首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Remote vasodilation caused by arteriolar microapplication of acetylcholine cannot be completely attributed to passive cell-cell communication of a hyperpolarizing signal. The present study was undertaken to ascertain whether a neural component may be involved in the remote response. In the cheek pouch of anesthetized hamsters, methacholine (100 microM) was applied to the arteriole by micropipette for 5 s, and the arteriolar responses were measured at the site of application and at remote locations: 500 and 1,000 microm upstream from the application site. Superfusion with the local anesthetic bupivacaine attenuated a local dilatory response and abolished the conducted dilation response to methacholine. Localized micropipette application of bupivacaine 300 microm from the methacholine application site also attenuated the remote dilation but did not inhibit the local dilation. Blockade of neuromuscular transmission with botulinum neurotoxin A (1 U, 3 days), micropipette application of calcitonin gene-related peptide (CGRP) receptor inhibitor CGRP-(8-37) (10 microM) 300 microm upstream from the methacholine application site, and denervation of the CGRP sensory nerve by 2 days of capsaicin treatment reduced the conducted dilation response to methacholine but did not affect the local dilatory response. Together, these data support involvement of a TTX-insensitive nerve, specifically the CGRP containing nerve, in vascular communication. Understanding the effect of regulation of a novel neural network system on the vascular network may lead to a new insight into regulation of blood flow and intraorgan blood distribution.  相似文献   

2.
FG human pancreatic carcinoma cells adhere to vitronectin using integrin alpha v beta 5 yet are unable to migrate on this ligand whereas they readily migrate on collagen in an alpha 2 beta 1-dependent manner. We report here that epidermal growth factor receptor (EGFR) activation leads to de novo alpha v beta 5-dependent FG cell migration on vitronectin. The EGFR specific tyrosine kinase inhibitor tyrphostin 25 selectively prevents EGFR autophosphorylation thereby preventing the EGF-induced FG cell migration response on vitronectin without affecting constitutive migration on collagen. Protein kinase C (PKC) activation also leads to alpha v beta 5-directed motility on vitronectin; however, this is not blocked by tyrosine kinase inhibitors. In this case, PKC activation appears to be associated with and downstream of EGFR signaling since calphostin C, an inhibitor of PKC, blocks FG cell migration on vitronectin induced by either PKC or EGF. These findings represent the first report implicating a receptor tyrosine kinase in a specific integrin mediated cell motility event independent of adhesion.  相似文献   

3.
Vitronectin, which ligates the alpha(v)beta(3)-integrin, increases both lung capillary permeability and lung endothelial Ca(2+). In stable monolayers of bovine pulmonary artery endothelial cells (BPAECs) viewed with confocal microscopy, multimeric vitronectin aggregated the apically located alpha(v)beta(3)-integrin. This caused arachidonate release that was inhibited by pretreating the monolayers with the anti-alpha(v)beta(3) monoclonal antibody (MAb) LM609. No inhibition occurred in the presence of the isotypic MAb PIF6, which recognizes the integrin alpha(v)beta(5). Vitronectin also caused membrane translocation and phosphorylation of cytosolic phospholipase A(2) (cPLA(2)) as well as tyrosine phosphorylation of the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase (ERK) 2. The cPLA(2) inhibitor arachidonyl trifluoromethylketone, the tyrosine kinase inhibitor genistein, and the MAPK kinase inhibitor PD-98059 all blocked the induced arachidonate release. PD-98059 did not inhibit the increase of cytosolic Ca(2+) or cPLA(2) translocation, although it blocked tyrosine phosphorylation of ERK2. Moreover, although the intracellular Ca(2+) chelator MAPTAM also inhibited arachidonate release, it did not inhibit tyrosine phosphorylation of ERK2. These findings indicate that ligation of apical alpha(v)beta(3) in BPAECs caused ERK2 activation and an increase of intracellular Ca(2+), both conjointly required for cPLA(2) activation and arachidonate release. This is the first instance of a tyrosine phosphorylation-initiated "two-hit" signaling pathway that regulates an integrin-induced proinflammatory response.  相似文献   

4.
Protein kinase C (PKC) isoforms differentially regulate platelet functional responses downstream of glycoprotein VI (GPVI) signaling, but the role of PKCs regulating upstream effectors such as Syk is not known. We investigated the role of PKC on Syk tyrosine phosphorylation using the pan-PKC inhibitor GF109203X (GFX). GPVI-mediated phosphorylation on Syk Tyr-323, Tyr-352, and Tyr-525/526 was rapidly dephosphorylated, but GFX treatment inhibited this dephosphorylation on Tyr-525/526 in human platelets but not in wild type murine platelets. GFX treatment did not affect tyrosine phosphorylation on FcRγ chain or Src family kinases. Phosphorylation of Lat Tyr-191 and PLCγ2 Tyr-759 was also increased upon treatment with GFX. We evaluated whether secreted ADP is required for such dephosphorylation. Exogenous addition of ADP to GFX-treated platelets did not affect tyrosine phosphorylation on Syk. FcγRIIA- or CLEC-2-mediated Syk tyrosine phosphorylation was also potentiated with GFX in human platelets. Because potentiation of Syk phosphorylation is not observed in murine platelets, PKC-deficient mice cannot be used to identify the PKC isoform regulating Syk phosphorylation. We therefore used selective inhibitors of PKC isoforms. Only PKCβ inhibition resulted in Syk hyperphosphorylation similar to that in platelets treated with GFX. This result indicates that PKCβ is the isoform responsible for Syk negative regulation in human platelets. In conclusion, we have elucidated a novel pathway of Syk regulation by PKCβ in human platelets.  相似文献   

5.
Integrin-associated protein (IAP) is a receptor for the carboxyl- terminal "cell-binding domain" (CBD) of thrombospondin 1 (TS1). IAP associates with alpha v beta 3 integrin and mAbs against IAP inhibit certain integrin functions. Here we examine the effects of the TS1 CBD and 4N1K (KRFYVVMWKK), a cell-binding peptide derived from it, on the adhesion and spreading on vitronectin (VN) of C32 human melanoma cells which express IAP, alpha v beta 3, and alpha v beta 5. Cells adhere to VN at low surface densities via alpha v beta 5 and spread very slowly while adhesion to higher density VN involves both alpha v beta 5 and alpha v beta 3 and results in rapid spreading. Spreading of the cells, but not adhesion, on sparse VN coatings is markedly enhanced by the presence of soluble TS1, the recombinant CBD and 4N1K, but not the "mutant" peptide 4NGG, KRFYGGMWKK, which fails to bind IAP. This enhanced spreading is completely blocked by mAb LM609 against alpha v beta 3 and the anti-IAP mAb B6H12. Correlated with this enhanced spreading is increased tyrosine phosphorylation of focal adhesion kinase (FAK), paxillin, and a protein of ca. 90 kD. The enhanced spreading induced by TS1 and 4N1K and the constitutive spreading on higher density VN are both blocked by calphostin C (100 nM), wortmannin (10 nM), and tyrosine kinase inhibitors. In contrast, pertussis toxin specifically blocks only the TS1 stimulated spreading on low density VN, indicating that IAP exerts its effects on signal transduction via a heterotrimeric Gi protein acting upstream of a common cell spreading pathway which includes PI-3 kinase, PKC, and tyrosine kinases.  相似文献   

6.
Neuronal cell death is an early pathological feature of diabetic retinopathy. We showed previously that insulin receptor signaling is diminished in retinas of animal models of diabetes and that downstream Akt signaling is involved in insulin-mediated retinal neuronal survival. Therefore, further understanding of the mechanisms by which retinal insulin receptor signaling is regulated could have therapeutic implications for neuronal cell death in diabetes. Here, we investigate the role of cholesterol-enriched membrane microdomains to regulate PKC-mediated inhibition of Akt-dependent insulin signaling in R28 retinal neurons. We demonstrate that PKC activation with either a phorbol ester or exogenous application of diacylglycerides impairs insulin-induced Akt activation, whereas PKC inhibition augments insulin-induced Akt activation. To investigate the mechanism by which PKC impairs insulin-stimulated Akt activity, we assessed various upstream mediators of Akt signaling. PKC activation did not alter the tyrosine phosphorylation of the insulin receptor or IRS-2. Additionally, PKC activation did not impair phosphatidylinositol 3-kinase activity, phosphoinositide-dependent kinase phosphorylation, lipid phosphatase (PTEN), or protein phosphatase 2A activities. Thus, we next investigated a biophysical mechanism by which insulin signaling could be disrupted and found that disruption of lipid microdomains via cholesterol depletion blocks insulin-induced Akt activation and reduces insulin receptor tyrosine phosphorylation. We also demonstrated that insulin localizes phosphorylated Akt to lipid microdomains and that PMA reduces phosphorylated Akt. In addition, PMA localizes and recruits PKC isotypes to these cholesterol-enriched microdomains. Taken together, these results demonstrate that both insulin-stimulated Akt signaling and PKC-induced inhibition of Akt signaling depend on cholesterol-enriched membrane microdomains, thus suggesting a putative biophysical mechanism underlying insulin resistance in diabetic retinopathy.  相似文献   

7.
The signaling pathways underlying the regulation of vascular resistance by purines in intact microvessels and particularly in communication of remote vasomotor responses are unclear. One process by which remote regions of arterioles communicate is via transmission of signals axially along the vessel wall. In this study, we identified a pathway for local and conducted dilations initiated by purines. Adenosine (Ado) or ATP (bind P1 and P2 purinergic receptors, respectively) was micropipette applied to arterioles (maximum diameter approximately 40 microm) in the cheek pouch of anesthetized hamsters. Observations were made at the site of stimulation (local) or approximately 1200 microm upstream along the same vessel. P2 antagonists (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid tetrasodium and suramin) inhibited local constriction to ATP, whereas local and upstream dilations were unaffected. In contrast, during inhibition of P1 receptors (with xanthine amine congener) the local constriction was unchanged, whereas both local and upstream dilations to ATP were inhibited. Hydrolysis of ATP to Ado is implicated in the dilator response as blocking 5'-ectonucleotidase (with alpha,beta-methyleneadenosine 5'-diphosphate) attenuated ATP-induced dilations. After endothelium denudation, constriction to ATP was unchanged, but dilations to both ATP and Ado were inhibited, identifying endothelial cells (ECs) as the primary target for P1-mediated dilation. Purines increased EC Ca2+ locally and upstream. Chelation of EC Ca2+ (with BAPTA) abolished the local and upstream dilations to P1 receptor stimulation. Collectively, these data demonstrate that stimulation of P1 receptors on ECs produces a vasodilation that spreads to remote regions. There is an associated increase in EC Ca2+, which is a required signaling intermediate in the manifestation of both the local and axially communicated arteriolar dilations.  相似文献   

8.
J Xu  S Rockow  S Kim  W Xiong    W Li 《Molecular and cellular biology》1994,14(12):8018-8027
Interferons (IFNs) exert antiproliferative effects on many types of cells. The underlying molecular mechanism, however, is unclear. One possibility is that IFNs block growth factor-induced mitogenic signaling, which involves activation of Ras/Raf-1/MEK/mitogen-activated protein kinase. We have tested this hypothesis by using HER14 cells (NIH 3T3 cell expressing both platelet-derived growth factor [PDGF] and epidermal growth factor [EGF] receptors) as a model system. Our studies showed that IFNs (alpha/beta and gamma) blocked PDGF-and phorbol ester- but not EGF-stimulated DNA synthesis and cell proliferation. While the ligand-stimulated receptor tyrosine phosphorylation and interaction with downstream signaling molecules, such as GRB2, were not affected, IFNs specifically blocked PDGF- and phorbol ester- but not EGF-stimulated activation of Raf-1, mitogen-activated protein kinases, and tyrosine phosphorylation of an unidentified 34-kDa protein. This inhibition could be detected as early as 5 min after IFN treatments and was insensitive to cycloheximide, indicating that de novo protein synthesis is not required. The IFN-induced inhibition acted upstream of Raf-1 kinase and downstream of diacyl glycerol/phorbol ester, suggesting that protein kinase C (PKC) is the potential primary target. Consistently, downregulation of PKC by chronic phorbol myristate acetate treatment or inhibition of PKC by H7 and staurosporine blocked PDGF- and phorbol myristate acetate- but not EGF-induced signaling and DNA synthesis. Moreover, incubating cells with antisense oligodeoxyribonucleotides of PKC delta eliminated production of PKC delta protein and specifically blocked PDGF- but not EGF-stimulated mitogenesis in these cells. Thus, these studies have elucidated a major difference in the early events of EGF-and PDGF-stimulated signal transduction and, more importantly, revealed a novel mechanism by which IFNs may execute their antiproliferative function.  相似文献   

9.
This study asks which occurs first in time for remote responses: a dilation or a remote change in flow. Arteriolar diameter (approximately 20 microm) and fluorescently labeled red blood cell (RBC) velocity were measured in the cremaster muscle of anesthetized (pentobarbital sodium, 70 mg/kg) hamsters (n = 51). Arterioles were locally stimulated for 60 s with micropipette-applied 10 microg/ml LM-609 (alpha(v)beta(3)-integrin agonist), 10(-3) M adenosine, or 10(-3) M 3-morpholinosydnonimine (SIN-1, nitric oxide donor) as remote response agonists or with 10(-3) M papaverine, which dilates only locally. Observations were made at a remote site 1,200 microm upstream. With LM-609 or adenosine, the RBC velocity increased first (within 5 s), and the remote dilation followed 5-7 s later. N-nitro-L-arginine (100 microM) blocked the LM-609 (100%) and adenosine (60%) remote dilations. SIN-1 induced a concurrent remote dilation and decrease in RBC velocity (approximately 10 s), suggesting the primary signal was to dilate. Papaverine had no remote effects. This study suggests that, although remote responses to some agonists are induced by primary signals to dilate, additionally, network changes in flow can stimulate extensive remote changes in diameter.  相似文献   

10.
Lipoteichoic acid (LTA), the principal component of the cell wall of gram-positive bacteria, triggers several inflammatory responses. However, the mechanisms underlying its action on human tracheal smooth muscle cells (HTSMCs) were largely unknown. This study was to investigate the mechanisms underlying LTA-stimulated p42/p44 mitogen-activated protein kinase (MAPK) using Western blotting assay. LTA stimulated phosphorylation of p42/p44 MAPK via a Toll-like receptor 2 (TLR2). Pretreatment with pertussis toxin attenuated the LTA-induced responses. LTA-stimulated phosphorylation of p42/p44 MAPK was attenuated by inhibitors of tyrosine kinase (genistein), phosphatidylcholine-phospholipase C (PLC; D609), phosphatidylinositol (PI)-PLC (U-73122), PKC (staurosporine, G?-6976, rottlerin, or Ro-318220), MEK1/2 (U-0126), PI 3-kinase (LY-294002 and wortmannin), and an intracellular Ca(2+) chelator (BAPTA-AM). LTA directly evoked initial transient peak of [Ca(2+)](i), supporting the involvement of Ca(2+) mobilization in LTA-induced responses. These results suggest that in HTSMCs, LTA-stimulated p42/p44 MAPK phosphorylation is mediated through a TLR2 receptor and involves tyrosine kinase, PLC, PKC, Ca(2+), MEK, and PI 3-kinase.  相似文献   

11.
Escherichia coli endotoxin LPS regulates blood-brain barrier permeability by disrupting the tight junction (TJ) complex between brain endothelial cells. This study used Bend.3 cells to examine the signaling networks involved in the hyperpermeability of the brain endothelial barrier caused by LPS. The LPS-induced alterations in the brain endothelial barrier were associated with PKC (a, β, ζ) and RhoA, but were independent of PI3K and the tyrosine kinase pathway. Inhibition of PKC (a, β, ζ) and RhoA activity using shRNA and dominant negative mutants diminished the effects of LPS on the brain's endothelial TJs. The interactions between the PKC and Rho pathways were therefore examined. PKC-a and PKC-ζ, but not PKC-β interacted with RhoA in Bend.3 cells stimulated by LPS. PKC-a acted as the upstream molecule for Rho and PKC-ζ acted as the downstream target for Rho. Comparing the effect of double inhibition of "Rho and PKC" and single inhibition of "Rho" or "PKC" confirmed that this interaction is critical for LPS-induced brain endothelial cell hyperpermeability. Collectively these data are the first to suggest that LPS affects the brain's endothelial TJ barrier via PKC (a, β, ζ)- and RhoA, independent of the PI3K and tyrosine kinase pathways. In addition, PKC-a and PKC-ζ, respectively, act as the upstream and downstream regulator for RhoA in the process.  相似文献   

12.
Adhesion of fibroblasts to extracellular matrices via integrin receptors is accompanied by extensive cytoskeletal rearrangements and intracellular signaling events. The protein kinase C (PKC) family of serine/threonine kinases has been implicated in several integrin-mediated events including focal adhesion formation, cell spreading, cell migration, and cytoskeletal rearrangements. However, the mechanism by which PKC regulates integrin function is not known. To characterize the role of PKC family kinases in mediating integrin-induced signaling, we monitored the effects of PKC inhibition on fibronectin-induced signaling events in Cos7 cells using pharmacological and genetic approaches. We found that inhibition of classical and novel isoforms of PKC by down-regulation with 12-0-tetradeconoyl-phorbol-13-acetate or overexpression of dominant-negative mutants of PKC significantly reduced extracellular regulated kinase 2 (Erk2) activation by fibronectin receptors in Cos7 cells. Furthermore, overexpression of constitutively active PKCalpha, PKCdelta, or PKCepsilon was sufficient to rescue 12-0-tetradeconoyl-phorbol-13-acetate-mediated down-regulation of Erk2 activation, and all three of these PKC isoforms were activated following adhesion. PKC was required for maximal activation of mitogen-activated kinase kinase 1, Raf-1, and Ras, tyrosine phosphorylation of Shc, and Shc association with Grb2. PKC inhibition does not appear to have a generalized effect on integrin signaling, because it does not block integrin-induced focal adhesion kinase or paxillin tyrosine phosphorylation. These results indicate that PKC activity enhances Erk2 activation in response to fibronectin by stimulating the Erk/mitogen-activated protein kinase pathway at an early step upstream of Shc.  相似文献   

13.
To investigate the relationship between skeletal muscle metabolism and arteriolar dilations in the region local to contracting muscle fibers as well as dilations at remote arteriolar regions upstream, we used a microelectrode on cremaster muscle of anesthetized hamsters to stimulate four to five muscle fibers lying approximately perpendicular to and overlapping a transverse arteriole. Before, during, and after muscle contraction, we measured the diameter of the arteriole at the site of muscle fiber overlap (local) and at a remote site approximately 1,000 microm upstream. Two minutes of 2-, 4-, or 8-Hz stimulation (5-10 V, 0.4-ms duration) produced a significant dilation locally (8.2 +/- 2.0-, 22.5 +/- 2.4-, and 30.9 +/- 2.1-microm increase, respectively) and at the remote site (4.2 +/- 0.8, 11.0 +/- 1.1, and 18.9 +/- 2.7 microm, respectively). Muscle contraction at 4 Hz initiated a remote dilation that was unaffected by 15-min micropipette application of either 2 microM tetrodotoxin, 0.07% halothane, or 40 microM 18-beta-glycyrrhetinic acid between the local and upstream site. Therefore, at the arteriolar level, muscle contraction initiates a robust remote dilation that does not appear to be transmitted via perivascular nerves or gap junctions.  相似文献   

14.
《Free radical research》2013,47(9):1100-1108
Abstract

Transforming growth factor β1 (TGF-β1) induces Mv1Lu cell senescence through inactivating glycogen synthase kinase 3 (GSK3), thereby inactivating complex IV and increasing intracellular ROS. In the present study, we identified protein kinase C delta (PKCδ) as an upstream regulator of GSK3 inactivation in this mechanism of TGF-β1-induced senescence. When Mv1Lu cells were exposed to TGF-β1, PKCδ phosphorylation simultaneously increased with GSK3 phosphorylation, and then AKT and ERK were phosphorylated. AKT phosphorylation and Smad signaling were independent of GSK3 phosphorylation, but ERK phosphorylation was downstream of GSK3 inactivation. TGF-β1-triggered GSK3 phosphorylation was blocked by inhibition of PKCδ, using its pharmacological inhibitor, Rottlerin, or overexpression of a dominant negative PKCδ mutant, but GSK3 inhibition with SB415286 did not alter PKCδ phosphorylation. Activation of PKCδ by PMA delayed cell growth and increased intracellular ROS level, but did not induce senescent phenotypes. In addition, overexpression of wild type or a constitutively active PKCδ mutant was enough to delay cell growth and decrease the mitochondrial oxygen consumption rate and complex IV activity, but weakly induce senescence. However, PMA treatment on Mv1Lu cells, which overexpress wild type and constitutively active PKCδ mutants, effectively induced senescence. These results indicate that PKCδ plays a key role in TGF-β1-induced senescence of Mv1Lu cells through the phosphorylation of GSK3, thereby triggering mitochondrial complex IV dysfunction and intracellular ROS generation.  相似文献   

15.
Gonadotropin releasing hormone (GnRH) contributes to the maintenance of gonadotrope function by increasing extracellular signal-regulated kinase (ERK) activity subsequent to binding to its cognate G-protein-coupled receptor. As the GnRH receptor exclusively interacts with G(q/11) proteins and as receptor expression is regulated in a beta-arrestin-independent fashion, it represents a good model to systematically dissect underlying signaling pathways. In alphaT3-1 gonadotropes endogenously expressing the GnRH receptor, GnRH challenge resulted in a rapid increase in ERK activity which was attenuated by the epidermal growth factor receptor (EGFR)-specific tyrosine kinase inhibitor AG1478. In COS-7 cells transiently expressing the human GnRH receptor, agonist-induced ERK activation was independent of free Gbetagamma subunits but could be mimicked by short-term phorbol ester treatment. Most notably, G(q/11)-induced ERK activation was sensitive to N17-Ras and to expression of the C-terminal Src kinase but also to other dominant negative mutants of signaling components localized upstream of Ras, like Shc and the EGFR. GnRH as well as phorbol esters led to Ras activation in COS-7 and alphaT3-1 cells, which was dependent on Src and EGFR tyrosine kinases, indicating that both tyrosine kinases act downstream of protein kinase C (PKC) and upstream of Ras. However, Src did not contribute to Shc tyrosine phosphorylation. GnRH or phorbol ester challenge resulted in PKC-dependent EGFR autophosphorylation. Furthermore, a 5-min phorbol ester treatment was sufficient to trigger tyrosine phosphorylation of the platelet-derived growth factor-beta receptor in L cells. Thus, in several cell systems PKC is able to stimulate Ras via activation of receptor tyrosine kinases.  相似文献   

16.
In this study, we demonstrated that the specific inhibitors of the Na+/K+/Cl- cotransporter (NKCC1), bumetanide and furosemide, inhibited extracellular regulated kinase (ERK) phosphorylation in Balb/c 3T3 fibroblasts, stimulated with a variety of mitogens. In addition to fibroblast growth factor (FGF) shown before, the various mitogens tested in the present study (endothelial growth factor (EGF), platelet-derived growth factor (PDGF), insulin, thrombin, and the phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate (TPA)). Enter, the Ras/Raf/MEK/ERK cascade via different growth factors receptors and through one of the two main routes. The results of the present study provide evidence that have led us to conclude that the target protein which is controlled by the Na+/K+/Cl- cotransporter, is downstream of tyrosine kinase receptors, as well as of the G-protein-coupled receptor (GPCR). Several additional lines of evidence supported the above conclusion: (i) furosemide inhibits phosphorylation of MAPK kinase (MEK) induced by receptor tyrosine kinase (RTK) ligands, such as PDGF, FGF, and EGF. (ii) Furosemide also inhibited ERK phosphorylation, induced by thrombin, a GPCR. (iii) Furosemide inhibited MEK and ERK phosphorylation even when ERK phosphorylation was induced by direct activation of protein kinase C (PKC) by TPA, which bypasses early steps of the mitogenic cascade. In addition, we found that furosemide did not affect PKC phosphorylation induced directly by TPA. Taken together, the results of the present study indicate that the signal transduction protein, controlled by the Na+/K+/Cl- cotransporter, must be downstream of the PKC, and at/or upstream to MEK in the Ras/Raf/MEK/ERK cascade.  相似文献   

17.
Serotonin (5-hydroxytryptamine (5-HT)) is an important neurotransmitter and intercellular messenger regulating various gastrointestinal functions, including electrolyte transport. To date, however, no information is available with respect to its effects on the human intestinal apical anion exchanger Cl(-)/OH- (HCO3-). The present studies were therefore undertaken to examine the direct effects of serotonin on OH- gradient-driven 4,4'-diisothiocyanato-stilbene-2, 2'-disulfonic acid-sensitive 36Cl- uptake utilizing the post-confluent transformed human intestinal epithelial cell line Caco-2. Our results demonstrate that serotonin inhibits Cl(-)/OH- exchange activity in Caco-2 cells via both tyrosine kinase and Ca(2+)-independent protein kinase C delta-mediated pathways involving either 5-HT3 or 5-HT4 receptor subtype. The data consistent with our inference are as follows. (i) The short term treatment of cells with 5-HT (0.1 microM) for 15-60 min significantly decreased Cl(-)/OH- exchange (50-70%, p < 0.05). (ii) The specific agonists for 5-HT3, m-chlorophenylbiguanide, and 5-HT4, 3-(4-allylpiperazin-1-yl)-2-quinoxaline chloronitrile, mimicked the effects of serotonin. (iii) Tropisetron dual inhibitor for both the 5-HT3/4 receptor subtypes significantly blocked the inhibition, whereas specific 5-HT3 (Y-25130) or 5-HT4 receptor (RS39604) antagonist failed to block the inhibitory effects of 5-HT. (iv) The Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl ester) had no effect on the serotonin-induced inhibition. (v) The specific protein kinase C (PKC) inhibitors chelerythrine chloride or calphostin C completely blocked the inhibition by 5-HT. (vi) The specific inhibitor for PKC delta, rottlerin, significantly blocked the inhibition by 5-HT. (vii) The specific tyrosine kinase inhibitor, herbimycin, or Src family kinase inhibitor, PP1, abolished the 5-HT-mediated inhibition of Cl(-)/OH- exchange activity. (viii) 5-HT stimulated tyrosine phosphorylation of c-Src kinase and PKC delta.  相似文献   

18.
We have previously shown that sphingosine 1-phosphate (S1P) stimulates motility of human umbilical vein endothelial cells (HUVECs) (O.-H. Lee et al., Biochem. Biophys. Res. Commun. 264, 743-750, 1999). To investigate the molecular mechanisms by which S1P stimulates HUVEC motility, we examined tyrosine phosphorylation of p125 focal adhesion kinase (p125(FAK)) which is important for cell migration. S1P induces a rapid increase in tyrosine phosphorylation of p125(FAK). Compared with other structurally related lipid metabolites such as sphingosine, C2-ceramide, and lysophosphatidic acid, S1P uniquely stimulated p125(FAK) tyrosine phosphorylation and migration of HUVECs. The effect of S1P on p125(FAK) tyrosine phosphorylation was markedly reduced by treatment with pertussis toxin or U73122, a phospholipase C (PLC) inhibitor. As a downstream signal of PLC, p125(FAK) tyrosine phosphorylation in response to S1P was totally blocked by depletion of the intracellular calcium pool. However, protein kinase C (PKC) inhibitor had no effect on the response to S1P. Finally, chemotaxis assays revealed that inhibition of PLC but not PKC significantly abrogated S1P-stimulated HUVEC migration. These results suggest that the G(i)-coupled receptor-mediated PLC-Ca(2+) signaling pathway may be importantly involved in S1P-stimulated focal adhesion formation and migration of endothelial cells.  相似文献   

19.
Grb2-associated binder-1 (Gab1) is an adapter protein related to the insulin receptor substrate family. It is a substrate for the insulin receptor as well as the epidermal growth factor (EGF) receptor and other receptor-tyrosine kinases. To investigate the role of Gab1 in signaling pathways downstream of growth factor receptors, we stimulated rat aortic vascular smooth muscle cells (VSMC) with EGF and platelet-derived growth factor (PDGF). Gab1 was tyrosine-phosphorylated by EGF and PDGF within 1 min. AG1478 (an EGF receptor kinase-specific inhibitor) failed to block PDGF-induced Gab1 tyrosine phosphorylation, suggesting that transactivated EGF receptor is not responsible for this signaling event. Because Gab1 associates with phospholipase Cgamma (PLCgamma), we studied the role of the PLCgamma pathway in Gab1 tyrosine phosphorylation. Gab1 tyrosine phosphorylation by PDGF was impaired in Chinese hamster ovary cells expressing mutant PDGFbeta receptor (Y977F/Y989F: lacking the binding site for PLCgamma). Pretreatment of VSMC with (a specific PLCgamma inhibitor) inhibited Gab1 tyrosine phosphorylation as well, indicating the importance of the PLCgamma pathway. Gab1 was tyrosine-phosphorylated by phorbol ester to the same extent as PDGF stimulation. Studies using antisense protein kinase C (PKC) oligonucleotides and specific inhibitors showed that PKCalpha and PKCepsilon are required for Gab1 tyrosine phosphorylation. Binding of Gab1 to the protein-tyrosine phosphatase SHP2 and phosphatidylinositol 3-kinase was significantly decreased by PLCgamma and/or PKC inhibition, suggesting the importance of the PLCgamma/PKC-dependent Gab1 tyrosine phosphorylation for the interaction with other signaling molecules. Because PDGF-mediated ERK activation is enhanced in Chinese hamster ovary cells that overexpress Gab1, Gab1 serves as an important link between PKC and ERK activation by PDGFbeta receptors in VSMC.  相似文献   

20.
This study was undertaken to demonstrate the role of the RhoA/Rho kinase pathway in endothelin-1 (ET-1)-induced contraction of the rabbit basilar artery. Isometric tension and Western blot were used to examine ET-1-induced contraction and RhoA activation. The upstream effect on ET-1-induced RhoA activity was determined by using ET(A) and ET(B) receptor antagonists, protein kinase C (PKC), tyrosine kinase, and phosphatidylinositol-3 kinase inhibitors. The downstream effect of ET-1-induced contraction and RhoA activity was studied in the presence of the Rho kinase inhibitor Y-27632. The effect of Rho kinase inhibitor on ET-1-induced myosin light chain (MLC) phosphorylation was investigated by using urea-glycerol-PAGE immunoblotting. We found 1) ET-1 increased RhoA activity (membrane binding RhoA) in a concentration-dependent manner; 2) ET(A), but not ET(B), receptor antagonist abolished the effect of ET-1 on RhoA activation; 3) phosphodylinositol-3 kinase inhibitor, but not PKC and tyrosine kinase inhibitors, reduced ET-1-induced RhoA activation; 4) Rho kinase inhibitor Y-27632 (10 microM) inhibited ET-1-induced contraction; and 5) ET-1 increased the level of MLC phosphorylation. Rho kinase inhibitor Y-27632 reduced the effect of ET-1 on MLC phosphorylation. This study demonstrated that RhoA/Rho kinase activation is involved in ET-1-induced contraction in the rabbit basilar artery. Phosphodylinositol-3 kinase and MLC might be the upstream and downstream factors of RhoA activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号