures for bioprocess applications has been limited. In this study, the suitability of GFP as a secretory reporter and a useful tool in plant cell bioprocess optimization was demonstrated. GFP was produced and secreted from suspension cells derived from tobacco that was transformed with a binary vector containing mgfp5-ER cDNA, a modified GFP for efficient sorting to the endoplasmic reticulum, under control of the CaMV 35S promoter. For cell line gfp-13, extracellular and intracellular GFP accumulated to 15.4 and 29.4 mg x 1(-1), respectively. Extracellular GFP accounted for 30.9% of the total extracellular protein. The molecular mass of extracellular GFP was nearly identical to that of a recombinant GFP standard, indicating cleavage of the signal sequence. Neomycin phosphotransferase II, a cytosolic selection marker, was found almost exclusively in cellular extracts with less than 2% in the extracellular medium. These results suggest that extracellular GFP is most likely the result of secretion rather than nonspecific leakage from cells. Furthermore, medium fluorescence intensity correlated nicely with extracellular GFP concentration supporting the use of GFP as a quantitative secretory reporter. During the batch cultivation, culture GFP fluorescence also followed closely with cell growth. A medium feeding strategy was then developed based on culture GFP fluorescence that resulted in improved biomass as well as GFP production in a fed-batch culture.  相似文献   

9.
An online, analytical technology was developed that utilized fluorescence to detect cells during an immobilized cell culture process. Chinese hamster ovary (CHO) cells that produced monoclonal antibodies (mAb) were transfected to express green fluorescent protein (GFP), and stable, fluorescence-positive cells were obtained by fluorescence-activated cell sorting (FACS). The immobilized cell culture process was then used to test the effects of sodium butyrate on cells. In this study, cells were cultured in porous, fibrous matrices that were placed in spinner flasks. A lab-scale, perfusion bioreactor with computer-controlled, online fluorescence sensors that continuously detected GFP fluorescence and quantified cell growth was utilized. In addition, the level of GFP fluorescence was used to predict mAb production in the culture without sampling for cell counting and protein analysis. Thus, non-invasive, fluorescence detection of cells provided a rapid, reliable and robust approach for developing an immobilized cell culture process.  相似文献   

10.
To determine how to utilize the green fluorescent protein (GFP) as a marker for subcellular localization and as a label for plant mitochondria in vivo, transgenic suspension cells and tobacco plants expressing GFP with and without a mitochondrial localization signal were generated. The first GFP form used, GFP1, is easily observable in cells with low autofluorescence, such as suspension cells or trichomes, but masked in green tissue. For the visualization of GFP in cells and tissues with high autofluorescence, such as leaf, the use of a very strong promoter (35S35SAMV), a highly expressed modified mGFP4 coding region and a brighter mutant form of GFP (S65T) was necessary. Confocal or two-photon laser scanning microscopy reveal a distinct subcellular localization of the fluorescence in cells expressing GFP or coxIVGFP. In cells expressing untargeted GFP, fluorescence accumulates in the nucleoplasm but is also distributed throughout the cytoplasm. It is excluded from vacuoles, nucleoli and from round bodies that are likely to be leucoplasts. In contrast, fluorescence is localized specifically to mitochondria in cells expressing coxIVGFP fusion protein as shown by co-localization with a mitochondrial-specific dye. This permits the direct observation of mitochondria and mitochondrial movements in living plant cells and tissues throughout plant development. Three-dimensional reconstruction of individual cells can give additional information about the distribution and numbers of mitochondria.  相似文献   

11.
To yield high concentrations of protein expressed by genetically modified Escherichia coli, it is important that the bacterial strains are cultivated to high cell density in industrial bioprocesses. Since the expressed target protein is mostly accumulated inside the E. coli cells, the cellular product formation can be directly correlated to the bacterial biomass concentration. The typical way to determine this concentration is to sample offline. Such manual sampling, however, wastes time and is not efficient for acquiring direct feedback to control a fedbatch fermentation. An E. coli K12-derived strain was cultivated to high cell density in a pressurized stirred bioreactor on a pilot scale, by detecting biomass concentration online using a capacitance probe. This E. coli strain was grown in pure minimal medium using two carbon sources (glucose and glycerol). By applying exponential feeding profiles corresponding to a constant specific growth rate, the E. coli culture grew under carbon-limited conditions to minimize overflow metabolites. A high linearity was found between capacitance and biomass concentration, whereby up to 85 g/L dry cell weight was measured. To validate the viability of the culture, the oxygen transfer rate (OTR) was determined online, yielding maximum values of 0.69 mol/l/h and 0.98 mol/l/h by using glucose and glycerol as carbon sources, respectively. Consequently, online monitoring of biomass using a capacitance probe provides direct and fast information about the viable E. coli biomass generated under aerobic fermentation conditions at elevated headspace pressures.  相似文献   

12.
Membrane filter culture was used to relate O2 uptake with direct biomass measurement of Rhizopus oligosporus in solid-state fermentation (SSF). Overall values of YX/O and mO were 0.782 mg biomass mg O2–1 and 0.0413 mg O2 mg biomass–1 h–1, respectively. However, these values were not constant during the fermentation, which makes the use of O2 uptake to estimate biomass during SSF problematic. Despite these problems, measuring bioreactor off-gases is the only practical method which allows on-line monitoring of bioreactor performance.  相似文献   

13.
We determined the release in root exudates of human serum albumin (HSA), beta-glucuronidase (GUS), glycoprotein B (gB) from human cytomegalovirus, and green fluorescent protein (GFP) from genetically modified transgenic tobacco expressing the genes for these proteins in hydroponic culture and non-sterile soil. GUS, gB, and GFP were expressed in the plant but were not released in root exudates, whereas HSA was both expressed in the plant and released in root exudates, as shown by a 66.5-kDa band on SDS-PAGE and Western blot and confirmed by ELISA. Root exudates from GUS and gB plants showed no bands that could be attributed to these proteins on SDS-PAGE, and root exudates from GFP plants showed no fluorescence. The concentration of HSA in root exudates was estimated to be 0.021 ng ml(-1), whereas that in the plant biomass was estimated to be 0.087 ng ml(-1). The concentration of HSA in soil was estimated to be 0.049 ng g(-1). No significant differences in the number of microorganisms and the activity of selected enzymes were observed between rhizosphere soil of non-modified and HSA tobacco.  相似文献   

14.
Gene flow from transgenic oilseed rape (BRASSICA NAPUS) might not be avoidable, thus, it is important to detect and quantify hybridization events with its relatives in real time. Data are presented showing the correlation between genetically linked green fluorescent protein (GFP) with BACILLUS THURINGIENSIS (Bt) CRY1AC gene expression in hybrids formed between transgenic B. NAPUS "Westar" and a wild Chinese accession of wild mustard (B. JUNCEA) and hybridization between transgenic B. NAPUS and a conspecific Chinese landrace oilseed rape. Hybrids were obtained either by spontaneous hybridization in the field or by hand-crossing in a greenhouse. In all cases, transgenic hybrids were selected by GFP fluorescence among seedlings originating from seeds harvested from B. JUNCEA and the Chinese oilseed rape plants. Transgenicity was confirmed by PCR detection of transgenes. GFP fluorescence was easily and rapidly detected in the hybrids under greenhouse and field conditions. Results showed that both GFP fluorescence and Bt protein synthesis decreased as either plant or leaf aged, and GFP fluorescence intensity was closely correlated with Bt protein concentration during the entire vegetative lifetime in hybrids. These findings allow the use of GFP fluorescence as an accurate tool to detect gene-flow in time in the field and to conveniently estimate BT CRY1AC expression in hybrids on-the-plant.  相似文献   

15.
The concentrations of biomass, substrate and product are very important state variables of almost every bioprocess and generally unable to be measured directly in?situ due to the lack of reliable sensors. In this paper, an adaptive observer of the biomass concentration is proposed for an anaerobic fermentation process where only the measurement of the acid product is available on-line. The observer was tested to be effective by several experiments under various operating conditions. In this experimental system, an auto-sampling device was connected between the bioreactor for the fermentation of Zymomonas mobilis and a HPLC so that the concentrations of glucose and ethanol could be directly measured through such implementation.  相似文献   

16.
Many plant gums, such as gum arabic, contain hydroxyproline-rich glycoproteins (HRGPs), which are also abundant components of the plant cell extracellular matrix. Here we expressed in transgenic BY2 Nicotiana tabacum (tobacco) cells, a synthetic gene encoding a novel HRGP-based gum, designated gum arabic-8 or (GA)(8). (GA)(8) encoded eight repeats of the consensus polypeptide sequence of gum arabic glycoprotein (GAGP): Gly-Pro-His-Ser-Pro-Pro-Pro-Pro-Leu-Ser-Pro-Ser-Pro-Thr-Pro-Thr-Pro-Pro-Leu, in which most of the Pro residues were posttranslationally modified to hydroxyproline (Hyp). (GA)(8) was expressed as a green fluorescent protein (GFP) fusion protein targeted to the culture medium, (GA)(8)GFP. The culture of the transgenic cells in a 5-L bioreactor showed that the production of (GA)(8)GFP was cell growth-associated. The extracellular yield of (GA)(8)GFP was 116.8 mg/L after 14 days of culture and accounted for 87% of the total fusion protein expressed. (GA)(8)GFP was purified from the culture medium by a combination of hydrophobic interaction, gel permeation, and reversed phase chromatography. Biochemical characterization indicated that the amino acid composition of the (GA)(8) module, after removal of GFP by proteolysis, was virtually identical to that of predicted by the GAGP consensus sequence and that carbohydrate, which occurred as arabinogalactan polysaccharides and small oligoarabinosides O-linked through the Hyp residues, accounted for 84% of the molecules' dry weight. Functional assays showed that (GA)(8) exhibited low viscosity in aqueous solution similar to native GAGP. However, neither GFP alone nor the (GA)(8) module could emulsify orange oil. However, the fusion protein (GA)(8)GFP possessed 1.28-fold better emulsification properties than native GAGP. This work demonstrates the feasibility and potential of a synthetic gene approach to the de novo design of novel glycoprotein-based gums and emulsifiers.  相似文献   

17.
Modified forms of genes encoding green fluorescent protein (GFP) can be macroscopically detected when expressed in whole plants. This technology has opened up new uses for GFP such as monitoring transgene presence and expression in the environment once it is linked or fused to a gene of interest. When whole-plant or whole-organ GFP visualization is required, GFP should be predictably expressed and reliably fluorescent. In this study the whole plant expression and fluorescence patterns of a mGFP5er gene driven by the cauliflower mosaic virus 35S promoter was studied in intact GFP-expressing transgenic tobacco (Nicotiana tabacum cv. Xanthi). It was shown that GFP synthesis levels in single plant organs were similar to GUS activity levels from published data when driven by the same promoter. Under the control of the 35S promoter, high expression of GFP can be used to visualize stems, young leaves, flowers, and organs where the 35S promoter is most active. Modified forms of GFP could replace GUS as the visual marker gene of choice.  相似文献   

18.
This paper describes a fixed-time convergent step-by-step high order sliding mode observer for a certain type of aerobic bioreactor system. The observer was developed using a hierarchical structure based on a modified super-twisting algorithm. The modification included nonlinear gains of the output error that were used to prove uniform convergence of the estimation error. An energetic function similar to a Lyapunov one was used for proving the convergence between the observer and the bioreactor variables. A nonsmooth analysis was proposed to prove the fixed-time convergence of the observer states to the bioreactor variables. The observer was tested to solve the state estimation problem of an aerobic bioreactor described by the time evolution of biomass, substrate and dissolved oxygen. This last variable was used as the output information because it is feasible to measure it online by regular sensors. Numerical simulations showed the superior behavior of this observer compared to the one having linear output error injection terms (high-gain type) and one having an output injection obtaining first-order sliding mode structure. A set of numerical simulations was developed to demonstrate how the proposed observer served to estimate real information obtained from a real aerobic process with substrate inhibition.  相似文献   

19.
A new fluorescent bioreactor monitoring probe-multiple excitation fluorometric system (MEFS)-has been developed. This probe was compared to the commercially available BioChem Technology FluroMeasure system (NADH probe). In this task the fluorescence behavior of three model fermentation systems, ethanol fermentation by Candida utilis, phenol fermentation by Pseudomonas putida, and glucose fermentation by Saccharomyces cerevisiae, were examined. The results indicated that the fluorescence intensity and behavior of various cellular fluorophors vary significantly between the different fermentation systems. Monitoring a fermentation process using only NAD(P)H fluorescence provided limited information. The NAD(P)H fluorescence was found not to be the best fluorescence signal for monitoring cell concentrations. The best way of monitoring a bioreactor by fluorometry may be to monitor several fluorophors in the whole culture broth simultaneously and to relate these fluorescence signals to various biological parameters.  相似文献   

20.
The Green Fluorescent Protein (GFP) from Aequorea victoria has begun to be used as a reporter protein in plants. It is particularly useful as GFP fluorescence can be detected in a non-destructive manner, whereas detection of enzyme-based reporters often requires destruction of the plant tissue. The use of GFP as a reporter enables transgenic plant tissues to be screened in vivo at any growth stage. Quantification of GFP in transgenic plant extracts will increase the utility of GFP as a reporter protein. We report herein the quantification of a mGFP5-ER variant in tobacco leaf extracts by UV excitation and a sGFP(S65T) variant in sugarcane leaf and callus extracts by blue light excitation using the BioRad VersaFluorTM Fluorometer System or the Labsystems Fluoroskan Ascent FL equipped with a narrow band emission filter (510 ± 5 nm). The GFP concentration in transgenic plant extracts was determined from a GFP-standard series prepared in untransformed plant extract with concentrations ranging from 0.1 to 4 g/ml of purified rGFP. Levels of sgfp(S65T) expression, driven by the maize ubiquitin promoter, in sugarcane calli and leaves ranged up to 0.525 g and 2.11 g sGFP(S65T) per mg of extractable protein respectively. In tobacco leaves the expression of mgfp5-ER, driven by the cauliflower mosaic virus (CaMV) 35S promoter, ranged up to 7.05 g mGFP5-ER per mg extractable protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号