首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mandrillus sphinx, a large primate living in Cameroon and Gabon and belonging to the Papionini tribe, was reported to be infected by a simian immunodeficiency virus (SIV) (SIVmndGB1) as early as 1988. Here, we have identified a second, highly divergent SIVmnd (designated SIVmnd-2). Genomic organization differs between the two viral types; SIVmnd-2 has the additional vpx gene, like other SIVs naturally infecting the Papionini tribe (SIVsm and SIVrcm) and in contrast to the other SIVmnd type (here designated SIVmnd-1), which is more closely related to SIVs infecting l'hoest (Cercopithecus lhoesti lhoesti) and sun-tailed (Cercopithecus lhoesti solatus) monkeys. Importantly, our epidemiological studies indicate a high prevalence of both types of SIVmnd; all 10 sexually mature wild-living monkeys and 3 out of 17 wild-born juveniles tested were infected. The geographic distribution of SIVmnd seems to be distinct for the two types: SIVmnd-1 viruses were exclusively identified in mandrills from central and southern Gabon, whereas SIVmnd-2 viruses were identified in monkeys from northern and western Gabon, as well as in Cameroon. SIVmnd-2 full-length sequence analysis, together with analysis of partial sequences from SIVmnd-1 and SIVmnd-2 from wild-born or wild-living mandrills, shows that the gag and pol regions of SIVmnd-2 are closest to those of SIVrcm, isolated from red-capped mangabeys (Cercocebus torquatus), while the env gene is closest to that of SIVmnd-1. pol and env sequence analyses of SIV from a related Papionini species, the drill (Mandrillus leucophaeus), shows a closer relationship of SIVdrl to SIVmnd-2 than to SIVmnd-1. Epidemiological surveys of human immunodeficiency virus revealed a case in Cameroon of a human infected by a virus serologically related to SIVmnd, raising the possibility that mandrills represent a viral reservoir for humans similar to sooty mangabeys in Western Africa and chimpanzees in Central Africa.  相似文献   

2.
This study set out to characterize the features of experimental infection by simian immunodeficiency virus in mandrill (SIVmnd) (Mandrillus sphinx), cynomolgus macaque (Macaca fascicularis), rhesus macaque (Macaca mulatta), chimpanzee (Pan troglodytes), African green monkey (Cercopithecus pygerythrus), baboon (Papio cynocephalus) and human cells. Purified cells were exposed to a primary isolate of SIVmnd grown in the infected mandrill peripheral blood mononuclear cells, and viral p27 gag antigen was quantitated by antigen capture ELISA. Human cells have been found to be infected by SIVmnd. SIVmnd infection in cynomolgus macaque, rhesus macaque, baboon, mandrill and human cells were more effective than in vervet and chimpanzee cells. In addition, the lymphocytic cell lines SupT1, CEMx174 and Molt4 clone 8 were consistently infected by SIVmnd, whereas U937, a monocytic cell line, was not.  相似文献   

3.
Two novel simian immunodeficiency virus (SIV) strains from wild-caught red-capped mangabeys (Cercocebus torquatus torquatus) from Nigeria were characterized. Sequence analysis of the fully sequenced SIV strain rcmNG411 (SIVrcmNG411) and gag and pol sequence of SIVrcmNG409 revealed that they were genetically most closely related to the recently characterized SIVrcm from Gabon (SIVrcmGB1). Thus, red-capped mangabeys from distant geographic locations harbor a common lineage of SIV. SIVrcmNG411 carried a vpx gene in addition to vpr, suggesting a common evolutionary ancestor with SIVsm (from sooty mangabeys). However, SIVrcm was only marginally closer to SIVsm in that region than to any of the other lentiviruses. SIVrcm showed the highest similarity in pol with SIVdrl, isolated from a drill, a primate that is phylogenetically distinct from mangabey monkeys, and clustered with other primate lentiviruses (primarily SIVcpz [from chimpanzees] and SIVagmSab [from African green monkeys]) discordantly in different regions of the genome, suggesting a history of recombination. Despite the genetic relationship to SIVcpz in the pol gene, SIVrcmNG411 did not replicate in chimpanzee peripheral blood mononuclear cells (PBMC), although two other viruses unrelated to SIVcpz, SIVmndGB1 (from mandrills) and SIVlhoest (from L'Hoest monkeys), were able to grow in chimpanzee PBMC. The CCR5 24-bp deletion previously described in red-capped mangabeys from Gabon was also observed in Nigerian red-capped mangabeys, and SIVrcmNG411, like SIVrcmGB1, used CCR2B and STRL33 as coreceptors for virus entry. SIVrcm, SIVsm, SIVmndGB1, and all four SIVlhoest isolates but not SIVsun (from sun-tailed monkeys) replicated efficiently in human PBMC, suggesting that the ability to infect the human host can vary within one lineage.  相似文献   

4.
The drill monkey has been shown by serology and PCR to harbor a unique simian immunodeficiency virus (SIVdrl). A pol sequence, amplified from uncultured peripheral blood cells, is most closely related to the equivalent SIV sequences from the red-capped mangabey (SIVrcm), the sabaeus African green monkey (SIVagmSAB), and the chimpanzee (SIVcpz) and to the human immunodeficiency virus type 1 (HIV-1) sequence of humans. It is as yet unclear whether SIVdrl has a mosaic genome like SIVrcm and SIVagmSAB, is a member of the SIVcpz/HIV-1 lineage, or represents a novel primate lentivirus lineage.  相似文献   

5.
The purity of the Melbourne Zoo mandrill (Mandrillus sphinx) population has been questioned, based on the facial coloration of the female members. Consequently, it is believed that the original founding female of the Melbourne Zoo “mandrill” population was a drill–mandrill hybrid. This individual, whose mother was suspected to be a drill (Mandrillus leucophaeus), is the only female to have contributed mitochondrial DNA (mtDNA) to the population. The strictly maternal inheritance of mtDNA in vertebrates makes this molecule an ideal marker for the tracing of maternal gene flow. DNA sequence data from a 307-base pair (bp) region of the mitochondrial gene cytochrome b, amplified via the poly-merase chain reaction (PCR), was obtained from the Melbourne Zoo individuals, and compared to the homologous sequences from known specimens of both mandrill and drill. The results obtained show that all current members of the “mandrill” population possess drill mtDNA, supporting the belief that the original female founder was a hybrid. This type of genetic study has significant implications for the conservation and future management of this and other captive populations. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Progression to AIDS in the absence of a gene for vpr or vpx.   总被引:28,自引:22,他引:6       下载免费PDF全文
Rhesus monkeys (Macaca mulatta) were experimentally infected with strains of simian immunodeficiency virus (SIV) derived from SIVmac239 lacking vpr, vpx, or both vpr and vpx genes. These auxiliary genes are not required for virus replication in cultured cells but are consistently conserved within the SIVmac/human immunodeficiency virus type 2/SIVsm group of primate lentiviruses. All four rhesus monkeys infected with the vpr deletion mutant showed an early spike in plasma antigenemia, maintained high virus burdens, exhibited declines in CD4+ lymphocyte concentrations, and had significant changes in lymph node morphology, and two have died to date with AIDS. The behavior of the vpr deletion mutant was indistinguishable from that of the parental, wild-type virus. Rhesus monkeys infected with the vpx deletion mutant showed lower levels of plasma antigenemia, lower virus burdens, and delayed declines in CD4+ lymphocyte concentrations but nonetheless progressed with AIDS to a terminal stage. The vpr+vpx double mutant was severely attenuated, with much lower virus burdens and no evidence of disease progression. These and other results indicate that vpr provides only a slight facilitating advantage for wild-type SIVmac replication in vivo. Thus, progression to AIDS and death can occur in the absence of a gene for vpr or vpx.  相似文献   

7.
Mutants of human immunodeficiency virus type 2 (HIV-2) carrying a frame-shift mutation in vpx, vpr, and in both genes were monitored for their growth potentials in a newly established lymphocytic cell line, HSC-F. Worthy of note, the replication of a vpx single mutant, but not vpr, was severely impaired in these cells, and that of a vpx-vpr double mutant was more damaged. Defective replication sites of the vpx single and vpx-vpr double mutants were demonstrated to be mapped, respectively, to the nuclear import of viral genome, and to both, this process and the virus assembly/release stage. While the mutational effect of vpr was small, the replication efficiency in one cycle of the vpx mutant relative to that of wild-type virus was estimated to be 10%. The growth phenotypes of the vpx, vpr, and vpx-vpr mutant viruses in HSC-F cells were essentially repeated in primary human lymphocytes. In primary human macrophages, whereas the vpx and vpx-vpr mutants did not grow at all, the vpr mutant grew equally as well as the wild-type virus. These results strongly suggested that Vpx is critical for up-regulation of HIV-2 replication in natural target cells by enhancing the genome nuclear import, and that Vpr promotes HIV-2 replication somewhat, at least in lymphocytic cells, at a very late replication phase.  相似文献   

8.
We constructed five chimeric clones between human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIVMAC) and four SIVMAC mutants by recombinant DNA techniques. Three chimeric clones and all mutants with an alteration in either the vif, vpx, vpr, or nef gene were infectious to human CD4-positive cell lines. The susceptibility of macaque monkey peripheral blood mononuclear cells (PBMC) to infection by these mutants and chimeras was examined in vitro. Macaque PBMC supported the replication of wild-type and vpx, vpr, and nef mutant SIVMAC strains. A chimera carrying the long terminal repeats (LTRs), gag, pol, vif, and vpx of SIVMAC and tat, rev, vpu, and env of HIV-1 was also replication competent in PBMC. In contrast, HIV-1, the vif mutant of SIVMAC, a chimera containing rev and env of SIVMAC, and a chimera containing vpx, vpr, tat, rev, and env of SIVMAC did not grow in PBMC. Western immunoblotting analysis of the replicating chimera in PBMC confirmed the hybrid nature of the virus. These data strongly suggested that the sequence important for macaque cell tropism lies within the LTR, gag, pol, and/or vif sequences of the SIVMAC genome.  相似文献   

9.
Mandrills (Mandrillus sphinx) are forest primates indigenous to western central Africa. Phylogenetic analysis of 267 base pairs (bp) of the cytochrome b gene from 53 mandrills of known and 17 of unknown provenance revealed two phylogeographical groups, with haplotypes differentiated by 2.6% comprising seven synonymous transitions. The distribution of the haplotypes suggests that the Ogooué River, Gabon, which bisects their range, separates mandrill populations in Cameroon and northern Gabon from those in southern Gabon. The haplotype distribution is also concordant with that of two known mandrill simian immunodeficiency viruses, suggesting that these two mandrill phylogroups have followed different evolutionary trajectories since separation.  相似文献   

10.
Recently we reported the characterization of simian immunodeficiency virus (SIVlhoest) from a central African l'hoest monkey (Cercopithecus lhoesti lhoesti) that revealed a distant relationship to SIV isolated from a mandrill (SIVmnd). The present report describes a novel SIV (SIVsun) isolated from a healthy, wild-caught sun-tailed monkey (Cercopithecus lhoesti solatus), another member of the l'hoest superspecies. SIVsun replicated in a variety of human T-cell lines and in peripheral blood mononuclear cells of macaques (Macaca spp.) and patas monkeys (Erythrocebus patas). A full-length infectious clone of SIVsun was derived, and genetic analysis revealed that SIVsun was most closely related to SIVlhoest, with an amino acid identity of 71% in Gag, 73% in Pol, and 67% in Env. This degree of similarity is reminiscent of that observed between SIVagm isolates from vervet, grivet, and tantalus species of African green monkeys. The close relationship between SIVsun and SIVlhoest, despite their geographically distinct habitats, is consistent with evolution from a common ancestor, providing further evidence for the ancient nature of the primate lentivirus family. In addition, this observation leads us to suggest that the SIVmnd lineage should be designated the SIVlhoest lineage.  相似文献   

11.
A recent serological and molecular survey of a semifree-ranging colony of mandrills (Mandrillus sphinx) living in Gabon, central Africa, indicated that 6 of 102 animals, all males, were infected with simian T-cell lymphotropic virus type 1 (STLV-1). These animals naturally live in the same forest area as do human inhabitants (mostly Pygmies) who are infected by the recently described human T-cell lymphotropic virus type 1 (HTLV-1) subtype D. We therefore investigated whether these mandrills were infected with an STLV-1 related to HTLV-1 subtype D. Nucleotide and/or amino acid sequence analyses of complete or partial long terminal repeat (LTR), env, and rex regions showed that HTLV-1 subtype D-specific mutations were found in three of four STLV-1-infected mandrills, while the remaining monkey was infected by a different STLV-1 subtype. Phylogenetic studies conducted on the LTR as well as on the env gp21 region showed that these three new STLV-1 strains from mandrills fall in the same monophyletic clade, supported by high bootstrap values, as do the sequences of HTLV-1 subtype D. These data show, for the first time, the presence of the same subtype of primate T-cell lymphotropic virus type 1 in humans and wild-caught monkeys originating from the same geographical area. This strongly supports the hypothesis that mandrills are the natural reservoir of HTLV-1 subtype D, although the possibility that another monkey species living in the same area could be the original reservoir of both human and mandrill viruses cannot be excluded. Due to the quasi-identity of both human and monkey viruses, interspecies transmission episodes leading to such a clade may have occurred recently.  相似文献   

12.
The human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) appear to have originated by cross-species transmission of simian immunodeficiency virus (SIV) from asymptomatically infected African primates. Few of the SIVs characterized to date efficiently infect human primary lymphocytes. Interesting, two of the three identified to infect such cultures (SIVsm and SIVcpz) have appeared in human populations as genetically related HIVs. In the present study, we characterized a novel SIV isolate from an East African monkey of the Cercopithecus genus, the l’hoest monkey (C. l’hoesti), which we designated SIVlhoest. This SIV isolate efficiently infected both human and macaque lymphocytes and resulted in a persistent infection of macaques, characterized by high primary virus load and a progressive decline in circulating CD4 lymphocytes, consistent with progression to AIDS. Phylogenetic analyses showed that SIVlhoest is genetically distinct from other previously characterized primate lentiviruses but clusters in the same major lineage as SIV from mandrills (SIVmnd), a West African primate species. Given the geographic distance between the ranges of l’hoest monkeys and mandrills, this may indicate that SIVmnd arose through cross-species transmission from close relatives of l’hoest monkeys that are sympatric with mandrills. These observations lend support to the hypothesis that the primate lentiviruses originated and coevolved within monkeys of the Cercopithecus genus. Regarded in this light, lentivirus infections of primates not belonging to the Cercopithecus genus may have resulted from cross-species transmission in the not-too-distant past.  相似文献   

13.
Zhang C  de Silva S  Wang JH  Wu L 《PloS one》2012,7(5):e37477
Cross-species transmission and adaptation of simian immunodeficiency viruses (SIVs) to humans have given rise to human immunodeficiency viruses (HIVs). HIV type 1 (HIV-1) and type 2 (HIV-2) were derived from SIVs that infected chimpanzee (SIVcpz) and sooty mangabey (SIVsm), respectively. The HIV-1 restriction factor SAMHD1 inhibits HIV-1 infection in human myeloid cells and can be counteracted by the Vpx protein of HIV-2 and the SIVsm lineage. However, HIV-1 and its ancestor SIVcpz do not encode a Vpx protein and HIV-1 has not evolved a mechanism to overcome SAMHD1-mediated restriction. Here we show that the co-evolution of primate SAMHD1 and lentivirus Vpx leads to the loss of the vpx gene in SIVcpz and HIV-1. We found evidence for positive selection of SAMHD1 in orangutan, gibbon, rhesus macaque, and marmoset, but not in human, chimpanzee and gorilla that are natural hosts of Vpx-negative HIV-1, SIVcpz and SIVgor, respectively, indicating that vpx drives the evolution of primate SAMHD1. Ancestral host state reconstruction and temporal dynamic analyses suggest that the most recent common ancestor of SIVrcm, SIVmnd, SIVcpz, SIVgor and HIV-1 was a SIV that had a vpx gene; however, the vpx gene of SIVcpz was lost approximately 3643 to 2969 years ago during the infection of chimpanzees. Thus, HIV-1 could not inherit the lost vpx gene from its ancestor SIVcpz. The lack of Vpx in HIV-1 results in restricted infection in myeloid cells that are important for antiviral immunity, which could contribute to the AIDS pandemic by escaping the immune responses.  相似文献   

14.
Evolution of the primate lentiviruses: evidence from vpx and vpr.   总被引:34,自引:0,他引:34       下载免费PDF全文
The genomes of the four primate lentiviral groups are complex and contain several regulatory or accessory genes. Two of these genes, vpr and vpx, are found in various combinations within the four groups and encode proteins whose functions have yet to be elucidated. Comparison of the encoded protein sequences suggests that the vpx gene within the HIV-2 group arose by the duplication of an ancestral vpr gene within this group. Evolutionary distance analysis showed that both genes were well conserved when compared with viral regulatory genes, and indicated that the duplication occurred at approximately the same time as the HIV-2 group and the other primate lentivirus groups diverged from a common ancestor. Furthermore, although the SIVagm vpx proteins are homologous to the HIV-2 group vpx proteins, there are insufficient grounds from sequence analysis for classifying them as vpx proteins. Because of their similarity to the vpr proteins of other groups, we suggest reclassifying the SIVagm vpx gene as a vpr gene. This creates a simpler and more uniform picture of the genomic organization of the primate lentiviruses and allows the genomic organization of their common precursor to be defined; it probably contained five accessory genes: tat, rev, vif, nef and vpr.  相似文献   

15.
A seroprevalence survey was conducted for simian immunodeficiency virus (SIV) antibody in household pet monkeys in Gabon. Twenty-nine monkeys representing seven species were analyzed. By using human immunodeficiency virus type 2 (HIV-2)/SIVsm, SIVmnd, and SIVagm antigens, one red-capped mangabey (RCM) (Cercocebus torquatus torquatus) was identified as harboring SIV-cross-reactive antibodies. A virus isolate, termed SIVrcm, was subsequently established from this seropositive RCM by cocultivation of its peripheral blood mononuclear cells (PBMC) with PBMC from seronegative humans or RCMs. SIVrcm was also isolated by cocultivation of CD8-depleted RCM PBMC with Molt 4 clone 8 cells but not with CEMx174 cells. The lack of growth in CEMx174 cells distinguished this new SIV from all previously reported sooty mangabey-derived viruses (SIVsm), which grow well in this cell line. SIVrcm was also successfully transmitted (cell free) to human and rhesus PBMC as well as to Molt 4 clone 8 cells. To determine the evolutionary origins of this newly identified virus, subgenomic pol (475 bp) and gag (954 bp) gene fragments were amplified from infected cell culture DNA and sequenced. The position of SIVrcm relative to those of members of the other primate lentivirus lineages was then examined in evolutionary trees constructed from deduced protein sequences. This analysis revealed significantly discordant phylogenetic positions of SIVrcm in the two genomic regions. In trees derived from partial gag sequences, SIVrcm clustered independently from all other HIV and SIV strains, consistent with a new primate lentivirus lineage. However, in trees derived from pol sequences, SIVrcm grouped with the HIV-1/SIVcpz lineage. These findings suggest that the SIVrcm genome is mosaic and possibly is the result of a recombination event involving divergent lentiviruses in the distant past. Further analysis of this and other SIVrcm isolates may shed new light on the origin of HIV-1.  相似文献   

16.
Recent serological and molecular surveys of different primate species allowed the characterization of several Kaposi's sarcoma-associated herpesvirus (KSHV) homologues in macaques, African green monkeys, chimpanzees, and gorillas. Identification of these new primate rhadinoviruses revealed the existence of two distinct genogroups, called RV1 and RV2. Using a degenerate consensus primer PCR method for the herpesvirus DNA polymerase gene, the presence of KSHV homologues has been investigated in two semi-free-ranging colonies of eight drill (Mandrillus leucophaeus), five mandrill (Mandrillus sphinx), and two hybrid (Mandrillus leucophaeus-Mandrillus sphinx) monkeys, living in Cameroon and Gabon, Central Africa. This search revealed the existence of not only two distinct KSHV homologues, each one belonging to one of the two rhadinovirus genogroups, but also of two new betaherpesvirus sequences, one being close to cytomegaloviruses and the other being related to human herpesviruses 6 and 7 (HHV-6 and -7). The latter viruses are the first simian HHV-6 and -7 homologues identified to date. These data show that mandrill and drill monkeys are the hosts of at least four novel distinct herpesviruses. Moreover, mandrills, like macaques and African green monkeys, harbor also two distinct gamma-2 herpesviruses, thus strongly suggesting that a second gamma-2 herpesvirus, belonging to the RV2 genogroup, may exist in humans.  相似文献   

17.
Case history The two obese mandrills (Mandrillus sphinx) showed clinical signs of depression, anorexia, hyperglycemia, hypertriglyceridemia, glucosuria, proteinuria and ketonuria. Septic bed sore wounds were noted on both fore and hind limbs. Results Histopathological study revealed severe islet amyloidosis in both mandrills. Immunohistochemical study using polyclonal anti-cat amylin antibody confirmed derivation of the islet amyloid from islet amyloid polypeptide (IAPP). Cardiomyopathy and myocardial fibrosis were also evident. Conclusions The present study documents diabetes mellitus in two obese mandrills. Diabetes in these animals had features very similar type 2 diabetes mellitus of humans, including the development of severe, IAPP-derived islet amyloidosis. The mandrill may, therefore, serve as an animal model of human type 2 diabetes mellitus.  相似文献   

18.
19.
We previously reported that expression of human immunodeficiency virus type 1 strain NL4-3 (HIV-1(NL4-3))vpr causes cells to arrest in the G2 phase of the cell cycle. We examined the induction of cell cycle arrest by other HIV-1 isolates and by primary lentiviruses other than HIV-1. We demonstrate that the vpr genes from tissue culture-adapted or primary isolates of HIV-1 are capable of inducing G2 arrest. In addition, we demonstrate that induction of cell cycle arrest is a conserved function of members of two other groups of primate lentiviruses, HIV-2/simian immunodeficiency virus strain sm (SIVsm)/SIVmac and SIVagm. vpr from HIV-1, HIV-2, and SIVmac induced cell cycle arrest when transfected in human (HeLa) and monkey (CV-1) cells. vpx from HIV-2 and SIVmac did not induce detectable cell cycle arrest in either cell type, and SIVagm vpx was capable of inducing arrest in CV-1 but not HeLa cells. These results indicate that induction of cell cycle perturbation is a general property of lentiviruses that infect primates. The conservation of this viral function throughout evolution suggests that it plays a key role in virus-host relationships, and elucidation of its mechanism may reveal important clues about pathology induced by primary lentiviruses.  相似文献   

20.
The genomes of simian immunodeficiency viruses isolated from African green monkeys (SIVagm) contain a single accessory gene homolog of human immunodeficiency virus type 1 (HIV-1) vpr. This genomic organization differs from that of SIVsm-SIVmac-HIV-2 group viruses, which contain two gene homologs, designated vpr and vpx, which in combination appear to share the functions of HIV-1 vpr. The in vitro role of the SIVagm homolog was evaluated with molecularly cloned, pathogenic SIVagm9063-2. These studies revealed that this gene shares properties of HIV-1 vpr, such as nuclear and virion localization. In addition, SIVagm mutants with inactivating mutations of vpr are unable to replicate in nondividing cells, such as macaque monocyte-derived macrophages, but replicate to almost wild-type levels in a susceptible human T-cell line. The transport of virus preintegration complexes into the nucleus in primary macrophages, as measured by the production of unintegrated circular viral DNA, is less efficient for the mutant viruses than it is for the wild-type virus. SIVagm mutants also replicate inefficiently in primary macaque peripheral blood mononuclear cells, with a propensity for substitutions that remove the inserted inactivating stop codon. These data, in conjunction with recent findings that the Vpr protein is capable of inducing G2 arrest, are consistent with designation of this SIVagm accessory gene as vpr to reflect its shared functions and properties with HIV-1 vpr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号