首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The giant anterior salivary gland cells from the large mammalian blood-sucking, glossiphoniid leech, Haementeria ghilianii, can be subdivided into three morphologically and functionally distinct regions: 1) a soma, responsible for the synthesis and storage of secretory products; 2) a long cell process, responsible for the storage and intracellular transport of the secretory vesicles; and 3) the site of exocytosis at the process terminal. The giant somata are densely packed with secretory vesicles. Deep plasmalemmal invaginations invade the soma and form an extensive system of extracellular lacunae. The rough endoplasmic reticulum (ER) and the Golgi apparatus are organized in the cell periphery, near the highly branched nucleus, and along the lacunae. The somata taper into long processes extending over several centimeters to the proboscis tip. These contain secretory vesicles through their whole length. In the process periphery, the vesicles are completely ensheathed by a concentric subplasmalemmal smooth ER cisterna. This originates deeply within the soma and extends through the whole cell process to its terminal. The ER provides support for up to several hundred longitudinally oriented microtubules. Secretion occurs at the very tip of the cell processes, each of which terminates at the proboscis tip at the base of a cuticular pore. We found synapses close to the sites of exocytosis, providing morphological evidence for neuronal control of secretion.  相似文献   

2.
Summary The sweat glands of the antebrachial organ of the ring-tailed lemur are atypical apocrine glands which have some characteristics of eccrine sweat glands. The myoepithelial cells are large and consist of well-differentiated basal and apical regions. The secretory cells form a monolayer of tall, columnar cells filled with numerous secretory vacuoles and capped with differentiated apical blebs. The vacuoles are formed in the Golgi region and their contents are discharged into the lumen and into intercellular canaliculi. The blebs are pinched off at the luminal surface by a true apocrine mechanism. In addition to the usual organelles (abundant rough endoplasmic reticulum, prominent Golgi region, large mitochondria, pigment, secretory vacuoles), the secretory cells contain bundles of microtubules. Each microtubule is about 325–350 Å in diameter. The glands are larger and more active in the male. These sweat glands are distinctly different from the apocrine glands of the general body surface of L. catta.Publication No. 128 of the Oregon Regional Primate Research Center, supported in part by Grants FR 00163 and AM 08445 from the National Institutes of Health. The author expresses thanks to D. McLean for preparation of the diagram.  相似文献   

3.
Summary The differentiation of the secretory cavities of Ginkgo stem and the structural organization of the epithelial cells were followed by light and electron microscopy. The mode of formation of the cavities is schizo-lysigeneous. Functional complexes of leucoplasts and associated endoplasmic reticulum (ER) membranes are assumed to be the site of synthesis and translocation of the lipophilic secretory product. Most of the endoplasmic reticulum membranes are paired. The content of the cavities was directly collected and analysed by low- and high-resolution mass spectrometry. The cavities contain anacardic acids and cardanols, which are long-chain phenol lipids not characteristic of Ginkgo. The relationship between the plastid/ER complexes and the production of these secondary metabolites is discussed.  相似文献   

4.
Taste buds in foliate papillae of the rhesus monkey were examined by electron microscopy. Three distinct cell types were identified. Type I cells were narrow elongated cells containing an oval nucleus, bundles of intermediate filaments, several Golgi bodies, and characteristic apical membrane-bounded dense granules. These cells exhibited morphological variations: some had a moderately dense cytoplasm, perinuclear free ribosomes, and flattened sacs of rough endoplasmic reticulum; others had a more lucent cytoplasm, dilated irregular rough endoplasmic reticulum, lysosome-like dense bodies, and lipid droplets. Type II cells typically contained a spherical, pale nucleus, a prominent nucleolus, supranuclear and infranuclear Golgi bodies, mitochondria with tubular cristae, and one or two centrioles. This cell type, too, showed some variation in the relative amounts of ribosomes and smooth endoplasmic reticulum, which varied inversely with each other. Type III cells were characterized by a clear apical cytoplasm essentially devoid of ribosomes and containing microtubules. In a few type III cells, the peri- and infranuclear regions contained many ribosomes and some rough endoplasmic reticulum. In most Type III cells, there were large numbers of dense and clear vesicles in the peri- and infranuclear regions; some of the vesicles were grouped in synapse-like arrangements with adjacent nerves. The morphological variations exhibited by all three cell types could be accounted for by age differences in each of the cells. This would be consistent with the notion that cell renewal occurs in each of the three cell populations.  相似文献   

5.
Summary Enzyme assays and morphological and histological studies show that the opaque zone midgut cells of the haematophagous fly Stomoxys calcitrans are responsible for the production of proteolytic digestive enzymes and that these are secreted into the gut lumen via membrane bound vesicles (MBV). The secretory cycle can be summarized as follows; initially the rough endoplasmic reticulum is stacked and the apices of the cells are packed with MBV. This is followed by a period of release characterized first by cytoplasmic extrusions containing high densities of MBV, then by microvesiculation of the microvilli combined with a progressive distribution of rough endoplasmic reticulum and lightening of the cellular cytoplasm. Glycogen appears in the cells at this stage and is gradually lost as the rough endoplasmic reticulum becomes stacked once more and the numbers of MBV build up again. The cycle which occurs regularly and synchronously in the cells of the zone repeats itself many times up to the completion of digestion of the blood meal. The secretory cycle is discussed with reference to activity in other secretory tissues.The author is indebted to the Science Research Council for financial support  相似文献   

6.
Microtubules and the organization of the Golgi complex   总被引:42,自引:0,他引:42  
Electron microscopic and cytochemical studies indicate that microtubules play an important role in the organization of the Golgi complex in mammalian cells. During interphase microtubules form a radiating pattern in the cytoplasm, originating from the pericentriolar region (microtubule-organizing centre). The stacks of Golgi cisternae and the associated secretory vesicles and lysosomes are arranged in a circumscribed juxtanuclear area, usually centered around the centrioles, and show a defined orientation in relation to the rough endoplasmic reticulum. Exposure of cells to drugs such as colchicine, vinblastine and nocodazole leads to disassembly of microtubules and disorganization of the Golgi complex, most typically a dispersion of its stacks of cisternae throughout the cytoplasm. These alterations are accompanied by disturbances in the intracellular transport, processing and release of secretory products as well as inhibition of endocytosis. The observations suggest that microtubules are partly responsible for the maintenance and functioning of the Golgi complex, possibly by arranging its stacks of cisternae three-dimensionally within the cell and in relation to other organelles and ensuring a normal flow of material into and away from them. During mitosis, microtubules disassemble (prophase) and a mitotic spindle is built up (metaphase) to take care of the subsequent separation of the chromosomes (anaphase). The breaking up of the microtubular cytoskeleton is followed by vesiculation of the rough endoplasmic reticulum and partial atrophy, as well as dispersion of the stacks of Golgi cisternae. After completion of the nuclear division (telophase), the radiating microtubule pattern is re-established and the rough endoplasmic reticulum and the Golgi complex resume their normal interphase structure. This sequence of events is believed to fulfil the double function to provide tubulin units and space for construction of the mitotic spindle and to guarantee an approximately equal distribution of the rough endoplasmic reticulum and the Golgi complex on the two daughter cells.  相似文献   

7.
Ultrastructural changes were studied in the cells undergoing secretory differentiation in zone I of the tubules of the uropygial gland of White Plymouth Rock chickens. A layer of basal cells and four secretory stages are recognized as the cells migrate from the periphery to the lumen of tubules and progressively elaborate a secretion product. Basal cells, containing rough endoplasmic reticulum and free ribosomes, rest on the basement membrane and are the source from which secretory cells arise. Dilated perinuclear cisternae and the proliferation of smooth endoplasmic reticulum in the form of vesicles, invaginated sacs and cusp-shaped cisternae indicate the onset of lipgenesis in stage I cells. The perinuclear cisternae are more dilated and the endoplasmic reticulum is composed on saccules and cisternae in stage II cells. Stage III cells are characterized by concentric lamellae of endoplasmic reticulum surrounding secretory droplets. Dilated cisternae of endoplasmic reticulum and secretory droplets both contain a reticular substance. The perinuclear cisternae of stage III cells have returned to normal dimensions. Large mature lucent secretory droplets, lined with electron-dense material, fill the cytoplasm ostage IV cells which degenerate and release their secretory product into the tubule lumen. Spherical membrane-bound compartments containing a mottled substance of moderate electron density occur in basal cells and all subsequent secretory stages. These mottled bodies are surrounded by saccules of endoplasmic reticulum in stage II cells and are intimately associated with secretory droplets in stage III cells, but there is no evidence that they give rise to secretory droplets and their role in secretory differentiation is unknown.  相似文献   

8.
Scanning and transmission electron microscopy are used to reveal the internal anatomy and ultrastructure of the cardia which is the source of the triple layered peritrophic membrane in the blowfly Lucilia cuprina. Within the cardia, rings of secretory cells (formation zones) and non-secretory tissue (valvula cardiaca) interlock to secrete and mould the layers of membrane. Formation zone cells have abundant rough endoplasmic reticulum, Golgi and secretory vesicles. A portion of midgut just posterior to the formation zone is covered by close-packed microvilli connected by septate-like junctions. The cuticle-lined valvula cardiaca is rich in smooth endoplasmic reticulum, glycogen and microtubules. The oesophageal cuticle is unusual in containing tubular structures. The ultrastructural features of the separate components of the cardia are discussed in terms of their secretory and non-secretory roles; modified midgut cells secrete chitin and protein whereas modified foregut tissue (valvula cardiaca) appears to be adapted to provide structural integrity (extensive junctions, microtubules), movement (muscles, possibly microtubules), a store of energy (glycogen deposits) and possibly a lipidic secretion (from smooth endoplasmic reticulum) to lubricate the passage of the membranes.  相似文献   

9.
To clarify the effects of bromocriptine on prolactinoma cells in vivo, immunohistochemical, ultrastructural and morphometrical analyses were applied to estrogen-induced rat prolactinoma cells 1 h and 6 h after injection of bromocriptine (3 mg/kg of body weight). One h after treatment, serum prolactin levels decreased markedly. Electron microscopy disclosed many secretory granules, slightly distorted rough endoplasmic reticulum, and partially dilated Golgi cisternae in the prolactinoma cells. Morphometric analysis revealed that the volume density of secretory granules increased, while the volume density of cytoplasmic microtubules decreased. These findings suggest that lowered serum prolactin levels in the early phase of bromocriptine treatment may result from an impaired secretion of prolactin due to decreasing numbers of cytoplasmic microtubules. At 6 h after injection, serum prolactin levels were still considerably lower than in controls. The prolactinoma cells at this time were well granulated, with vesiculated rough endoplasmic reticulum and markedly dilated Golgi cisternae. Electron microscopical immunohistochemistry revealed positive reaction products noted on the secretory granules, Golgi cisternae, and endoplasmic reticulum of the untreated rat prolactinoma cells. However, only secretory granules showed the positive reaction products for prolactin 6 h after bromocriptine treatment of the adenoma cells. An increase in the volume density of secretory granules and a decrease in the volume densities of rough endoplasmic reticulum and microtubules was determined by morphometric analysis, suggesting that bromocriptine inhibits protein synthesis as well as bringing about a disturbance of the prolactin secretion.  相似文献   

10.
Cephalaspideans are a group of opisthobranch gastropods that comprises carnivorous and herbivorous species, allowing an investigation of the relationship between these diets and the morphofunctional features of the salivary glands. In this study, the salivary glands of the carnivorous cephalaspidean Philinopsis depicta were observed by light and electron microscopy. The secretory epithelium of these ribbon-shaped glands is formed by ciliated cells, granular cells and cells with apical vacuole. In ciliated cells the nucleus and most cytoplasmic organelles are located in the wider apical region and a very thin stalk reaches the base of the epithelium. These cells possess significant amounts of glycogen. Granular cells are packed with electron-dense secretory granules and also contain several cisternae of rough endoplasmic reticulum and Golgi stacks. The other type of secretory cell is mainly characterized by the presence of a large apical vacuole containing secretion. These cells possess high amounts of rough endoplasmic reticulum cisternae and several Golgi stacks. Vesicles with peripheral electron-dense material are also abundant, and seem to fuse to form the apical vacuole. The available data point out to a significant difference between the salivary glands of carnivorous and herbivorous cephalaspidean opisthobranchs, with an intensification of protein secretion in carnivorous species.  相似文献   

11.
Outer cells from the root cap of Cattleya orchids are characterized by their secretory activity. They are arranged in layers intercalated with layers of secretory product and form a protective mantle over the root tip. The ultrastructure of these cells is similar to those of terrestrial roots (for example Zea mays) in that they are characterized by copious quantities of endoplasmic reticulum and numerous dense-staining prevacuolar bodies. In contrast, most root cap cells of water hyacinth and duckweed are highly vacuolate with no dense-staining prevacuolar bodies. The endoplasmic reticulum is sparse and dictyosomes are small and without secretory activity.  相似文献   

12.
D.A. Brodie 《Tissue & cell》1982,14(2):263-271
Exposure of insect fat body to treatments which disrupt microtubules (colchicine, vinblastine sulfate and cold treatment) blocks intracellular transport between the Golgi complex and the plasma membrane but does not affect Golgi complex bead rings or transport from rough endoplasmic reticulum to the Golgi complex. Drugs which disrupt microfilaments (cytochalasins B and D) do not affect the bead rings or intracellular transport of secretory proteins at any level. Thus, intracellular transport between the rough endoplasmic reticulum and the Golgi complex and the arrangement of the beads in rings are both independent of the cytoskeleton. The ring arrangement is presumably maintained by interconnection(s) with rough endoplasmic reticulum membrane.  相似文献   

13.
Cercariae of Schistosoma mansoni in daughter sporocysts in Biomphalaria glabrata were studied with the electron microscope to observe the maturing process of their acetabular glands. The undifferentiated acetabular gland displays its enlarged basal area (fundus) and extended narrow process (duct) before other organ systems are recognized. Its fundus contains a prominent nucleus and subcellular organelles typical of active secretory cells.The secretory granules of the postacetabular glands are formed in a milieu of dilated rough endoplasmic reticulum and Golgi. Two morphologically different secretory granules are produced: (1) homogeneously granular ones, and (2) other granular ones with electron dense bodies in their matrices. Mostly, the homogeneously granular ones are produced first in the fundus and are forced into the ducts as the other type is formed.The secretory granules of preacetabular glands are formed from translucent vacuoles which arise from an environment of endoplasmic reticulum and Golgi. Two morphologically different secretory granules are produced: (1) one type has a homogeneous dense matrix, and (2) the other type has a less dense matrix containing electron-lucid bodies.The duct of an undifferentiated acetabular gland has either filamentous material or microtubules dispersed in its cytoplasm. Once microtubules are formed, they persist during the life of the cercaria. The microtubules are believed to have possibly two functions: (1) to support the long duct, and (2) to assist the movement of the secretory granules into the channels of the ducts where they remain until released during host penetration.Few of the subcellular organelles associated with secretory granules formation are seen in the duct except the area in close proximity to the fundus; thus, the few secretory granules produced in the duct are in this region.  相似文献   

14.
Hensel W 《Planta》1984,162(5):404-414
When roots of Lepidium sativum L. are immersed in a colchicine solution (10-4 mol l-1), the cortical microtubules of statocytes are affected such that the dense network ofmicrotubules at the distal cell edges, between the endoplasmic reticulum and the plasma membrane, disappears almost completely, whereas the microtubules, lining the anticlinal cell walls are reduced only to a limited extent. Upon inversion of colchicine-pretreated roots, the distal complex of endoplasmic reticulum sinks into the interior of the statocyte. Germination of seeds in the cold (3–4°C) leads to a retardation of statocyte development; the elaborated system of endoplasmic reticulum is lacking, and only a few microtubules are observable, lining the plasma membrane along the anticlinal cell walls. During an additional 4 h at 24°C, groups of microtubules develop near the plasma membrane in the distal one-third of the statocytes, coaligning with newly synthesized cisternae of the endoplasmic reticulum. It is proposed that, particularly at the distal statocyte pole, microtubules in coordination with cross-bridging structures, act in stabilizing the polar arrangement of the distal endoplasmic reticulum and, in turn, facilitate an integrated function of amyloplasts, endoplasmic reticulum and plasma membrane in graviperception.Abbreviations ER endoplasmic reticulum - MT microtubule  相似文献   

15.
Multispecific antigen-binding fragments (Fab) from rabbit antisera against rat very low density lipoproteins (VLDL) and Fab against rat low density lipoproteins that were monospecific for the B apoprotein were conjugated to horseradish peroxidase. Conjugates were incubated with 6-mum frozen sections from fresh and perfusion-fixed livers and with tissue chopper sections (40 mum thick) from perfusion-fixed livers. In the light microscope, specific reaction product was present in all hepatocytes of experimental sections as intense brown to black spots whose locations corresponded to the distribution of the Golgi apparatus: along the bile canaliculi, near the nuclei, and between the nuclei and bile canaliculi. Perfusion fixation with formaldehyde produced satisfactory ultrastructural preservation with retention of lipoprotein antigenic determinants. In the electron microscope, patches of cisternae and ribosomes of the rough endoplasmic reticulum (ER) and particularly its smooth-surfaced ends, vesicles located between the rough ER and the Golgi apparatus, the Golgi apparatus and its secretory vesicles and VLDL particles in the space of Disse all bore reaction product. The tubules and vesicles of typical hepatocyte smooth ER did not contain reaction product, nor did the osmiophilic particles contained therin. The localization obtained in this study together with other evidence suggests a sequence for the biosynthesis of VLDL that differs in some respects from that proposed by others: (a) the triglyceride-rich particle originates in smooth ER where triglycerides are synthesized; (b) at the junction of the smooth and rough ER the particle receives apoproteins synthesized in the rough ER; (c) specialized tubules transport the particle, now a nascent lipoprotein, to the Golgi apparatus where concentration occurs in secretory vesicles; (d) secretory vesicles move to the sinusoidal surface where the particles are secreted into the space of Disse by fusion of the vesicular membrane with the plasma membrane of the hepatocyte.  相似文献   

16.
Summary Electron microscopy was employed in a study of the pineal gland of the Mongolian gerbil (Meriones unguiculatus). It was determined that the gerbil pineal gland contains pinealocytes and glial cells with the pinealocytes being the predominant cell type. The pinealocytes contain numerous organelles traditionally considered as being either synthetic or secretory in function such as an extensive Golgi region, smooth (SER) and rough (RER) endoplasmic reticulum, secretory vesicles and microtubules. Other cytoplasmic components are also present in the pinealocytes (synaptic ribbons, subsurface cisternae) for which no function has been assigned. Dense-cored vesicles are rare. Vacuolated pinealocytes are present and appear to be intimately associated with the formation of the pineal concertions. Evidence presented supports the proposal that the concretions form within the vacuoles. Once the concretions reach an enlarged state, the vacuolated pinealocytes break down and the concretions are thus extruded into the extracellular space where they apparently continue to increase in size. The morphology of the glial cells was interpreted as indicative of a high synthetic activity. The glial cells contain predominantly the rough variety of endoplasmic reticulum and form an expansion around the wide perivascular area.Supported by NSF grant PCM 77-05734  相似文献   

17.
Ray PM 《Plant physiology》1977,59(4):594-599
Sites in maize (Zea mays L.) coleoptile homogenates that reversibly bind naphthalene-1-acetic acid with high affinity and may represent receptor sites for auxins are located primarily on cellular membranes that show the enzymic and buoyant density characteristics of membranes of the rough endoplasmic reticulum. The sites remain attached to the endoplasmic reticulum (ER) membranes after the ribosomes have been stripped off them. Binding sites for naphthylphthalamic acid, an inhibitor of auxin transport, are located on membranes different from those that carry the naphthalene-1-acetic-acid (NAA)-binding sites, and which are probably plasma membrane. The two kinds of binding sites can be largely separated by appropriate density gradient centrifugation. The results raise the possibility that primary auxin action occurs at ER membranes and could represent facilitation of the transfer of hydrogen ions and nascent secretory protein into the ER lumen followed by secretory transport of these products to the cell exterior via the Golgi system.  相似文献   

18.
The first mandibular molars of the Swiss albino mice, 1 through 4 days of age, were fixed in glutaraldehyde or Karnovsky's fixative. The tissues were postfixed in OSO4, dehydrated and embedded in Epon. The prepolarizing, polarizing and secretory odontoblasts were described. The prepolarizing cells, located in the vicinity of the cervical loop, were mesenchymal-like in morphology. The cells of the polarizing stage possessed organelles indicative of protein synthesis. The nucleus was located proximally. Aperiodic fibers were evident in the wide basement membrane. The secretory odontoblasts were long, slender, polarized cells closely adjoining one another. Each odontoblast possessed six morphologically discernible regions: (1) an infranuclear region, limited in size and containing few cellular organelles; (2) a nuclear region, housing the oval nucleus and a few associated lamellae of rough endoplasmic reticulum as well as a limited number of mitochondria; (3) a supranuclear rough endoplasmic reticulum region, possessing an abundance of these organelles as well as some mitochondria and secretory vesicles; (4) a Golgi region, occupying the middle third of the cell, housing the elements of an extensive Golgi apparatus which was surrounded by peripherally located profiles of rough endoplasmic reticulum; additionally, this region contained smooth endoplasmic reticulum, mitochondria, numerous secretory granules and vesicles and occasional intracellular collagen fibers; (5) an apical rough endoplasmic reticulum region, containing a rough endoplasmic reticulum component that was less extensive than its supranuclear counterpart; in addition, this region was the one richest in mitochondria and contained a plethora of secretory vesicles and granules; (6) the odontoblastic process, a region mostly void of organelles, containing various secretory products, some of which appeared to be in the process of being released extracellularly into the surrounding dentin matrix.  相似文献   

19.
The biosynthesis of somatostatin has been studied at the ultrastructural level in pancreatic islets by using rabbit antiserum against synthetic somatostatin. To document that the antiserum specifically bound preprosomatostatin, we have tested the ability of the antiserum to precipitate the product synthesized in vitro. Poly(A) enriched RNA isolated from catfish islets was translated in both the wheat germ extract and nuclease-treated reticulocyte lysate systems. It was found that the in vitro translation product, preprosomatostatin, could be recognized by the antibody against synthetic somatostatin. The morphological study was then performed by immunoelectron microscopy by using the Fab-peroxidase conjugate technique. In dog pancreatic islets, somatostatin immunoreactive reaction product was seen only in the delta cells. In these cells, they were detected on bound ribosomes, in the cisternae of the rough endoplasmic reticulum (ER) and Golgi apparatus, in the Golgi associated vesicles, and in secretory vesicles. These findings suggest that somatostatin precursor molecules are synthesized on bound ribosomes and discharged into the cisternae of the rough ER. They are then transported to the Golgi apparatus and transferred to the secretory vesicles for secretion. The different staining intensities in the secretory vesicles would suggest that the processing of the precursor molecules of somatostatin probably takes place in the secretory vesicles.  相似文献   

20.
The apyrene paraspermatogenesis in the freshwater gastropod Pomaceacanaliculata has been studied with electron microscopy. Matureapyrene parasperm result from a cytodifferentiation processwithout maturation division. The atypical condition is recognizedearly. Paraspermatogonia are characterized by voluminous nucleiwith irregular clusters of heterochromatin, numerous dilated cisternaeof the rough endoplasmic reticulum and small electron-dense granulesspread through the cytoplasm. As this process advances, the nucleibecome lobed and chromatin degenerates. The remnant chromatin condensesto form dense bodies which are finally excreted from the cells.At the cytoplasmic level a centriolar multiplication with the consequentflagellogenesis takes place. The axonemal microtubules run alongthe entire length of the cell and emerge from the posteriorend forming a tuft of three or more free flagella. The roughendoplasmic reticulum and the Golgi complex are involved inthe production of secretory granules, some of which are laterreleased by exocytosis. At the end of paraspermatogenesis matureapyrene parasperm are fusiform-shaped anuclear ciliated cells. (Received 20 January 2000; accepted 18 July 2000)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号