首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Free radical research》2013,47(5):385-391
Microdialysis probes were inserted into the tibialis anterior muscle and into the femoral vein of anaesthetised Sprague-Dawley rats for monitoring of reduced (GSH) and oxidized (GSSG) extracellular glutathione. The dialysates were analysed using HPLC. The levels of GSH and GSSG were high immediately after implantation in the skeletal muscle and declined to steady state levels after 90 minutes into the same range as that found in the venous dialysate. Total ischemia was induced two hours after implantation of the dialysis probe after steady state levels had been reached. The extracellular levels of GSH increased during total ischemia and had doubled at the end of the ischemic period compared to preischemic values. During the following initial 30 minutes of reperfusion the levels increased further to four-fold the preischemic levels. The levels of GSSG also increased (100%) during the initial 30 minutes of reperfusion. The extracellular GSH levels remained elevated for 1 hour of reperfusion, but the GSSG levels returned to preischemic levels. The results indicate that intermittent hypoxia or anoxia in muscle tissue through hypoperfusion or ischemia decreases intracellular GSH stores by leakage, reducing the intracellular antioxidative capacity and increasing the risk for oxidative reperfusion injury upon final normalization of tissue blood supply.  相似文献   

2.
《Free radical research》2013,47(1):737-743
The objective of this study was to test the hypothesis that the extracellular oxidation of glutathione (GSH) may represent an important mechanism to limit hepatic ischemia/reperfusion injury in male Fischer rats in vivo. Basal plasma levels of glutatione disulfide (GSSG: 1.5 ± 0.2μM GSH-equivalents), glutathione (GSH: 6.2 ± 0.4 μM) and alanine aminotransferase activities (ALT 12 ± 2U/I) were significantly increased during the l h reperfusion period following l h of partial hepatic no-flow ischemia (GSSG: 19.7 ± 2.2μM; GSH 36.9 ± 7.4μM; ALT: 2260 ± 355 U/l). Pretreatment with 1,3-bis-(2-chloroethyl)-I-nitrosourea (40mg BCNU/kg), which inhibited glutathione reductase activity in the liver by 60%. did not affect any of these parameters. Biliary GSSG and GSH efflux rates were reduced and the GSSG-to-GSH ratio was not altered in controls and BCNU-treated rats at any time during ischemia and reperfusion. A 90% depletion of the hepatic glutathione content by phorone treatment (300 mg/kg) reduced the increase of plasma GSSG levels by 54%, totally suppressed the rise of plasma GSH concentrations and increased plasma ALT to 4290 ± 755 U/I during reperfusion. The data suggest that hepatic glutathione serves to limit ischemialreperfusion injury as a source of extracellular glutathione, not as a cofactor for the intracellular enzymatic detoxification of reactive oxygen species.  相似文献   

3.
Glutathione (GSH) is an important intracellular defense against reactive oxygen metabolites. Reaction of GSH with peroxides generates oxidized glutathione (GSSG). We hypothesized that reperfusion would cause oxidation of GSH and release of GSSG as a potential marker of intracellular oxidative reactions. Ten dogs underwent 90 min left anterior descending (LAD) occlusion and 30 min reperfusion. Coronary sinus (CS) plasma was sampled from the great cardiac vein, which drains the LAD region, and from the aorta at pre-ischemia (I), 90 min ischemia, and during reperfusion (R). We found that both GSSG and GSH increased in coronary sinus plasma during early reperfusion. (Formula: see text) Measured GSSG did not arise from autoxidation of plasma GSH. GSH and GSSG release from myocardium not only may be evidence of intracellular oxidative injury, but loss of GSH also could impair metabolism of peroxides during early reperfusion and predispose to further injury.  相似文献   

4.
Using the isolated perfused rat liver, we investigated the relationship of glutathione (GSH) with reactive oxygen species (ROS) generation and liver cell damage during ischemia/reperfusion in normal and GSH-depleted conditions. Lucigenin-enhanced chemiluminescence was used as a sensitive index of tissue ROS generation. After 30 minutes of equilibration, livers were subjected to global ischemia for various times (60 or 90 minutes) and then reperfused for another 120 minutes. Intracellular ROS levels increased sharply at the onset of reperfusion and then declined slowly. After 30 to 60 minutes of reperfusion, ROS levels started to increase progressively in a linear fashion. However, sinusoidal glutathione disulfide release did not increase during reperfusion in the same livers, suggesting that intracellular ROS generation is too low to cause a significant increase in GSH oxidation. Pretreatment with phorone (300 mg/kg intrapentoneally [ip]), which reduced hepatic GSH by 90%, did not cause any difference in intracellular ROS generation compared with the control livers. There were also no significant differences in lactate dehydrogenase and thiobarbituric acid reactive substances (TBARS) release between the control and phorone-treated livers during reperfusion after various times of ischemia. These data indicate that ROS generation in the normal isolated perfused liver during ischemia/reperfusion is extremely low and intracellular GSH does not serve as a major intracellular defense system against such a low oxidative stress.  相似文献   

5.
The aim of this study was to test the hypothesis that a decreased myocardial concentration of reduced glutathione (GSH) during ischemia renders the myocardium more susceptible to injury by reactive oxygen species generated during early reperfusion. To this end, rats were pretreated with L-buthionine-S,R-sulfoximine (2 mmol/kg), which depleted myocardial GSH by 55%. Isolated buffer-perfused hearts were subjected to 30 min of either hypothermic or normothermic no-flow ischemia followed by reperfusion. Prior depletion of myocardial GSH did not lead to oxidative stress during reperfusion, as myocardial concentration of glutathione disulfide (GSSG) was not increased after 5 and 30 min of reperfusion. In addition, prior depletion of GSH did not exacerbate myocardial enzyme release, nor did it impair the recoveries of tissue ATP, coronary flow rate and left ventricular developed pressure during reperfusion after either hypothermic or normothermic ischemia. Even administration of the prooxidant cumene hydroperoxide (20 M) to postischemic GSH-depleted hearts during the first 10 min of reperfusion did not aggravate postischemic injury, although this prooxidant load induced oxidative stress, as indicated by an increased myocardial concentration of GSSG. These results do not support the hypothesis that a reduced myocardial concentration of GSH during ischemia increases the susceptibility to injury mediated by reactive oxygen species generated during reperfusion. Apparently, myocardial tissue possesses a large excess of GSH compared to the quantity of reactive oxygen species generated upon reperfusion. (Mol Cell Biochem 156: 79-85, 1996)  相似文献   

6.
Abstract: The influence of complete and pronounced incomplete cerebral ischemia on cortical concentrations of reduced (GSH) and oxidized (GSSG) glutathione was studied in lightly anaesthetized (70% N2 O) rats. GSH was extracted with HCl-methanol-perchloric acid and GSSG with trichloroacetic acid in the presence of N-ethylmaleimide and measured fluorometrically, giving normal concentrations in cortical tissue of about 2 and 0.01 μmol.g?1 respectively. Reversible complete ischemia was induced by increasing the intracranial pressure to above the systolic blood pressure by infusing mock CSF into the cisterna magna. Reversible pronounced incomplete ischemia was induced by bilateral carotid artery clamping combined with hypovolemic hypotension. Whether complete or incomplete, a 30-min ischemic period caused a similar decrease in cortical GSH concentration (to about 90% of control) without any concomitant accumulation of GSSG in the tissue (or in CSF). Prolongation of the ischemic period (complete ischemia) to maximally 120 min caused an almost linear decrease of the tissue glutathione concentration to 45% of the preischemic value. During subsequent recirculation following a 30 min period of either complete or pronounced incomplete ischemia, there was a further decrease in cortical GSH concentrations without a reciprocal increase in GSSG concentrations. Lipid peroxidation (verified by determination of malondialdehyde production) induced in brain cortical tissue in vitro caused oxidation of tissue GSH with accumulation of GSSG. As the observed decrease in GSH during brain ischemia in vivo was not accompanied by any reciprocal increase in GSSG the results fail to support the hypothesis that peroxidative damage occurs during or following brain ischemia. The finding of an unchanged GSSG concentration does, however, not exclude the possibility of an increased turnover rate in the glutathione reductase reaction. It is concluded that the observed decrease in tissue GSH concentration mainly reflects a decrease in the glutathione pool size, due to an imbalance between breakdown and synthesis secondary to tissue energy failure.  相似文献   

7.
The effect of ischemia on the formation of products of anaerobic metabolism and their release into the cardiac effluent in isolated perfused guinea pig hearts was studied. During 30 min normothermal ischemia, the myocardial ATP and phosphocreatine levels decreased to 34% and 15% of the initial values, respectively. The net alanine formation in ischemia was approximately a stoichiometric glutamate decrease; the increase in the tissue malate content corresponded to the aspartate----oxaloacetate----malate anaplerotic flux, the succinate production being commensurable to alpha-ketoglutaric acid formation in the alanine aminotransferase reaction. Using 1H-NMR, it was shown that the release of trace amounts of lactate, alanine, succinate, creatine and pyruvate into cardiac effluents occurred during the first 5 minutes of reperfusion. The rate of metabolite release decreased in the following order: lactate much greater than alanine greater than succinate greater than creatine. By the 30th minute of reperfusion, the decrease in the tissue levels of these metabolites to preischemic values was accompanied by the recovery of ATP and phosphocreatine to 65% and 90% of the initial levels, respectively. The data obtained suggest that the formation and release of alanine, creatine or succinate as well as lactate from ischemic myocardium may testify to significant disturbances in energy metabolism of the myocardium.  相似文献   

8.
Thirty minutes of total cerebral ischemia (decapitation) decreased total glutathione (GSH + GSSG) by 7% but had no detectable effect on the concentration of oxidized glutathione (GSSG), reduced ascorbate, or total ascorbate. In a model of reversible, bilateral hemispheric ischemia (four-vessel occlusion) no changes in glutathione or ascorbate were detected after 30 min of ischemia. During 24 h of reperfusion following such an insult no detectable change in total ascorbate, reduced ascorbate, or oxidized glutathione was noted; however, total brain glutathione declined by 25%. The findings are discussed in relation to the hypothesis that the deleterious effects of ischemia are due to an increase in free radical production which in turn leads to increased lipid peroxidation.  相似文献   

9.
Ischemic preconditioning (IP) has been shown to protect the lung against ischemia-reperfusion (I/R) injury. Although the production of reactive oxygen species (ROS) has been postulated to play a crucial role in I/R injury, the sources of these radicals in I/R and the mechanisms of protection in IP remain unknown. Since it was postulated that deamination of endogenous and exogenous amines by semicarbazide-sensitive amine oxidase (SSAO) in tissue damage leads to the overproduction of hydrogen peroxide (H2O2), we investigated the possible contribution of tissue SSAO to excess ROS generation and lipid peroxidation during I/R and IP of the lung. Male Wistar rats were randomized into 6 groups: control lungs were subjected to 30 min of perfusion in absence and presence of SSAO inhibitor, whereas the lungs of the I/R group were subjected to 2 h of cold ischemia following the 30 min of perfusion in absence and presence of SSAO inhibitor. IP was performed by two cycles of 5 min ischemia followed by 5 min of reperfusion prior to 2 h of hypothermic ischemia in absence and presence of SSAO inhibitor. Lipid peroxidation, reduced (GSH) and oxidized (GSSG) glutathione levels, antioxidant enzyme activities, SSAO activity, and H2O2 release were determined in tissue samples of the study groups. Lipid peroxidation, glutathione disulfide (GSSG) content, SSAO activity and H2O2 release were increased in the I/R group, whereas GSH content, GSH/GSSG ratio and antioxidant enzyme activities were decreased. SSAO activity, H2O2 release, GSSG content and lipid peroxidation were markedly decreased in the IP group, whereas GSH content, GSH/GSSG ratio and antioxidant enzyme activities were significantly increased. SSAO activity was found to be positively correlated with H2O2 production in all study groups. Increased lipid peroxidation, SSAO activity, GSSG and H2O2 contents as well as decreased GSH and antioxidant enzyme levels in I/R returned to their basal levels when IP and SSAO inhibition were applied together. The present study suggests that application of IP and SSAO inhibition together may be more effective than IP alone against I/R injury in the lung.  相似文献   

10.
Rats were subjected to bilateral carotid artery occlusion for 30 min, followed by reperfusion for varying time periods. The concentration of reduced and oxidized glutathione, glutathione peroxidase and glutathione reductase were determined in whole brain after varying periods of reperfusion. Lipid peroxidation was also assessed by determining the levels of malondialdehyde (MDA) in the brain. Reperfusion for 1 hr following bilateral carotid artery occlusion resulted in significant decrease in total glutathione (GSH) concentration along with small but significant increase in oxidized glutathione (GSSG) levels. After 4 hr of reperfusion, GSH levels recovered, although GSSG levels remained elevated up to 12 hr of reperfusion. Increase in malondialdehyde levels was also detected in the brain up to 12 hr of reperfusion. Glutathione reductase activity remained significantly low up to 144 hr of reperfusion, while glutathione peroxidase activity remained unaffected. These results demonstrate that oxidative stress is generated in the brain during reperfusion following partial ischemia due to bilateral carotid artery occlusion.  相似文献   

11.
12.
Effect of low flow ischemia-reperfusion injury on liver function   总被引:2,自引:0,他引:2  
Bailey SM  Reinke LA 《Life sciences》2000,66(11):1033-1044
The release of liver enzymes is typically used to assess tissue damage following ischemia-reperfusion. The present study was designed to determine the impact of ischemia-reperfusion on liver function and compare these findings with enzyme release. Isolated, perfused rat livers were subjected to low flow ischemia followed by reperfusion. Alterations in liver function were determined by comparing rates of oxygen consumption, gluconeogenesis, ureagenesis, and ketogenesis before and after ischemia. Lactate dehydrogenase (LDH) and purine nucleoside phosphorylase (PNP) activities in effluent perfusate were used as markers of parenchymal and endothelial cell injury, respectively. Trypan blue staining was used to localize necrosis. Total glutathione (GSH + GSSG) and oxidized glutathione (GSSG) were measured in the perfusate as indicators of intracellular oxidative stress. LDH activity was increased 2-fold during reperfusion compared to livers kept normoxic for the same time period whereas PNP activity was elevated 5-fold under comparable conditions. Rates of oxygen consumption, gluconeogenesis, and ureagenesis were unchanged after ischemia, but ketogenesis was decreased 40% following 90 min ischemia. During reperfusion, the efflux rates of total glutathione and GSSG were unchanged from pre-ischemic values. Significant midzonal staining of hepatocyte nuclei was observed following ischemia-reperfusion, whereas normoxic livers had only scattered staining of individual cells. Reperfusion of ischemic liver caused release of hepatic enzymes and midzonal cell death, however, several major liver functions were unaffected under these experimental conditions. These data indicate that there were negligible changes in liver function in this model of ischemia and reperfusion despite substantial enzyme release from the liver and midzonal cell death.  相似文献   

13.
14.
A timed profile of glutathione oxidation and reactive nitrogen species during reperfusion after cerebral ischemia in rat was obtained. Dialysate was collected every 25 min from a microdialysis probe inserted into the cerebral cortex before and after cerebral ischemia. NO2 , NO3 , and reduced and oxidized glutathione (GSH, GSSG) were detected by high-performance liquid chromatography. GSH and GSSG increased and reached a peak: 3408 ± 1710% (mean ± SE) at 25 min of reperfusion (P < 0.0001) and 329 ± 104% at 50 min of reperfusion (P = 0.06), respectively. Oxidation ratio decreased from 0.82 ± 0.04 to 0.42 ± 0.07 (P < 0.0001) at 25 min of reperfusion. NO3 levels significantly decreased (68.3 ± 9.1%) (P < 0.01) during ischemia and remained lower than the control value during reperfusion. NO2 levels did not significantly change. These data suggest that GSH releases during early phase of reperfusion and that its rapid oxidation contributes to prevent an increase in reactive nitrogen species.  相似文献   

15.
16.
The objectives of this study were to determine 1) whether reactive oxygen species generated upon postischemic reperfusion lead to oxidative stress in rat hearts, and 2) whether an exogenous prooxidant present in the early phase of reperfusion causes additional injury. Isolated buffer-perfused rat hearts were subjected to 30 min of hypothermic no-flow ischemia followed by 30 min of reperfusion. Increased myocardial content of glutathione disulfide (GSSG) and increased active transport of GSSG were used as indices of oxidative stress. To impose a prooxidant load, cumene hydroperoxide (20 M) was administered during the first 10 min of reperfusion to a separate group of postischemic hearts. Reperfusion after 30 min of hypothermic ischemia resulted in a recovery of myocardial ATP from 28% at end-ischemia to 50–60%, a release of 5% of total myocardial LDH, and an almost complete recovery of both coronary flow rate and left ventricular developed pressure. After 5 and 30 min of reperfusion, neither myocardial content of GSSG nor active transport of GSSG were increased. These indices were increased, however, if cumene hydroperoxide was administered during early reperfusion. After stopping the administration of cumene hydroperoxide, myocardial GSSG content returned to control values and GSH content increased, indicating an unimpaired glutathione reductase reaction. Despite the induction of oxidative stress, reperfusion with cumene hydroperoxide did not cause additional metabolic, structural, or functional injury when compared to reperfusion without cumene hydroperoxide. We conclude that reactive oxygen species generated upon postischemic reperfusion did not lead to oxidative stress in isolated rat hearts. Moreover, even a superimposed prooxidant load during early reperfusion did not cause additional injury.  相似文献   

17.
The precise mechanisms underlying skeletal muscle damage in Duchenne muscular dystrophy (DMD) remain ill-defined. Functional ischemia during muscle activation, with subsequent reperfusion during rest, has been documented. Therefore, one possibility is the presence of increased oxidative stress. We applied a model of acute hindlimb ischemia/reperfusion (I/R) in mdx mice (genetic homolog of DMD) to evaluate dynamic in vivo responses of dystrophic muscles to this form of oxidative stress. Before the application of I/R, mdx muscles showed: 1) decreased levels of total glutathione (GSH) with an increased oxidized (GSSG)-to-reduced (GSH) glutathione ratio; 2) greater activity of the GSH-metabolizing enzymes glutathione peroxidase (GPx) and glutathione reductase; and 3) lower activity levels of NADP-linked isocitrate dehydrogenase (ICDH) and aconitase, two metabolic enzymes that are sensitive to inactivation by oxidative stress and also implicated in GSH regeneration. Interestingly, nondystrophic muscles subjected to I/R exhibited similar changes in total glutathione, GSSG/GSH, GPx, ICDH, and aconitase. In contrast, all of the above remained stable in mdx muscles subjected to I/R. Taken together, these results suggest that mdx muscles are chronically subjected to increased oxidative stress, leading to adaptive changes that attempt to protect (although only in part) the dystrophic muscles from acute I/R-induced oxidative stress. In addition, mdx muscles show significant impairment of the redox-sensitive metabolic enzymes ICDH and aconitase, which may further contribute to contractile dysfunction in dystrophic muscles.  相似文献   

18.
Perfused guinea-pig hearts, which were analyzed by 31P-MRS, were subjected to 30 and 60 minute ischemia and reperfused using two perfusates, one containing 200 microM inosine, and the other without inosine. After 4 hour reperfusion with inosine, ATP levels increased to 95.5% of preischemic value (30 minute ischemia) and 76.2% (60 minute ischemia). However, after 4 hour reperfusion without inosine, ATP levels increased only to 72.2% (30 minute ischemia) and to 48.2% (60 minute ischemia). In 60 minute ischemic hearts reperfused with inosine, left ventricular maximal positive dp/dt (LV dp/dt) was improved significantly to 82.4% after 6 hour reperfusion in contrast to hearts reperfused without inosine (43.1%). Administration of inosine was very useful for increasing myocardial gross energy product and improving cardiac performance.  相似文献   

19.
Cardioplegic arrest for bypass surgery imposes global ischemia on the myocardium, which generates oxyradicals and depletes myocardial high-energy phosphates. The glycolytic metabolite pyruvate, but not its reduced congener lactate, increases phosphorylation potential and detoxifies oxyradicals in ischemic and postischemic myocardium. This study tested the hypothesis that pyruvate mitigates oxidative stress and preserves the energy state in cardioplegically arrested myocardium. In situ swine hearts were arrested for 60 min with a 4:1 mixture of blood and crystalloid cardioplegia solution containing 188 mM glucose alone (control) or with additional 23.8 mM lactate or 23.8 mM pyruvate and then reperfused for 3 min with cardioplegia-free blood. Glutathione (GSH), glutathione disulfide (GSSG), and energy metabolites [phosphocreatine (PCr), creatine (Cr), P(i)] were measured in myocardium, which was snap frozen at 45 min arrest and 3 min reperfusion to determine antioxidant GSH redox state (GSH/GSSG) and PCr phosphorylation potential {[PCr]/([Cr][P(i)])}. Coronary sinus 8-isoprostane indexed oxidative stress. Pyruvate cardioplegia lowered 8-isoprostane release approximately 40% during arrest versus control and lactate cardioplegia. Lactate and pyruvate cardioplegia dampened (P < 0.05 vs. control) the surge of 8-isoprostane release following reperfusion. Pyruvate doubled GSH/GSSG versus lactate cardioplegia during arrest, but GSH/GSSG fell in all three groups after reperfusion. Myocardial [PCr]/([Cr][P(i)]) was maintained in all three groups during arrest. Pyruvate cardioplegia doubled [PCr]/([Cr][P(i)]) versus control and lactate cardioplegia after reperfusion. Pyruvate cardioplegia mitigates oxidative stress during cardioplegic arrest and enhances myocardial energy state on reperfusion.  相似文献   

20.
Glutathione serves as an important intracellular defence against reactive oxygen metabolites and has been shown to be depleted from a number of tissues upon oxidative stress. In the present study we have investigated the levels of total glutathione (reduced + oxidized) in skeletal muscle of the rat after prolonged ischema and reperfusion with and without treatment with hyperbaric oxygen (HBO) for the initial 45 minutes immediately following reperfusion. A tourniquet model for temporary, total ischemia was used, in which one hind leg was made ischemic for 3 or 4 hours. Muscle biopsies were taken after 5 hours of reperfusion. In postischemic muscle there was a significant decrease of total glutathione compared to control muscle, but in the 3-hour-ischema-groups the loss of total glutathione was less in HBO treated animals than in untreated. HBO treatment also preserved ATP and PCr and decreased edema formation in the postischemic muscle following 3 hours of ischemia and reperfusion when compared to untreated animals. However, after 4 hours of ischemia, HBO treatment failed to improve any of these parameters in the postischemic muscle. Thus, our results demonstrate that HBO treatment lessens the metabolic, ischemic derangements and improves recovery in postischemic muscle after 3 hours of ischemia followed by reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号