首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the vertical gradient in lung expansion in rabbits in the prone and supine body positions. Postmortem, we used videomicroscopy to measure the size of surface alveoli through transparent parietal pleural windows at dependent and nondependent sites separated in height by 2-3 cm at functional residual capacity (FRC). We compared the alveolar size measured in situ with that measured in the isolated lungs at different deflationary transpulmonary pressures to obtain transpulmonary pressure (pleural surface pressure) in situ. The vertical gradient in transpulmonary pressure averaged 0.48 +/- 0.16 (SD) cmH2O/cm height (n = 10) in the supine position and 0.022 +/- 0.014 (SD) cmH2O/cm (n = 5) in the prone position. In mechanically ventilated rabbits, we used the rib capsule technique to measure pleural liquid pressure at different heights of the chest in prone and supine positions. At FRC, the vertical gradient in pleural liquid pressure averaged 0.63 cmH2O/cm in the supine position and 0.091 cmH2O/cm in the prone position. The vertical gradients in pleural liquid pressure were all less than the hydrostatic value (1 cmH2O/cm), which indicates that pleural liquid is not generally in hydrostatic equilibrium. Both pleural surface pressure and pleural liquid pressure measurements show a greater vertical gradient in the supine than in the prone position. This suggests a close relationship between pleural surface pressure and pleural liquid pressure. Previous results in the dog and pony showed relatively high vertical gradients in the supine position and relatively small gradients in the prone position. This behavior is similar to the present results in rabbits. Thus the vertical gradient is independent of animal size and might be related to chest shape and weight of heart and abdominal contents.  相似文献   

2.
Pleural pressure was measured at end expiration in spontaneously breathing anesthetized rabbits. A liquid-filled capsule was implanted into a rib to measure pleural liquid pressure with minimal distortion of the pleural space. Capsule position relative to lung height was measured from thoracic radiographs. Measurements were made when the rabbits were in the prone, supine, right lateral, and left lateral positions. Average lung heights in the prone and supine positions were 4.21 +/- 0.58 and 4.42 +/- 0.51 (SD) cm, respectively (n = 7). Pleural pressure was -2.60 +/- 1.87 (SD) cmH2O at 50.2 +/- 7.75% lung height in the prone position and -3.10 +/- 1.22 cmH2O at 51.4 +/- 6.75% lung height in the supine position. There was no difference between the values recorded in the prone and supine positions. Placement of the capsule into the right or left chest had no effect on the magnitude of the pleural pressure recorded in rabbits in right and left lateral recumbency (n = 12). Measurements over the nondependent lung were repeatable when rabbits were turned between the right and left lateral positions. Lung height in laterally recumbent rabbits averaged 4.55 +/- 0.52 (SD) cm.  相似文献   

3.
The classic four-zone model of lung blood flow distribution has been questioned. We asked whether the effect of positive end-expiratory pressure (PEEP) is different between the prone and supine position for lung tissue in the same zonal condition. Anesthetized and mechanically ventilated prone (n = 6) and supine (n = 5) sheep were studied at 0, 10, and 20 cm H2O PEEP. Perfusion was measured with intravenous infusion of radiolabeled 15-microm microspheres. The right lung was dried at total lung capacity and diced into pieces (approximately 1.5 cm3), keeping track of the spatial location of each piece. Radioactivity per unit weight was determined and normalized to the mean value for each condition and animal. In the supine posture, perfusion to nondependent lung regions decreased with little relative perfusion in nondependent horizontal lung planes at 10 and 20 cm H2O PEEP. In the prone position, the effect of PEEP was markedly different with substantial perfusion remaining in nondependent lung regions and even increasing in these regions with 20 cm H2O PEEP. Vertical blood flow gradients in zone II lung were large in supine, but surprisingly absent in prone, animals. Isogravitational perfusion heterogeneity was smaller in prone than in supine animals at all PEEP levels. Redistribution of pulmonary perfusion by PEEP ventilation in supine was largely as predicted by the zonal model in marked contrast to the findings in prone. The differences between postures in blood flow distribution within zone II strongly indicate that factors in addition to pulmonary arterial, venous, and alveolar pressure play important roles in determining perfusion distribution in the in situ lung. We suggest that regional variation in lung volume through the effect on vascular resistance is one such factor and that chest wall conformation and thoracic contents determine regional lung volume.  相似文献   

4.
The hydraulic pressure in the extrapleural parietal interstitium (Pepl) and in the pleural space over the costal side (Pliq) was measured in anesthetized spontaneously breathing supine adult mammals of increasing size (rats, dogs, and sheep) using saline-filled catheters and cannulas, respectively. From the Pliq and Pepl vs. lung height regressions it appears that in all species Pliq was significantly more subatmospheric than Pepl simultaneously measured at the same lung height. The vertical pleural liquid pressure gradient increased with size, amounting to -1, -0.69, and -0.44 cmH2O/cm in rats, dogs, and sheep, respectively. The vertical extrapleural liquid pressure gradient also increased with size, being -0.6, -0.52, and -0.33 cmH2O/cm in rats, dogs, and sheep, respectively. With increasing body size, the transpleural hydraulic pressure gradient (Ptp = Pepl - Pliq) at the level of the right atrium increased from 1.45 to 5.6 cmH2O going from rats to sheep. In all species Ptp increased, with lung height being greatest in the less dependent part of the pleural space.  相似文献   

5.
Alveolar liquid pressure (Pliq) was measured by micropipettes in conjunction with a servo-nulling pressure measuring system in isolated air-inflated edematous dog lungs. Pliq was measured in lungs either washed with a detergent (0.01% Triton X-100) or subjected to refrigeration for 2-3 days followed by ventilation for 3 h. At 55% of total lung capacity (TLC, the volume at a transpulmonary pressure (Ptp) of 25 cmH2O before treatment), in both the Triton-washed and the ventilated lung, Ptp increased from 5 to 11 cmH2O, whereas Pliq, decreased from -3 to -11 cmH2O relative to alveolar air pressure. Similar increases in Ptp and decreases in Pliq were obtained at higher lung volumes. Alveolar surface tension (T) was estimated from the Laplace equation for a spherical air-liquid interface, assuming that the radius of curvature varies as (volume)n, for -1/3 less than n less than 1/3. For uniform expansion of alveoli (n = 1/3), estimated T was 6 and 18 dyn/cm at 55 and 85% TLC, respectively, before treatment and increased to 23 and 40 dyn/cm following either Triton washing or ventilation. If pericapillary interstitial fluid pressure (Pi) equaled Pliq in edematous lungs, increases in T might reduce Pi and increase extravascular fluid accumulation in lungs made stiff by either Triton washing or cooling and ventilation using large tidal volumes.  相似文献   

6.
The growth rate and albumin concentration of interstitial fluid cuffs were measured in isolated rabbit lungs inflated with albumin solution (3 g/dl) to constant airway (Paw) and vascular pressures for up to 10 h. Cuff size was measured from images of frozen lung sections, and cuff albumin concentration (Cc) was measured from the fluorescence of Evans blue labeled albumin that entered the cuffs from the alveolar space. At 5-cmH2O Paw, cuff size peaked at 1 h and then decreased by 75% in 2 h. The decreased cuff size was consistent with an osmotic absorption into the albumin solution that filled the vascular and alveolar spaces. At 15-cmH2O Paw, cuff size peaked at 0.25 h and then remained constant. Cc rose continuously at both pressures, but was greater at the higher pressure. The increasing Cc with a constant cuff size was modeled as diffusion through epithelial pores. Initial Cc-to-airway albumin concentration ratio was 0.1 at 5-cmH2O Paw and increased to 0.3 at 15 cmH2O, a behavior that indicated an increased permeability with lung inflation. Estimated epithelial reflection coefficient was 0.9 and 0.7, and equivalent epithelial pore radii were 4.5 and 6.1 nm at 5- and 15-cmH2O Paw, respectively. The initial cuff growth occurred against an albumin colloid osmotic pressure gradient because a high interstitial resistance reduced the overall epithelial-interstitial reflection coefficient to the low value of the interstitium.  相似文献   

7.
Pleural liquid pressure in dogs measured using a rib capsule   总被引:3,自引:0,他引:3  
We have developed a minimally invasive method for measuring the hydrostatic pressure in the pleural space liquid. A liquid-filled capsule is bonded into a rib and a small hole is cut in the parietal pleura to allow direct communication between the liquid in the capsule and the pleural space. The pressure can be measured continuously by a strain gauge transducer connected to the capsule. The rib capsule does not distort the pleural space or require removal of intercostal muscle. Pneumothoraces are easily detected when they occur inadvertently on puncturing the parietal pleura. We examined the effect of height on pleural pressure in 15 anesthetized spontaneously breathing dogs. The vertical gradients in pleural pressure were 0.53, 0.42, 0.46, and 0.23 cmH2O/cm height for the head-up, head-down, supine, and prone body positions, respectively. These vertical gradients were much less than the hydrostatic value (1 cmH2O/cm), indicating that the pleural liquid is not in hydrostatic equilibrium. In most body positions the magnitudes of pleural liquid pressure interpolated to midchest level were similar to the mean transpulmonary (surface) pressure determined postmortem. This suggests that pleural liquid pressure is closely related to the lung static recoil.  相似文献   

8.
In a previous study, direct measurements of pulmonary capillary transit time by fluorescence video microscopy in anesthetized rabbits showed that chest inflation increased capillary transit time and decreased cardiac output. In isolated perfused rabbit lungs we measured the effect of lung volume, left atrial pressure (Pla), and blood flow on capillary transit time. At constant blood flow and constant transpulmonary pressure, a bolus of fluorescent dye was injected into the pulmonary artery and the passage of the dye through the subpleural microcirculation was recorded via the video microscope on videotape. During playback of the video signals, the light emitted from an arteriole and adjacent venule was measured using a video photoanalyzer. Capillary transit time was the difference between the mean time values of the arteriolar and venular dye dilution curves. We measured capillary transit time in three groups of lungs. In group 1, with airway pressure (Paw) at 5 cmH2O, transit time was measured at blood flow of approximately 80, approximately 40, and approximately 20 ml.min-1.kg-1. At each blood flow level, Pla was varied from 0 (Pla less than Paw, zone 2) to 11 cmH2O (Pla greater than Paw, zone 3). In group 2, at constant Paw of 15 cmH2O, Pla was varied from 0 (zone 2) to 22 cmH2O (zone 3) at the same three blood flow levels. In group 3, at each of the three blood flow levels, Paw was varied from 5 to 15 cmH2O while Pla was maintained at 0 cmH2O (zone 2).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effects of body position and respiratory frequency (f) on regional gas transport during eucapnic conventional ventilation (CV) and high-frequency ventilation (HFV) were assessed from the washout of nitrogen 13 (13NN) using positron-emission tomography. In one protocol, six dogs were ventilated with CV or HFV at f = 6 Hz and tidal volume (VT) selected supine for eucapnia. A coronal cross section of the lung base was studied in the supine, prone, and right and left lateral decubitus positions. In a second protocol, six dogs were studied prone: apical and basal cross sections were studied in CV and in HFV with f = 3 and 9 Hz at eucapnic VT. Regional alveolar ventilation per unit of lung volume (spVr) was calculated for selected regions and analyzed for gravity-dependent cephalocaudal and right-to-left gradients. In both CV and HFV, nonuniformity in spVr was highest supine and lowest prone. In CV there were vertical gradients of spVr in all body positions: nondependent less ventilated than dependent regions, particularly in the supine position. In HFV there was a moderate vertical gradient in spVr in addition to a preferentially ventilated central region in all body positions. Overall lung spV was unaffected by body position in CV but in HFV was highest supine and lowest prone. Nonuniformity in eucapnic prone HFV was unaffected by f and always higher than in CV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A species comparison of alveolar size and surface forces   总被引:1,自引:0,他引:1  
The independent roles of alveolar size and surface tension in relation to lung stability were investigated in 11 different mammalian species whose body weight ranged from 0.03 to 50 kg. This range in species provided a wide variation in subgross anatomy as well as a fourfold range in alveolar diameter. Alveolar diameter was estimated from the mean linear intercept (Lm) of fixed lungs. Quasi-static pressure-volume curves were determined in excised lungs and the percent volume remaining on deflation from total lung capacity at 30 cmH2O to 10 cmH2O (%V10) provided an index of deflation stability related to functional surfactant. Surface tension of lung extract was measured in the Wilhelmy balance, and the minimum surface tension measured provided an index of surface tension lowering capacity of surfactant. Relationships of %V10 with alveolar diameter and surface tension with alveolar diameter were examined for correlations. Our results indicated that despite a range in Lm between 31 and 133 micron (mouse to pig), %V10 did not change in proportion with Lm across species. Similarly, minimum surface tension was about the same (6.1 to 8.8 dyn/cm) across a threefold difference in alveolar diameter. These results suggest that a stable alveolar configuration is maintained by both surface and tissue forces in a complex manner yet to be analyzed.  相似文献   

11.
In 10 anesthetized, paralyzed, supine dogs, arterial blood gases and CO2 production (VCO2) were measured after 10-min runs of high-frequency ventilation (HFV) at three levels of mean airway pressure (Paw) (0, 5, and 10 cmH2O). HFV was delivered at frequencies (f) of 3, 6, and 9 Hz with a ventilator that generated known tidal volumes (VT) independent of respiratory system impedance. At each f, VT was adjusted at Paw of 0 cmH2O to obtain a eucapnia. As Paw was increased to 5 and 10 cmH2O, arterial PCO2 (PaCO2) increased and arterial PO2 (PaO2) decreased monotonically and significantly. The effect of Paw on PaCO2 and PaO2 was the same at 3, 6, and 9 Hz. Alveolar ventilation (VA), calculated from VCO2 and PaCO2, significantly decreased by 22.7 +/- 2.6 and 40.1 +/- 2.6% after Paw was increased to 5 and 10 cmH2O, respectively. By taking into account the changes in anatomic dead space (VD) with lung volume, VA at different levels of Paw fits the gas transport relationship for HFV derived previously: VA = 0.13 (VT/VD)1.2 VTf (J. Appl. Physiol. 60: 1025-1030, 1986). We conclude that increasing Paw and lung volume significantly decreases gas transport during HFV and that this effect is due to the concomitant increase of the volume of conducting airways.  相似文献   

12.
The isolated effects of alterations of lung inflation and transmural pulmonary arterial pressure (pressure difference between intravascular and pleural pressure) on pulmonary arterial blood volume (Vpa) were investigated in anesthetized intact dogs. Using transvenous phrenic nerve stimulation, changes in transmural pulmonary arterial pressure (Ptm) at a fixed transpulmonary pressure (Ptp) were produced by the Mueller maneuver, and increases in Ptp at relatively constant Ptm by a quasi-Valsalva maneuver. Also, both Ptm and Ptp were allowed to change during open airway lung inflation. Vpa was determined during these three maneuvers by multiplying pulmonary blood flow by pulmonary arterial mean transit time obtained by an ether plethysmographic method. During open airway lung inflation, mean (plus or minus SD) Ptp increased by 7.2 (plus or minus 3.7) cmH2O and Ptm by 4.3 (plus or minus 3.4) cmH2O for a mean increase in Vpa by 26.2 (plus or minus 10.7) ml. A pulmonary arterial compliance term (Delta Vpa/Delta Ptm) calculated from the Mueller maneuver was 3.9 ml/cmH2O and an interdependence term (Delta Vpa/Delta Ptp) calculated from the quasi-Valsalva maneuver was 2.5 ml/cmH2O for a 19% increase in lung volume, and 1.2 ml/cmH2O for an increase in lung volume from 19% to 35%. These findings indicate that in normal anesthetized dogs near FRC for a given change in Ptp and Ptm the latter results in a greater increase of Vpa.  相似文献   

13.
Ventilator management decisions in acute lung injury could be better informed with knowledge of the patient's transpulmonary pressure, which can be estimated using measurements of esophageal pressure. Esophageal manometry is seldom used for this, however, in part because of a presumed postural artifact in the supine position. Here, we characterize the magnitude and variability of postural effects on esophageal pressure in healthy subjects to better assess its significance in patients with acute lung injury. We measured the posture-related changes in relaxation volume and total lung capacity in 10 healthy subjects in four postures: upright, supine, prone, and left lateral decubitus. Then, in the same subjects, we measured static pressure-volume characteristics of the lung over a wide range of lung volumes in each posture by using an esophageal balloon catheter. Transpulmonary pressure during relaxation (PLrel) averaged 3.7 (SD 2.0) cmH2O upright and -3.3 (SD 3.2) cmH2O supine. Approximately 58% of the decrease in PLrel between the upright and supine postures was due to a corresponding decrease in relaxation volume. The remaining 2.9-cmH2O difference is consistent with reported values of a presumed postural artifact. Relaxation volumes and pressures in prone and lateral postures were intermediate. To correct estimated transpulmonary pressure for the effect of lying supine, we suggest adding 3 cmH2O (95% confidence interval: -1 to +7 cmH2O). We conclude that postural differences in estimated transpulmonary pressure at a given lung volume are small compared with the substantial range of PLrel in patients with acute lung injury.  相似文献   

14.
To study the effect of positive airway pressure (Paw) on the pressure gradient for venous return [the difference between mean systemic filling pressure (Pms) and right atrial pressure (Pra)], we investigated 10 patients during general anesthesia for implantation of defibrillator devices. Paw was varied under apnea from 0 to 15 cmH(2)O, which increased Pra from 7.3 +/- 3.1 to 10.0 +/- 2.3 mmHg and decreased left ventricular stroke volume by 23 +/- 22%. Episodes of ventricular fibrillation, induced for defibrillator testing, were performed during 0- and 15-cmH(2)O Paw to measure Pms (value of Pra 7.5 s after onset of circulatory arrest). Positive Paw increased Pms from 10.2 +/- 3.5 to 12.7 +/- 3.2 mmHg, and thus the pressure gradient for venous return (Pms - Pra) remained unchanged. Echocardiography did not reveal signs of vascular collapse of the inferior and superior vena cava due to lung expansion. In conclusion, we demonstrated that positive Paw equally increases Pra and Pms in humans and alters venous return without changes in the pressure gradient (Pms - Pra).  相似文献   

15.
We previously demonstrated that airway responsiveness is greater in immature than in mature rabbits; however, it is not known whether there are maturational differences in the effect of transpulmonary pressure (Ptp) on airway size and airway responsiveness. The relationship between Ptp and airway diameter was assessed in excised lungs insufflated with tantalum powder. Diameters of comparable intraparenchymal airway segments were measured from radiographs obtained at Ptp between 0 and 20 cmH(2)O. At Ptp > 8 cmH(2)O, the diameters were near maximal in both groups. With diameter normalized to its maximal value, changing Ptp between 8 and 0 cmH(2)O resulted in a greater decline of airway caliber in immature than mature airways. The increases in lung resistance (RL) in vivo at Ptp of 8, 5, and 2 cmH(2)O were measured during challenge with intravenous methacholine (MCh: 0.001-0.5 mg/kg). At Ptp of 8 cmH(2)O, both groups had very small responses to MCh and the maximal fold increases in RL did not differ (1.93 +/- 0.29 vs. 2.23 +/- 0.19). At Ptp of 5 and 2 cmH(2)O, the fold increases in RL were greater for immature than mature animals (13.19 +/- 1.81 vs. 3.89 +/- 0.37) and (17.74 +/- 2.15 vs. 4.6 +/- 0.52), respectively. We conclude that immature rabbits have greater airway distensibility and this difference may contribute to greater airway narrowing in immature compared with mature rabbits.  相似文献   

16.
We have reported that left atrial blood refluxes through the pulmonary veins to gas-exchanging tissue after pulmonary artery ligation. This reverse pulmonary venous flow (Qrpv) was observed only when lung volume was changed by ventilation. This was believed to drive Qrpv by alternately distending and compressing the alveolar and extra-alveolar vessels. Because lung and pulmonary vascular compliances change with lung volume, we studied the effect of positive end-expiratory pressure (PEEP) on the magnitude of Qrpv during constant-volume ventilation. In prone anesthetized goats (n = 8), using the right lung to maintain normal blood gases, we ligated the pulmonary and bronchial arterial inflow to the left lung and ventilated each lung separately. A solution of SF6, an inert gas, was infused into the left atrium. SF6 clearance from the left lung was determined by the Fick principle at 0, 5, 10, and 15 and again at 0 cmH2O PEEP and was used to measure Qrpv. Left atrial pressure remained nearly constant at 20 cmH2O because the increasing levels of PEEP were applied to the left lung only. Qrpv was three- to fourfold greater at 10 and 15 than at 0 cmH2O PEEP. At these higher levels of PEEP, there were greater excursions in alveolar pressure for the same ventilatory volume. We believe that larger excursions in transpulmonary pressure during tidal ventilation at higher levels of PEEP, which compressed alveolar vessels, resulted in the reflux of greater volumes of left atrial blood, through relatively noncompliant extra-alveolar veins into alveolar corner vessels, and more compliant extra-alveolar arteries.  相似文献   

17.
Effect of dehydration on interstitial pressures in the isolated dog lung   总被引:1,自引:0,他引:1  
We have determined the effect of dehydration on regional lung interstitial pressures. We stopped blood flow in the isolated blood-perfused lobe of dog lung at vascular pressure of approximately 4 cmH2O. Then we recorded interstitial pressures by micropuncture at alveolar junctions (Pjct), in perimicrovascular adventitia (Padv), and at the hilum (Phil). After base-line measurements, we ventilated the lobes with dry gas to decrease extravascular lung water content by 14 +/- 5%. In one group (n = 10), at constant inflation pressure of 7 cmH2O, Pjct was 0.2 +/- 0.8 and Padv was -1.5 +/- 0.6 cmH2O. After dehydration the pressures fell to -5.0 +/- 1.0 and -5.3 +/- 1.3 cmH2O, respectively (P less than 0.01), and the junction-to-advential gradient (Pjct-Padv) was abolished. In a second group (n = 6) a combination of dehydration and lung expansion with inflation pressure of 15 cmH2O further decreased Pjct and Padv to -7.3 +/- 0.7 and -7.1 +/- 0.7 cmH2O, respectively. Phil followed changes in Padv. Interstitial compliance was 0.6 at the junctions, 0.8 in adventitia, and 0.9 ml.cmH2O-1.100 g-1 wet lung at the hilum. We conclude, that perialveolar interstitial pressures may provide an important mechanism for prevention of lung dehydration.  相似文献   

18.
Effect of body orientation on regional lung expansion in dog and sloth   总被引:3,自引:0,他引:3  
Recent studies (E.A. Hoffman, J. Appl. Physiol. 59: 468-480, 1985) using fast multisliced X-ray computed tomography have demonstrated a ventral-dorsal gradient of fractional lung air content (3.29% air/cm lung height) in supine dogs and an essentially uniform ventral-dorsal air content distribution in the prone dogs [mean = 66 +/- 0.6% (SE) air content]. Since the prone orientation is the dog's normal body posture, we sought to study an animal whose normal body posture was "opposite" to that of the dog. Four two-toed sloths were scanned in the Dynamic Spatial Reconstructor in the prone and supine postures. A supine fractional air content gradient was demonstrated with a regression equation of y = 2.09x + 74.3 (r = 0.92), where y is percent air content and x is vertical height in the lung, and ventral-dorsal air content distribution in the prone posture was uniform with a mean of 85 +/- 0.4% (SE) air content. The low functional residual capacity lung density in the sloth was attributable to unusually large alveoli. The mean heart volume-to-body weight ratio in the dogs was 16.4 +/- 0.6 (SE) ml/kg and that in the sloth was 7.3 +/- 0.4 (SE) ml/kg. Mean lung volume-to-body weight ratios for dogs and sloths were 57 +/- 7 (SE) and 89 +/- 6 ml/kg, respectively. Of particular interest was the fact that large changes in prone vs. supine rib cage and diaphragm geometry previously found in dogs did not occur in sloths, though significant alterations of ventral and dorsal lung geometry prone vs. supine were demonstrated, and lung shape changes in both dog and sloth are attributable to shifts in the intrathoracic position of mediastinal structures.  相似文献   

19.
We have determined the combined effects of lung expansion and increased extravascular lung water (EVLW) on the perialveolar interstitial pressure gradient. In the isolated perfused lobe of dog lung, we measured interstitial pressures by micropuncture at alveolar junctions (Pjct) and in adventitia of 30- to 50-microns microvessels (Padv) with stopped blood flow at vascular pressure of 3-5 cmH2O. We induced edema by raising vascular pressures. In nonedematous lobes (n = 6, EVLW = 3.1 +/- 0.3 g/g dry wt) at alveolar pressure of 7 cmH2O, Pjct averaged 0.5 +/- 0.8 (SD) cmH2O and the Pjct-Padv gradient averaged 0.9 +/- 0.5 cmH2O. After increase of alveolar pressure to 23 cmH2O the gradient was abolished in nonedematous lobes, did not change in moderately edematous lobes (n = 9, EVLW = 4.9 +/- 0.6 g/g dry wt), and increased in severely edematous lobes (n = 6, EVLW = 7.6 +/- 1.4 g/g dry wt). Perialveolar interstitial compliance decreased with increase of alveolar pressure. We conclude that increase of lung volume may reduce perialveolar interstitial liquid clearance by abolishing the Pjct-Padv gradient in nonedematous lungs and by compressing interstitial liquid channels in edematous lungs.  相似文献   

20.
We have directly measured lung interstitial fluid pressure at sites of fluid filtration by micropuncturing excised left lower lobes of dog lung. We blood-perfused each lobe after cannulating its artery, vein, and bronchus to produce a desired amount of edema. Then, to stop further edema, we air-embolized the lobe. Holding the lobe at a constant airway pressure of 5 cmH2O, we measured interstitial fluid pressure using beveled glass micropipettes and the servo-null method. In 31 lobes, divided into 6 groups according to severity of edema, we micropunctured the subpleural interstitium in alveolar wall junctions, in adventitia around 50-micron venules, and in the hilum. In all groups an interstitial fluid pressure gradient existed from the junctions to the hilum. Junctional, adventitial, and hilar pressures, which were (relative to pleural pressure) 1.3 +/- 0.2, 0.3 +/- 0.5, and -1.8 +/- 0.2 cmH2O, respectively, in nonedematous lobes, rose with edema to plateau at 4.1 +/- 0.4, 2.0 +/- 0.2, and 0.4 +/- 0.3 cmH2O, respectively. We also measured junctional and adventitial pressures near the base and apex in each of 10 lobes. The pressures were identical, indicating no vertical interstitial fluid pressure gradient in uniformly expanded nonedematous lobes which lack a vertical pleural pressure gradient. In edematous lobes basal pressure exceeded apical but the pressure difference was entirely attributable to greater basal edema. We conclude that the presence of an alveolohilar gradient of lung interstitial fluid pressure, without a base-apex gradient, represents the mechanism for driving fluid flow from alveoli toward the hilum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号