首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The enzymatic mechanism and the kinetic parameters of GABA-transaminase extracted from cultured mouse cerebral cortex neurons and astrocytes were studied. Neuronal as well as astrocytic GABA-transaminase obeyed a bi bi ping-pong reaction mechanism. The estimated Km-values for -ketoglutarate and GABA were significantly lower for astroglial GABA-transaminase compared to the neuronal enzyme suggesting a possible existence of cell specific isozymes of GABA-transaminase. The observed enzymatic mechanism and the magnitude of the estimated kinetic parameters imply that GABA-transaminase synthesized in the two types of cultured neural cells is mechanistically and kinetically equivalent to the enzyme synthesized in the brainin vivo.  相似文献   

3.
The effect ofl-nomocysteine and selected derivatives on the high-affinity uptake of the inhibitory neuroeffectors, GABA and taurine, was investigated in synaptosomes, and in cultured neurons and astrocytes. High-affinity uptake of taurine into synaptosomes was inhibited most effectively byl-homocysteine,Dl-homocysteine and homocystine whereas neuronal uptake was unaffected by any of the compounds tested. The high affinity uptake of taurine into astrocytes was markedly inhibited byl-homocysteine,l-homocysteic acid andl-homocystine. High-affinity GABA uptake into astrocytes was notably inhibited byl-homocystine, none of the other compounds tested causing appreciable inhibition below a concentration of 5 mM. Neuronal and synaptosomal high-affinity uptake of GABA was not significantly affected by any of the test compounds at concentrations below 5 mM. The implication of these results to the study of the mechanism of homocysteine-induced seizures and their relevance to the genetic disorder homocystinuria is discussed.  相似文献   

4.
Effect of ammonia on GABA uptake and release in cultured astrocytes   总被引:3,自引:0,他引:3  
While the pathogenesis of hepatic encephalopathy (HE) is unclear, there is evidence of enhanced GABAergic neurotransmission in this condition. Ammonia is believed to play a major pathogenetic role in HE. To determine whether ammonia might contribute to abnormalities in GABAergic neurotransmission, its effects on GABA uptake and release were studied in cultured astrocytes, cells that appear to be targets of ammonia neurotoxicity. Acutely, ammonium chloride (5 mM) inhibited GABA uptake by 30%, and by 50-60% after 4-day treatment. GABA uptake inhibition was associated with a predominant decrease in Vmax; the Km was also decreased. Ammonia also enhanced GABA release after 4-day treatment, although such release was initially inhibited. These effects of ammonia (inhibition of GABA uptake and enhanced GABA release) may elevate extracellular levels of GABA and contribute to a dysfunction of GABAergic neurotransmission in HE and other hyperammonemic states.  相似文献   

5.
The possibility that the GABA-receptor agonists isoguvacine and THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) might be taken up into brain cells via the high affinity GABA transport system was tested by incubation of cultured neurons and astrocytes in media containing either [3H]GABA, [3H]isoguvacine or [3H]THIP at different concentrations. While GABA was actively taken up into both cell types via high affinity transport mechanisms, no high affinity transport could be demonstrated for isoguvacine or THIP. Both compounds did, however, penetrate into the cells. It is concluded that isoguvacine and THIP interact with the high affinity GABA-carrier neither in neurons nor in astrocytes.  相似文献   

6.
Gamma-aminobutyric acid transaminase (GABA-T, EC 2.6.1.19) is a pyridoxal phosphate (PLP) dependent enzyme that catalyzes the degradation of gamma-aminobutyric acid. The kinetics of this reaction are studied in vitro, both in the absence, and in the presence of two inhibitors: gamma-vinyl GABA (4-aminohex-5-enoic acid), and a natural product, taurine (ethylamine-2-sulfonic acid). A kinetic model that describes the transamination process is proposed. GABA-T from Pseudomonas fluorescens is inhibited by gamma-vinyl GABA and taurine at concentrations of 51.0 and 78.5 mM. Both inhibitors show competitive inhibition behavior when GABA is the substrate and the inhibition constant (Ki) values for gamma-vinyl GABA and taurine were found to be 26 +/- 3 mM and 68 +/- 7 mM respectively. The transamination process of alpha-ketoglutarate was not affected by the presence of gamma-vinyl GABA, whereas, taurine was a noncompetitive inhibitor of GABA-T when alpha-ketoglutarate was the substrate. The inhibition dissociation constant (Kii) for this system was found to be 96 +/- 10 mM. The Michaelis-Menten constant (Km) in the absence of inhibition, was found to be 0.79 +/- 0.11 mM, and 0.47 +/- 0.10 mM for GABA and alpha-ketoglutarate respectively.  相似文献   

7.
Gamma-vinyl GABA (GVG, Vigabatrin), an irreversible inhibitor of GABA transaminase (GABA-T) that inhibits cocaine-induced place preference and self administration has been proposed as a treatment for cocaine addiction. It was therefore important to assess if there was an enhanced toxicity from the combination of GVG with cocaine. No mortality was observed with administration of GVG (60 mg/kg i.v.) alone (n=8) or in combination (n=6) with cocaine (5 mg/kg i.v.). Cocaine-induced EKG alterations were not affected by GVG pretreatment. Plasma alanine amino transferase activity was reduced by GVG treatment and this was not further modified by cocaine administration. These results suggest that acute co-administration of GVG and cocaine does not result in immediate cardiovascular or hepatic toxicity of sufficient significance, to preclude further clinical trials.  相似文献   

8.
High-affinity uptake of [3H]-aminobutyric acid (GABA) was studied in cultures of neonatal rat cortical neurons grown on pre-formed monolayers of non-neuronal (glial) cells. Both the maximum rate (V max) and, to a smaller extent, theK m of [3H]GABA uptake increased with time. In addition, in parallel with these changes, 2,4-diaminobutyric acid and cis-3-aminocyclohexane-1-carboxylic acid (ACHC), compounds which are considered typical substrate/inhibitors of GABA uptake in neurons, became progressively stronger inhibitors of [3H]GABA uptake. Consequently, the present results may mean that the studies using uptake, of [3H]GABA, [3H]ACHC, or [3H]DABA as a specific marker for GABAergic neurons differentiating during the ontogenetic development of the central nervous system may have to be interpreted with caution.  相似文献   

9.
Uptake of extracellular adenosine was studied in primary cultures of astrocytes or neurons. Both cell types showed a high affinity uptake. TheK m values were not significantly different (6.5±3.75 M in astrocytes and 6.1±1.86 M in neurons), but the intensity of the uptake was higher in astrocytes than in neurons (V max values of 0.16±0.030 and 0.105±0.010 nmol×min–1×mg–1 protein, respectively). The temperature sensitivity was similar in the two cell types. Adenosine uptake inhibitors and benzodiazepines inhibited the adenosine uptake systems in both astrocytes and neurons with IC50 values in the high nanomolar or the micromolar range and the rank order of potency was similar in the two cell types. In both cell types the (–) isomers of two sets of benzodiazepine stereoisomers were more potent than the (+) isomers. Dixon analysis showed that dipyridamole, papaverine, hexobendine and chlordiazepoxide inhibited the adenosine uptake competitively and clonazepam noncompetitively in both cell types.  相似文献   

10.
Kinetics for uptake and release of glutamate were measured in normal, i.e., nontransformed, astrocytes in cultures obtained from the dissociated, cortexenriched superficial parts of the brain hemispheres of newborn DBA mice. The uptake kinetics indicated a minor, unsaturable component together with an intense uptake following Michaelis-Menten kinetics. TheK m (50 M) was reasonably comparable to the corresponding values in brain slices and in other glial preparations. TheV max (58.8 nmol min–1 mg–1 protein) was, however, much higher than that observed in glial cell lines or peripheral satellite cells, and also considerably higher than that generally reported for brain slices. The release of glutamate was much smaller than the uptake, and only little affected by an increase of the external glutamate concentration, suggesting a net accumulation of glutamate rather than a homoexchange. Such an intense accumulation of glutamate into normal astrocytes may play a major role in brain metabolism and may help keep the extracellular glutamate cohcentration below excitatory levels.  相似文献   

11.
Methamphetamine (METH), an addictive psycho-stimulant drug exerts euphoric effects on users and abusers. It is also known to cause cognitive impairment and neurotoxicity. Here, we hypothesized that METH exposure impairs the glucose uptake and metabolism in human neurons and astrocytes. Deprivation of glucose is expected to cause neurotoxicity and neuronal degeneration due to depletion of energy. We found that METH exposure inhibited the glucose uptake by neurons and astrocytes, in which neurons were more sensitive to METH than astrocytes in primary culture. Adaptability of these cells to fatty acid oxidation as an alternative source of energy during glucose limitation appeared to regulate this differential sensitivity. Decrease in neuronal glucose uptake by METH was associated with reduction of glucose transporter protein-3 (GLUT3). Surprisingly, METH exposure showed biphasic effects on astrocytic glucose uptake, in which 20 μM increased the uptake while 200 μM inhibited glucose uptake. Dual effects of METH on glucose uptake were paralleled to changes in the expression of astrocytic glucose transporter protein-1 (GLUT1). The adaptive nature of astrocyte to mitochondrial β-oxidation of fatty acid appeared to contribute the survival of astrocytes during METH-induced glucose deprivation. This differential adaptive nature of neurons and astrocytes also governed the differential sensitivity to the toxicity of METH in these brain cells. The effect of acetyl-L-carnitine for enhanced production of ATP from fatty oxidation in glucose-free culture condition validated the adaptive nature of neurons and astrocytes. These findings suggest that deprivation of glucose-derived energy may contribute to neurotoxicity of METH abusers.  相似文献   

12.
Generating neural stem cells and neurons from reprogrammed human astrocytes is a potential strategy for neurological repair. Here we show dedifferentiation of human cortical astrocytes into the neural stem/progenitor phenotype to obtain progenitor and mature cells with a neural fate. Ectopic expression of the reprogramming factors OCT4, SOX2, or NANOG into astrocytes in specific cytokine/culture conditions activated the neural stem gene program and induced generation of cells expressing neural stem/precursor markers. Pure CD44+ mature astrocytes also exhibited this lineage commitment change and did not require passing through a pluripotent state. These astrocyte-derived neural stem cells gave rise to neurons, astrocytes, and oligodendrocytes and showed in vivo engraftment properties. ASCL1 expression further promoted neuronal phenotype acquisition in vitro and in vivo. Methylation analysis showed that epigenetic modifications underlie this process. The restoration of multipotency from human astrocytes has potential in cellular reprogramming of endogenous central nervous system cells in neurological disorders.  相似文献   

13.
14.
Factors that affect the binding and uptake of gaba by brain tissue   总被引:2,自引:1,他引:1  
Abstract— As previously reported, when brain tissue was homogenized in isotonic solution and the suspension was centrifuged, less GABA was found in the sediment if the solution contained only sucrose than if it contained some NaCl. NaBr and Nal were as effective as the chloride. Less effective were Na2SOi, Na-phosphate, and the chlorides of K, Li, choline, NHt, Ca or Mg. Ouabain and protoveratrine inhibited the extra binding promoted by NaCl in brain suspensions and inhibited the uptake of GABA by respiring slices of cerebral cortex; tetrodotoxin alone had no effect in either case but reversed the effect of protoveratrine. Considerable inhibition of the uptake of GABA by brain slices was observed with glutamic acid, imipramine, chlorpromazine, procaine, xylocaine or picrotoxin but not with acetylcholine, prostigmine, norepinephine, dopamine, chloral hydrate, chloretone, pentylentetrazol or methionine sulphoximine.  相似文献   

15.
High-affinity uptake systems for amino acid neurotransmitter precursors have been highly correlated with the use of the particular amino acid or its derivative as a transmitter. We have found interneurons in the Xenopus embryo spinal cord which accumulate GABA by a high-affinity uptake system. They originate near the end of gastrulation and their ability to accumulate GABA first appears at the early tail bud stage. By position and appearance they are comparable to some of the embryonic interneurons described by A. Roberts and J. D. W. Clarke (1982, Phil. Trans. R. Soc. London Ser. B 296, 195-212). GABA-accumulating neurons also develop in dissociated cell cultures made from the presumptive spinal cord of neural plate stage Xenopus embryos. GABA accumulation in cultured neurons, as in cells in vivo, occurs via a high-affinity uptake system; GABA-accumulating cells have the same time of origin as the cells in vivo, and the ability to accumulate GABA in the population of cultured neurons appears at a time equivalent to that observed in intact sibling embryos. Thus it seems likely that the population of GABA-accumulating neurons developing in cell culture corresponds to the GABA-accumulating interneurons in vivo. The development of these neurons in dissociated cell cultures permits perturbation experiments that would be difficult to perform in vivo. We have examined the development of high-affinity GABA uptake in conditions that permit no electrical impulse activity in the cultures. The onset and extent of development of GABA accumulation in the neuronal population are normal under these conditions.  相似文献   

16.
The primary mechanism by which the action of synaptically released GABA is thought to be terminated is by re-uptake into neurones and glial cells, and the pharmacological inhibition of this uptake may be beneficial in conditions where decreased GABAergic transmission has been implicated, such as epilepsy. We have compared the effects of two of these uptake inhibitors, tiagabine and NNC-711, on extracellular GABA levels in the thalamus of the rat, after both systemic and local administration. Both compounds produced dose-dependent increases in GABA concentration irrespective of the route of administration, but the concentrations required to produce increased extracellular GABA levels were considerably higher than those known to be effective for anticonvulsant purposes. These data suggest that, initially at least, alternative GABA transporters, not susceptible to inhibition by the compounds used, may still be able to remove synaptically released GABA from the extracellular space. Special issue dedicated to Dr. Kinya Kuriyama.  相似文献   

17.
Neurotransmitters have been shown to control CNS neurogenesis, and GABA-mediated signaling is thought to be involved in the regulation of nearly all key developmental stages. Generation of dopaminergic (DA) neurons from stem/precursor cells for cell therapy in Parkinson's disease has become a major focus of research. However, the possible effects of GABA on generation of DA neurons from proliferating neurospheres of mesencephalic precursors have not been studied. In the present study, GABA(A), and GABA(B) receptors were found to be located in DA cells. Treatment of cultures with GABA did not cause significant changes in generation of DA cells from precursors. However, treatment with the GABA(A) receptor antagonist bicuculline (10(-5) M) led to a significant increase in the number DA cells, and treatment with the GABA(B) receptor antagonist CGP 55845 (10(-5) M) to a significant decrease. Simultaneous treatment with bicuculline and CGP 55845 did not induce significant changes. Apoptotic cell death studies and bromodeoxyuridine immunohistochemistry indicated that the aforementioned differences in generation of DA neurons are not due to changes in survival or proliferation of DA cells, but rather to increased or decreased differentiation of mesencephalic precursors towards the DA phenotype. The results suggest that these effects are exerted via GABA receptors located on DA precursors, and are not an indirect consequence of effects on the serotonergic or glial cell population. Administration of GABA(A) receptor antagonists in the differentiation medium may help to obtain higher rates of DA neurons for potential use in cell therapy for Parkinson's disease.  相似文献   

18.
Quinolinic acid (QA) is an endogenous neurotoxin involved in various neurological diseases, whose action seems to be exerted via glutamatergic receptors. However, the exact mechanism responsible for the neurotoxicity of QA is far from being understood. We have previously reported that QA inhibits vesicular glutamate uptake. In this work, investigating the effects of QA on the glutamatergic system from rat brain, we have demonstrated that QA (from 0.1 to 10mM) had no effect on synaptosomal L-[3H]glutamate uptake. The effect of QA on glutamate release in basal (physiological K+ concentration) or depolarized (40 mM KCl) conditions was evaluated. QA did not alter K+-stimulated glutamate release, but 5 and 10mM QA significantly increased basal glutamate release. The effect of dizolcipine (MK-801), a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptor on glutamate release was investigated. MK-801 (5 microM) did not alter glutamate release per se, but completely abolished the QA-induced glutamate release. NMDA (50 microM) also stimulated glutamate release, without altering QA-induced glutamate release, suggesting that QA effects were exerted via NMDA receptors. QA (5 and 10mM) decreased glutamate uptake into astrocyte cell cultures. Enhanced synaptosomal glutamate release, associated with inhibition of glutamate uptake into astrocytes induced by QA could contribute to increase extracellular glutamate concentrations which ultimately lead to overstimulation of the glutamatergic system. These data provide additional evidence that neurotoxicity of QA may be also related to disturbances on the glutamatergic transport system, which could result in the neurological manifestations observed when this organic acid accumulates in the brain.  相似文献   

19.
The uptake of the neuroactive sulphur amino acids -cysteine sulphinate, -cysteate, -homocysteine sulphinate and -homocysteate was investigated in astrocytes cultured from the prefrontal cortex; in neurons, cultured from cerebral cortex; and, in granule cells, cultured from cerebellum. It was shown that each amino acid acted as a substrate for a plasma membrane transporter in both neurons and astrocytes. Astrocytes and neurons exhibited a high-affinity uptake for -cysteine sulphinate and -cysteate with Km values ranging from 14–100 μM, and a low-affinity uptake for -homocysteine sulphinate and -homocysteate, with Km values ranging from 225–1210 μM. The uptake of all transmitter candidates studied was partially sodium-dependent. This sodium-dependency was most evident at low (< 100 μM) concentrations of each substrate. The apparent uptake measured in the absence of sodium was included as a component in corrections made for non-saturable influx. With the exception of -cysteine sulphinate, uptake of each sulphur amino acid was greatest in astrocytes, with Vmax values ranging between 15–32 nmol min−1 mg−1 cell protein. Moreover, the uptake of each sulphur amino acid in cerebellar granule cells (Vmax values ranging between 10–25 nmol min−1 mg−1 cell protein) was consistently greater than that in cerebral cortex neurons (Vmax values ranging between 1.5–6 nmol min−1 mg−1 cell protein).  相似文献   

20.
Cerebral cortical neurons were co-cultured for up to 7 days with astrocytes after plating on top of a confluent layer of astrocytes cultured from either cerebral cortex or cerebellum (sandwich co-cultures). Neurons co-cultured with either cortical or cerebellar astrocytes showed a high stimulus coupled release of gamma-aminobutyric acid (GABA), which is the neurotransmitter of these neurons. When the astrocyte selective GABA uptake inhibitor 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol was added during the release experiments, an increase in the stimulus coupled GABA release was seen, indicating that the astrocytes take up a large fraction of GABA released from the neurons. The activity of the GABA synthesizing enzyme glutamate decarboxylase, which is a specific marker of GABAergic neurons, was markedly increased in sandwich co-cultures of cortical neurons and cerebellar astrocytes compared to neurons cultured in the absence of astrocytes whereas in co-cultures with cortical astrocytes this increase was less pronounced. Pure astrocyte cultures did not show any detectable glutamate decarboxylase activity. The astrocyte specific marker enzyme glutamine synthetase (GS) was present at high activity in a glucocorticoid-inducible form in pure astrocytes as well as in co-cultures regardless of the regional origin of the astrocytes. When neurons were cultured on top of the astrocytes, the specific activity of GS was lower compared to astrocytes cultured alone, a result compatible with the notion that neurons are devoid of this enzyme. The results show that cortical neurons develop and differentiate when seeded on top of both homotypic and heterotypic astrocytes. Moreover, it could be demonstrated that the two cell types in the culture system communicate with each other with regard to GABA homeostasis during transmitter release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号