共查询到20条相似文献,搜索用时 15 毫秒
1.
目前功能基因组研究开展得如火如荼 ,蛋白质组研究是阐明基因组所表达的真正执行生命活动的全部蛋白质的表达规律和生物功能 ,而植物蛋白质组研究是 2 1世纪整体细胞生物学最重要的内容 ,将为医药、农业和工业的革新提供崭新的思路。当前主要的研究手段为双向凝胶电泳、双向高效柱层析、质谱分析和生物信息学 相似文献
2.
We report upon a novel procedure to specifically isolate cysteine-containing peptides from a complex peptide mixture. Cysteines are converted to hydrophobic residues by mixed disulfide formation with Ellman's reagent. Proteins are subsequently digested with trypsin and the generated peptide mixture is a first time fractionated by reverse-phase high-performance liquid chromatography. Cysteinyl-peptides are isolated out of each primary fraction by a reduction step followed by a secondary peptide separation on the same column, performed under identical conditions as for the primary separation. The reducing agent removes the covalently attached group from the cysteine side chain, making cysteine-peptides more hydrophilic and, thereby, such peptides can be specifically collected during the secondary separation and are finally used to identify their precursor proteins using automated liquid chromatography tandem mass spectrometry. We show that this procedure efficiently isolates cysteine-peptides, making the sample mixture less complex for further analysis. This method was applied for the analysis of the proteomes of human platelets and enriched human plasma. In both proteomes, a significant number of low abundance proteins were identified next to extremely abundant ones. A dynamic range for protein identification spanning 4-5 orders of magnitude is demonstrated. 相似文献
3.
Glycosylation is estimated to be found in over 50% of human proteins. Aberrant protein glycosylation and alteration of glycans are closely related to many diseases. More than half of the cancer biomarkers are glycosylated-proteins, and specific glycoforms of glycosylated-proteins may serve as biomarkers for either the early detection of disease or the evaluation of therapeutic efficacy for treatment of diseases. Glycoproteomics, therefore, becomes an emerging field that can make unique contributions to the discovery of biomarkers of cancers. The recent advances in mass spectrometry (MS)-based glycoproteomics, which can analyze thousands of glycosylated-proteins in a single experiment, have shown great promise for this purpose. Herein, we described the MS-based strategies that are available for glycoproteomics, and discussed the sensitivity and high throughput in both qualitative and quantitative manners. The discovery of glycosylated-proteins as biomarkers in some representative diseases by employing glycoproteomics was also summarized. 相似文献
4.
Acceleration of liver regeneration could be of great clinical benefit in various liver-associated diseases. However, at present little is known about therapeutic interventions to enhance this regenerative process. Our limited understanding and the complexity of the mechanisms involved have prevented the identification of new targets for treatment. Here we propose a broad-range proteomic approach to this problem that makes possible the simultaneous study of different signaling and metabolic pathways on the liver proteome. Changes in protein expression in mouse livers (n = 5 per group) at 6 h and 12 h after partial hepatectomy and sham operation, as compared to untreated controls, were analyzed using two-dimensional gel electrophoresis, mass spectrometry (MS), and mass fingerprinting. Twelve proteins, identified by MS, were up-regulated by at least 2-fold after partial hepatectomy. These included adipose differentiation-related protein, gamma-actin, enoyl coenzyme A hydratase 1, serum amyloid A and eukaryotic translation initiation factor 3. These results indicate that liver regeneration following partial hepatectomy affects various signaling and metabolic pathways. 相似文献
5.
Direct mass spectrometric analysis of aberrant protein glycosylation is a challenge to the current analytical techniques. Except lectin affinity chromatography, no other glycosylation enrichment techniques are available for analysis of aberrant glycosylation. In this study, we developed a combined chemical and enzymatic strategy as an alternative for the mass spectrometric analysis of aberrant glycosylation. Sialylated glycopeptides were enriched with reverse glycoblotting, cleaved by endoglycosidase F3 and analyzed by mass spectrometry with both neutral loss triggered MS 3 in collision induced dissociation (CID) and electron transfer dissociation (ETD). Interestingly, a great part of resulted glycopeptides were found with fucose attached to the N-acetylglucosamine (N-GlcNAc), which indicated that the aberrant glycosylation that is carrying both terminal sialylation and core fucosylation was identified. Totally, 69 aberrant N-glycosylation sites were identified in sera samples from hepatocellular carcinoma (HCC) patients. Following the identification, quantification of the level of this aberrant glycosylation was also carried out using stable isotope dimethyl labeling and pooled sera sample from liver cirrhosis and HCC was compared. Six glycosylation sites demonstrated elevated level of aberrancy, which demonstrated that our developed strategy was effective in both qualitative and quantitative studies of aberrant glycosylation. 相似文献
6.
Liquid chromatography coupled tandem mass spectrometry (LC‐MS/MS) is an important technique for detecting peptides in proteomics studies. Here, we present an open source software tool, termed IPeak, a peptide identification pipeline that is designed to combine the Percolator post‐processing algorithm and multi‐search strategy to enhance the sensitivity of peptide identifications without compromising accuracy. IPeak provides a graphical user interface (GUI) as well as a command‐line interface, which is implemented in JAVA and can work on all three major operating system platforms: Windows, Linux/Unix and OS X. IPeak has been designed to work with the mzIdentML standard from the Proteomics Standards Initiative (PSI) as an input and output, and also been fully integrated into the associated mzidLibrary project, providing access to the overall pipeline, as well as modules for calling Percolator on individual search engine result files. The integration thus enables IPeak (and Percolator) to be used in conjunction with any software packages implementing the mzIdentML data standard. IPeak is freely available and can be downloaded under an Apache 2.0 license at https://code.google.com/p/mzidentml‐lib/ . 相似文献
7.
为了确定TRIM45基因的功能和作用机理,将其转入Hela细胞,分析细胞内蛋白质表达水平的变化.研究采用双向凝胶电泳的方法分别对转入pCMV-Tag2B空载体和重组质粒pCMV-Tag2B-TRIM45的Hela细胞全蛋白进行分离,利用PDQUEST7.2软件分析,鉴定得到15个差异点,包括8个上调点和7个下调点.为进一步研究TRIM45基因的功能奠定了良好的基础. 相似文献
8.
Proteomics, based on the expanding genomic resources, has begun to reveal new details of Chlamydomonas reinhardtii biology. In particular, analyses focusing on subproteomes have already provided new insight into the dynamics and composition of the photosynthetic apparatus, the chloroplast ribosome, the oxidative phosphorylation machinery of the mitochondria, and the flagellum. It assisted to discovered putative new components of the circadian clockwork as well as shed a light on thioredoxin protein-protein interactions. In the future, quantitative techniques may allow large scale comparison of protein expression levels. Advances in software algorithms will likely improve the use of genomic databases for mass spectrometry (MS) based protein identification and validation of gene models that have been predicted from the genomic DNA sequences. Although proteomics has only been recently applied for exploring C. reinhardtii biology, it will likely be utilized extensively in the near future due to the already existing genetic, genomic, and biochemical tools. 相似文献
9.
A method for quantitative protein profiling has been developed utilising multidimensional liquid phase protein separations in conjunction with stable isotope labelling. This approach combines the advantages of high throughput, automated, reproducible protein separations with accurate protein quantitation performed in the mass spectrometer. Escherichia coli cells were grown in the presence and absence of the DNA methylation inhibitor 5-Azacytidine on 14N and 15N enriched media. Protein separations were performed using ion exchange chromatography in the first dimension and RP capillary chromatography in the second dimension. UV absorbance measurements were used for the initial semiquantitative identification of differentially expressed proteins. Selected peaks from the mixed 15N/14N lysates were used for the accurate quantitation performed in the mass spectrometer using the ratios of the stable isotopes. Using this approach, a number of differentially expressed proteins have been identified. Moreover, this approach overcomes a number of caveats associated with multidimensional liquid phase protein separations, including the presence of multiple proteins present in a single chromatographic peak. 相似文献
10.
Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS‐based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome 相似文献
11.
Introduction: Chemoresistance is a major challenge to current ovarian cancer chemotherapy. It is important to identify biomarkers to distinguish chemosensitive and chemoresistant patients. Areas covered: We review the medical literature, discuss MS-based technologies with respect to chemoresistant ovarian cancer and summarize the promising chemoresistant biomarkers identified. In addition, the challenges and future perspectives of biomarker discovery research are explored. With the employment of mass spectrometry-based (MS-based) proteomics, biomarker discovery of ovarian cancer has made great progress in the last decade. Many potential biomarkers were identified by MS-based proteomics technologies, some of which have been validated for further extensive studies in clinical settings. Expert commentary: The discovery of chemoresistant biomarkers is a newly developing area and may provide a clue for predicting chemotherapeutic response and discover therapeutic targets for paving the way of personalized medicine. Multiple complementary MS-based proteomics approaches hold promise for finding novel therapeutic targets in ovarian cancer treatment. 相似文献
12.
Membrane proteins play key roles in several fundamental biological processes such as cell signalling, energy metabolism and transport. Despite the significance, these still remain an under‐represented group in proteomics datasets. Herein, a bottom‐up approach to analyse an enriched membrane fraction from Drosophila melanogaster heads using multidimensional liquid chromatography (LC) coupled with tandem‐mass spectrometry (MS/MS) that relies on complete solubilisation and digestion of proteins, is reported. An enriched membrane fraction was prepared using equilibrium density centrifugation on a discontinuous sucrose gradient, followed by solubilisation using the filter‐aided sample preparation (FASP), tryptic and sequential chymotryptic digestion of proteins. Peptides were separated by reversed‐phase (RP) LC at high pH in the first dimension and acidic RP‐LC in the second dimension coupled directly to an Orbitrap Velos Pro mass spectrometer. A total number of 4812 proteins from 114 865 redundant and 38 179 distinct peptides corresponding to 4559 genes were identified in the enriched membrane fraction from fly heads. These included brain receptors, transporters and channels that are most important elements as drug targets or are linked to disease. Data are available via ProteomeXchange with identifier PXD001712 ( http://proteomecentral.proteomexchange.org/dataset/PXD001712 ). 相似文献
13.
Here we present a demonstration of the proof of principle that absolute concentration of a protein within a mixture of other proteins can be measured with SI traceability. The method used was based on tryptic digestion of a protein followed by quantification using double exact matching isotope dilution mass spectrometry (IDMS) of the peptides released. To provide full SI traceability to measurements of protein concentration we demonstrated a method of SI traceable peptide quantification in which the peptide standards used were quantified by an amino acid analysis method that incorporated double exact matching IDMS and amino acid standards of known purity. The concentration of the protein was therefore determined based upon the concentration of tryptic peptides, which in turn had been quantified based upon amino acid standards. This allowed fully SI-traceable measurements of protein concentration to be made. Important caveats in the implementation of this approach are also discussed and examples of how these can have detrimental effects on the measurements are shown. 相似文献
14.
In the past decade, relative proteomic quantification using isobaric labeling technology has developed into a key tool for comparing the expression of proteins in biological samples. Although its multiplexing capacity and flexibility make this a valuable technology for addressing various biological questions, its quantitative accuracy and precision still pose significant challenges to the reliability of its quantification results. Here, we give a detailed overview of the different kinds of isobaric mass tags and the advantages and disadvantages of the isobaric labeling method. We also discuss which precautions should be taken at each step of the isobaric labeling workflow, to obtain reliable quantification results in large-scale quantitative proteomics experiments. In the last section, we discuss the broad applications of the isobaric labeling technology in biological and clinical studies, with an emphasis on thermal proteome profiling and proteogenomics. 相似文献
15.
Just as biomarkers specific for diseases, biomarkers indicative of healthy conditions are valuable for the early diagnosis, monitoring, and prognosis of diseases. Our study focused on discovering via proteomics a stable panel of urinary proteins in the human healthy population. Urine samples were collected three times during 4 months from 100 male and 100 female healthy donors and analyzed through four different fractionation techniques (i.e. in-gel, 2D-LC, OFFGEL, and mRP) coupled with HPLC-Chip-MS/MS. Thus, 1641 urinary proteins were identified with a high confidence, among which 70 exhibiting an intergender/day variation <0.25 were selected and matched with the previously published five largest urinary proteomes to get 56 candidate proteins. Next, a panel comprising 18 intact urinary proteins was constructed by comparing the urinary proteomes via SDS-PAGE and 2DE. Finally, such 18 urinary proteins were validated via enzyme-linked immunosorbent assay in eight healthy individuals. Most of these proteins had been related to multiple rather than to single diseases. Therefore, we surmise that this protein set could be used as a biomarker to assess the human health status. Further determinations of the normal fluctuations of the single urinary proteins in this series using samples from large numbers of healthy individuals are required prior to any application in clinical settings. 相似文献
16.
The rhesus macaque is similar to humans both anatomically and physiologically as a primate, and has therefore been used extensively in medical and biological research, including reproductive physiology. Despite sequencing of the macaque genome, limited postgenomic studies have been performed to date. In studies aimed at characterizing spermatogenesis, we successfully identified 9078 macaque testis proteins corresponding to 8662 genes, using advanced MS and an optimized proteomics platform, indicative of complex protein compositions during macaque spermatogenesis. Immunohistochemistry analysis further revealed the presence of proteins from different types of testicular cells, including Sertoli cells, Leydig cells, and various stages of germ cells. Our data provide expression evidence at protein level of 3010 protein‐coding genes in 8662 identified testis genes for the first time. We further identified 421 homologous genes from the proteome already known to be essential for male infertility in mouse. Comparative analysis of the proteome showed high similarity with the published human testis proteome, implying that macaque and human may use similar proteins to regulate spermatogenesis. Our in‐depth analysis of macaque spermatogenesis provides a rich resource for further studies, and supports the utility of macaque as a suitable model for the study of human reproduction. 相似文献
17.
Rhodnius prolixus is an important vector of Trypanosoma cruzi, the causative agent of Chagas’ disease, an illness that affects 20% of Latin America population. The obligatory course of the parasite in the vector digestive tract has made it an important target for investigation in order to control the parasite transmission and thus interrupt its biological cycle in the insect vector. Therefore, an insight into the vector midgut physiology is valuable for insect control as well as to provide potential novel targets for drugs and vaccines development and thus disease treatment. In this study, the first 2DE map of R. prolixus anterior midgut is described. Proteins were separated by 2DE and analyzed by nano‐LC MS/MS. The results yielded 489 proteins from 475 spots. These proteins were classified into 28 functional groups and their physiological roles in the insect midgut are discussed. All MS data have been deposited in the ProteomeXchange with identifiers PXD001488 and PXD001489 ( http://proteomecentral.proteomexchange.org/dataset/PXD001488 , http://proteomecentral.proteomexchange.org/dataset/PXD001489 ). 相似文献
18.
The Janus Kinase (JAK) signaling pathway plays a key role for many cellular processes and has recently been correlated with neuronal disorders. In order to understand new links of JAK family members with other signaling pathways, chemical proteomics tools with broad kinase coverage are desirable. A probe that shows outstanding kinase selectivity and allows for the enrichment of up to 133 kinases including many mitogen activated kinase (MAPK) members and JAK kinases has been developed. Furthermore, this probe was applied to establish the selectivity profile of the JAK1/2 inhibitor momelotinib that is currently evaluated in clinical phase 3 studies. These results render this probe a valuable tool for the investigation of JAK and JAK related signaling pathways and the selectivity profiling of kinase inhibitors. 相似文献
19.
The focus of this article is to review the recent advances in proteome analysis of human body fluids, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, and amniotic fluid, as well as its applications to human disease biomarker discovery. We aim to summarize the proteomics technologies currently used for global identification and quantification of body fluid proteins, and elaborate the putative biomarkers discovered for a variety of human diseases through human body fluid proteome (HBFP) analysis. Some critical concerns and perspectives in this emerging field are also discussed. With the advances made in proteomics technologies, the impact of HBFP analysis in the search for clinically relevant disease biomarkers would be realized in the future. 相似文献
20.
In this study, we performed the first high‐throughput and comprehensive proteomic profiling of the rat hippocampal proteome. Using a combination of 2‐D LC‐MS and data analysis with the Rosetta Elucidator ® system, we identified 1340 unique proteins. Functional classification showed that most of these were associated with synaptic function and comprised a high proportion of phosphorylated proteins and analytically challenging classes of membrane proteins such as ion channel receptor subunits. 相似文献
|