首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We evaluated whether protected European butterflies can potentially be at risk if transgenic maize is extensively grown in Central Europe. We explored potential consequences of both insect resistant (IR) and herbicide resistant (HR) transgenic maize. IR maize can produce pollen that is toxic to lepidopteran larvae, and this puts butterfly species at possible risk if the presence of young larvae coincides with maize flowering, during which large quantities of maize pollen can be deposited on vegetation. By considering the timing of maize flowering in Europe and the phenology of the protected Lepidoptera species, we found that 31 species had at least one generation where 50% of the larval stage overlapped with maize flowering, and 69 species for which first instar larvae were present during maize pollen shedding. HR maize allows high concentration herbicide treatments on fields without seasonal limitation, which can drastically reduce weed densities. In cases where such weed species are host plants for protected butterflies, reduced host plant/food availability can result, causing population decreases. By using published information, we first identified the important weed species in major maize-growing European countries. Subsequently, we checked whether the host plants of protected Lepidoptera included species that are common maize weeds. We identified 140 protected species having food plants that are common weeds in one or more of the major European maize-growing countries. If HR maize is grown in Europe, there is a potential hazard that their food plants will seriously decline, causing a subsequent decline of these protected species.  相似文献   

2.
Generally, great efforts are made in measuring features of landfill covers. However, conventional physical or chemical parameters reach their limits in indicating the small scale changes of the habitats. Bio-indication is a proven tool to assess habitat conditions. The advantages of vegetation monitoring are obvious: cheap, easy, and integrating over time and space. Our study displays, how vegetation can indicate landfill cover features by adapting some common evaluation methods. Ellenberg's ecological indicator values were used, but ubiquitous species were excluded from multivariate data analysis of the Ellenberg values. Four groups of habitats were distinguished according to their cover material: (i) loamy substrates; (ii) wet hollows and areas with mature compost; (iii) fresh compost and mechanically biologically treated waste; (iv) slag from municipal solid waste incineration and leachate-influenced areas with fresh untreated waste or sewage sludge. The differences were assessed by ecological indices. The results give a promising impression of the potential vegetation monitoring has in the indication of landfill cover features.  相似文献   

3.
The red mangrove is one of the principal features of the coastal vegetation throughout tropical America, Mexico, the West Indies, the Bahamas, Bermuda and southern Florida. It is of primary importance as a land retainer and builder. Secondarily, its bark is a source of tannin and yields resins suitable for plywood adhesive. Mangrove wood is heavy and durable. The bark, leaves and shoots furnish various dyes and the bark is an excellent fuel and is much used locally for medicinal purposes. In southern Florida there has been active interest in the value of mangrove leaf meal as cattle feed, the dried and ground leaves have been sold as “Maritime Tea” and prepared in tablet form as a dietary supplement. The leaf meal and the sawdust have been tested as soil conditioners. Despite their high tannin content, red mangrove leaves may warrant investigation as an abundant source of protein.  相似文献   

4.
Vegetation dynamics in rangelands and other ecosystems are known to be mediated by topoedaphic properties. Vegetation monitoring programs, however, often do not consider the impact of soils and other sources of landscape heterogeneity on the temporal patterns observed. Ecological sites (ES) comprise a land classification system based on soil, topographic, and climate variations that can be readily applied by land managers to classify topoedaphic properties at monitoring locations. We used a long-term (>40 y) vegetation record from southeastern Arizona, USA to test the utility of an ES classification for refining interpretations of monitoring data in an area of relatively subtle soil differences. We focused on two phenomena important to rangeland management in the southeastern Arizona region: expansion of the native tree velvet mesquite (Prosopis velutina Woot.) and spread of the introduced perennial grass Lehmann lovegrass (Eragrostis lehmanniana Nees). Specifically, we sought to determine if a quantitative, ES-specific analysis of the long-term record would (1) improve detection of changes in plant species having heightened ecological or management importance and (2) further clarify topoedaphic effects on vegetation trajectories. We found that ES class membership was a significant factor explaining spatiotemporal variation in velvet mesquite canopy cover, Lehmann lovegrass basal cover, and Lehmann lovegrass density measurements. In addition, we observed that the potential magnitude of velvet mesquite and Lehmann lovegrass increases varied substantially among ES classes. Our study brings attention to a practical land management tool that might be called upon to increase the effectiveness of vegetation-based indicators of ecosystem change.  相似文献   

5.
Whence the red panda?   总被引:12,自引:0,他引:12  
The evolutionary history of the red panda (Ailurus fulgens) plays a pivotal role in the higher-level phylogeny of the "bear-like" arctoid carnivoran mammals. Characters from morphology and molecules have provided inconsistent evidence for placement of the red panda. Whereas it certainly is an arctoid, there has been major controversy about whether it should be placed with the bears (ursids), ursids plus pinnipeds (seals, sea lions, walrus), raccoons (procyonids), musteloids (raccoons plus weasels, skunks, otters, and badgers [mustelids]), or as a monotypic lineage of uncertain phylogenetic affinities. Nucleotide sequence data from three mitochondrial genes and one nuclear intron were analyzed, with more complete taxonomic sampling of relevant taxa (arctoids) than previously available in analyses of primary molecular data, to clarify the phylogenetic relationships of the red panda to other arctoid carnivorans. This study provides detailed phylogenetic analyses (both parsimony and maximum-likelihood) of primary character data for arctoid carnivorans, including bootstrap and decay indices for all arctoid nodes, and three statistical tests of alternative phylogenetic hypotheses for the placement of the red panda. Combined phylogenetic analyses reject the hypotheses that the red panda is most closely related to the bears (ursids) or to the raccoons (procyonids). Rather, evidence from nucleotide sequences strongly support placement of the red panda within a broad Musteloidea (sensu lato) clade, including three major lineages (the red panda, the skunks [mephitids], and a clearly monophyletic clade of procyonids plus mustelids [sensu stricto, excluding skunks]). Within the Musteloidea, interrelationships of the three major lineages are unclear and probably are best considered an unresolved trichotomy. These data provide compelling evidence for the relationships of the red panda and demonstrate that small taxonomic sample sizes can result in misleading or possibly erroneous (based on prior modeling, as well as conflict between the results of our analyses of less and more complete data sets) conclusions about phylogenetic relationships and taxonomy.  相似文献   

6.
Despite numerous studies of selection on position and number of spectral vision bands, explanations to the function of narrow spectral bands are lacking. We investigate dragonflies (Odonata), which have the narrowest spectral bands reported, in order to investigate what features these narrow spectral bands may be used to perceive. We address whether it is likely that narrow red bands can be used to identify conspecifics by the optical signature from wing interference patterns (WIPs). We investigate the optical signatures of Odonata wings using hyperspectral imaging, laser profiling, ellipsometry, polarimetric modulation spectroscopy, and laser radar experiments. Based on results, we estimate the prospects for Odonata perception of WIPs to identify conspecifics in the spectral, spatial, intensity, polarization, angular, and temporal domains. We find six lines of evidence consistent with an ability to perceive WIPs. First, the wing membrane thickness of the studied Odonata is 2.3 μm, coinciding with the maximal thickness perceivable by the reported bandwidth. Second, flat wings imply that WIPs persist from whole wings, which can be seen at a distance. Third, WIPs constitute a major brightness in the visual environment only second after the solar disk. Fourth, WIPs exhibit high degree of polarization and polarization vision coincides with frontal narrow red bands in Odonata. Fifth, the angular light incidence on the Odonata composite eye provides all prerequisites for direct assessment of the refractive index which is associated with age. Sixth, WIPs from conspecifics in flight make a significant contribution even to the fundamental wingbeat frequency within the flicker fusion bandwidth of Odonata vision. We conclude that it is likely that WIPs can be perceived by the narrow red bands found in some Odonata species and propose future behavioral and electrophysiological tests of this hypothesis.  相似文献   

7.
Large-scale land conversion for agriculture in Brazilian Amazonia is occurring at persistently high rates. Basin-wide net land use and land cover changes imply substantially different situations between distinct regions and states due to different agricultural policies. This research used eight landscape metrics to quantify and investigate the spatial patterns of cattle pasture and cropland throughout the states of Pará, Mato Grosso, Rondônia, and Amazonas. These metrics were patch density (DEN), mean patch size (MPS), largest patch index (LPI), mean edge density (MED), mean twist number (TWI), corrected perimeter-to-area ratio (CPA), fractal dimension (FDI), and fragmentation index (FRG). A total of 1852 patches were analyzed, originating from 86 samples in 71 different plots, covering a total of 177,500 km2 throughout all four states.Principal component analysis showed a partial overlap in the spatial pattern of agricultural patches between all states. The largest percentage of variance was explained by patch area metrics, which can be related to the different approaches in agricultural policies, but no clear division between the states was identified in this dimension. The metrics quantifying patch shape were de facto independent of deforestation area, and related to the second principal component axis. Although some overlap in this dimension was present as well, these metrics proved a possible measure for discerning the patterns of agriculture attached to a certain state. Different land use policies are hypothesized to lead to more heterogeneity in landscape patterns in an early stage, yet the increasing influence of both cropland and pasture agriculture eventually leads to more uniform landscapes in which spatial differences gradually disappear.  相似文献   

8.
To predict forest response to long‐term climate change with high confidence requires that dynamic global vegetation models (DGVMs) be successfully tested against ecosystem response to short‐term variations in environmental drivers, including regular seasonal patterns. Here, we used an integrated dataset from four forests in the Brasil flux network, spanning a range of dry‐season intensities and lengths, to determine how well four state‐of‐the‐art models (IBIS, ED2, JULES, and CLM3.5) simulated the seasonality of carbon exchanges in Amazonian tropical forests. We found that most DGVMs poorly represented the annual cycle of gross primary productivity (GPP), of photosynthetic capacity (Pc), and of other fluxes and pools. Models simulated consistent dry‐season declines in GPP in the equatorial Amazon (Manaus K34, Santarem K67, and Caxiuanã CAX); a contrast to observed GPP increases. Model simulated dry‐season GPP reductions were driven by an external environmental factor, ‘soil water stress’ and consequently by a constant or decreasing photosynthetic infrastructure (Pc), while observed dry‐season GPP resulted from a combination of internal biological (leaf‐flush and abscission and increased Pc) and environmental (incoming radiation) causes. Moreover, we found models generally overestimated observed seasonal net ecosystem exchange (NEE) and respiration (Re) at equatorial locations. In contrast, a southern Amazon forest (Jarú RJA) exhibited dry‐season declines in GPP and Re consistent with most DGVMs simulations. While water limitation was represented in models and the primary driver of seasonal photosynthesis in southern Amazonia, changes in internal biophysical processes, light‐harvesting adaptations (e.g., variations in leaf area index (LAI) and increasing leaf‐level assimilation rate related to leaf demography), and allocation lags between leaf and wood, dominated equatorial Amazon carbon flux dynamics and were deficient or absent from current model formulations. Correctly simulating flux seasonality at tropical forests requires a greater understanding and the incorporation of internal biophysical mechanisms in future model developments.  相似文献   

9.
The red palm weevil (RPW; Rhynchophorusferrugineus) is a devastating pest of palms, prevalent in the Middle East as well as many other regions of the world. Here, we report a large-scale de novo complementary DNA (cDNA) sequencing effort that acquired ~5 million reads and assembled them into 26 765 contigs from 12 libraries made from samples of different RPW developmental stages based on the Roche/454 GS FLX platform. We annotated these contigs based on the publically available known insect genes and the Tribolium castaneum genome assembly. We find that over 80% of coding sequences (CDS) from the RPW contigs have high-identity homologs to known proteins with complete CDS. Gene expression analysis shows that the pupa and larval stages have the highest and lowest expression levels, respectively. In addition, we also identified more than 60 000 single nucleotide polymorphisms and 1 200 simple sequence repeat markers. This study provides the first large-scale eDNA dataset for RPW, a much-needed resource for future molecular studies.  相似文献   

10.
11.
12.
Red shiners (Cyprinella lutrensis) are among the most widespread, ecologically general, and environmentally tolerant fish species in North America, and are highly invasive where they have been introduced outside their native range. However, long-term data on fish assemblages showed that red shiners gradually (1980s to 2006) disappeared from creeks that are direct tributaries of Lake Texoma (Oklahoma, USA) where they are native and historically had been numerically dominant. Following a major flood in 2007, red shiners were detected anew in some of these creeks, but repeatedly disappeared and re-appeared through November 2009. Given their invasive abilities where they are not native, their failure to become re-established prompted us to examine factors that affect their apparent inability to re-invade their native habitat. We established assemblages of five common fish taxa native to Brier Creek in 12 large, outdoor mesocosm stream units. Subsequently, we introduced red shiners at two densities of 10 or 30 per unit, six replicates each, to examine potential effects of propagule pressure on establishment success. Approximately six months later, we ended the experiment and recovered all fish. Red shiners failed to become established in the experimental units, regardless of initial stocking density. They also exhibited much lower survival than other species in the native community, which not only survived well but exhibited some recruitment. Red shiner survival was significantly negatively related to the number of sunfish (Lepomis spp.) that grew to adult size in experimental units, suggesting that predation can inhibit early stages of invasion by red shiners.  相似文献   

13.
We focused on land units as landscape characteristics and selected seven typical land units on a land catena comprising two areas of southern Mongolia. Hierarchical analysis was used to test the hypothesis that a land unit’s edaphic factors could explain the differences in vegetation responses to grazing. We established the survey sites at increasing distances from a livestock camp or water point within each land unit, then analysed patterns of change in floristic and functional compositions, vegetation volume and soil properties within each land unit to reveal differences in vegetation responses to grazing. We also examined the variations in floristic and functional compositions across land units to identify the edaphic factors that may underlie these differences. Changes in vegetation and soil properties at increasing distances from a camp or water point within each land unit were into three different patterns. Ordination techniques consistently indicated that land unit groups categorised using edaphic factors corresponded to those categorised using response patterns. Our study revealed that edaphic factors were responsible for the observed landscape-scale differences in vegetation responses to grazing in the study areas. In addition, the mechanisms underlying vegetation responses to grazing may have been primarily determined by edaphic factors.  相似文献   

14.
15.
The recent inclusion of communities of planktonic algae and microbial crusts into the system of European vegetation types is critically discussed. It is argued that formal vegetation classification should be limited to plant taxa represented by macroscopic individuals within a plot, including all vascular plants, bryophytes, lichens, charophyta and macrophytic chlorophyta, rhodophyta or phaeophyta. In the interest of comparability and methodological stringency, all microscopic algae and all prokaryotes, including cyanobacteria, and the habitats dominated by such microorganisms (e.g. plankton, biofilms and crusts), should be excluded from vegetation classification.  相似文献   

16.
17.
This is the first study to investigate whether scatter-hoarding behavior, a conditional mutualism, can be disrupted by forest fragmentation. We examined whether acouchies (Myoprocta acouchy, Rodentia) and agoutis (Dasyprocta leporina, Rodentia) changed scatter-hoarding behavior toward seeds of Astrocaryum aculeatum (Arecaceae) as a consequence of a decrease in forest-patch area. Our study was conducted at the 30-year-old Biological Dynamics of Forest Fragments Project, in central Amazon, Brazil. We tested whether forest size affected the number of Astrocaryum seeds removed and scatter-hoarded (and likely dispersed) by acouchies and agoutis, as well as the distance that the seeds were hoarded. The study extended over three seasons: the peak of the rainy season (March–April), the transition between the rainy and the dry season (May–June), and the peak of the dry season (August–September). Our results revealed that the number of seeds removed was larger in smaller fragments, but that the percentage of seeds hoarded was much lower, and seeds eaten much higher, in 1-ha fragments. Moreover, fewer seeds were taken longer distances in fragments than in the continuous forest. Site affected the number of seeds removed and season affected the percentage of seeds hoarded: more seeds were removed from stations in one site than in two others, and hoarding was more important in April and September than in June. Our study reveals that scatter-hoarding behavior is affected by forest fragmentation, with the most important disruption in very small fragments. Fragmentation converts a largely mutualistic relationship between the rodents and this palm in large forest patches into seed predation in small fragments.  相似文献   

18.
19.
20.
The updating and rethinking of vegetation classifications is important for ecosystem monitoring in a rapidly changing world, where the distribution of vegetation is changing. The general assumption that discrete and persistent plant communities exist that can be monitored efficiently, is rarely tested before undertaking a classification. Marion Island (MI) is comprised of species-poor vegetation undergoing rapid environmental change. It presents a unique opportunity to test the ability to discretely classify species-poor vegetation with recently developed objective classification techniques and relate it to previous classifications. We classified vascular species data of 476 plots sampled across MI, using Ward hierarchical clustering, divisive analysis clustering, non-hierarchical kmeans and partitioning around medoids. Internal cluster validation was performed using silhouette widths, Dunn index, connectivity of clusters and gap statistic. Indicator species analyses were also conducted on the best performing clustering methods. We evaluated the outputs against previously classified units. Ward clustering performed the best, with the highest average silhouette width and Dunn index, as well as the lowest connectivity. The number of clusters differed amongst the clustering methods, but most validation measures, including for Ward clustering, indicated that two and three clusters are the best fit for the data. However, all classification methods produced weakly separated, highly connected clusters with low compactness and low fidelity and specificity to clusters. There was no particularly robust and effective classification outcome that could group plots into previously suggested vegetation units based on species composition alone. The relatively recent age (c. 450,000 years B.P.), glaciation history (last glacial maximum 34,500 years B.P.) and isolation of the sub-Antarctic islands may have hindered the development of strong vascular plant species assemblages with discrete boundaries. Discrete classification at the community-level using species composition may not be suitable in such species-poor environments. Species-level, rather than community-level, monitoring may thus be more appropriate in species-poor environments, aligning with continuum theory rather than community theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号