首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim To reconstruct in detail the potential migration routes and barriers for vascular plants from the summits of the Guyana mountains during the Quaternary, in order to test the possibility of migration among them during the glaciations. These changes in connectivity are predicted based on the altitudinal migration of plant communities associated with glacial cooling. To examine the effects of these cycles, the extent of the potential biotic interchange and its influence on patterns of endemism was modelled. Location The summits of the tepuis or table mountains of the Neotropical Guyana Highlands, which constitute the peculiar and discontinuous Pantepui phytogeographical province (total surface 5000 km2, altitudinal range 1500–3014 m a.s.l.), and is characterized by a unique and diverse flora with a high degree of endemism. Methods GIS‐based palaeotopographical reconstruction using a high‐precision digital elevation model, combined with phytogeographical analysis by means of a data base built up from the Flora of the Venezuelan Guyana, which includes the geographical and altitudinal ranges for each Pantepui species. Results During the Last Glacial Maximum, which serves as a representative of a standard Quaternary glaciation, most migration pathways among tepuis were open for species with lower altitudinal levels (LAL) ≤ 1500 m (1678 species or c. 69% of the total Pantepui species), and closed for species with LAL ≥ 2300 m altitude (c. 3%). The species in between these altitudes have intermediate migratory possibilities, depending on the district and the tepui considered. If these local factors are considered, the number of species with no possibility of glacial interchange increases to 202 or c. 8% of the total. The strongest topographical barrier separated eastern locations above 1600–1700 m elevation from all others. The highest possibility of interchange was among the tepuis of the eastern sector, in which internal topographical barriers were only effective for species with LALs at or above 1900 m. Main conclusions The Quaternary evolution of the vascular flora from the Guyana Highlands took place in a predominantly migration‐prone, glacial‐era landscape, in which more than 70% of the flora (maximum estimate) was able to move from one tepuian district to another, thanks to the downward bioclimatic shift caused by cooling. Interglacials were too short to drive significant evolutionary diversification. A number of present high‐altitude local endemics are species that were unable to migrate, even during glaciations. However, some endemic species do appear to have been able to migrate among regions, suggesting that topographical isolation alone is not enough to explain patterns of endemism. Other factors such as tepui summit area, habitat heterogeneity or pre‐Quaternary evolution are considered. These studies should be complemented with palaeoecological and phylogeographical surveys.  相似文献   

2.
The Pantepui region of South America, located in southern Venezuela, northern Brazil, and western Guyana, is characterized by table mountains (tepuis) made of Proterozoic (> 1.5 billion years old) sandstone - the highest reaching nearly 3 km - that are isolated from their surroundings by up to 1000 m high vertical cliffs (Figure 1A). Tepuis are among the most inaccessible places on earth (Supplemental information), and the majority of their summits have been visited less than the moon. Due to its age and topography [1,2], this region has been assumed to be an ideal nursery of speciation and a potential inland counterpart to oceanic islands [3,4]. High endemism has been reported for the flora (25% in vascular plants) and fauna (68.5% in amphibians and reptiles) of single tepuis [5,6], and an ancient origin has been postulated for some of these organisms. But, it has also been suggested that a few taxa living in habitats extending from lowlands to summits (e.g., savannah) invaded some of the more accessible tepuis only recently [6-8]. Taken at face value, the overall timing and extent of biotic interchange between tepui summits has remained unstudied. Here, we show that recent faunal interchange among currently isolated tepui summits has been extensive, and affected even taxa living in some of the most tepui-specific habitats and on the most inaccessible summits.  相似文献   

3.
The high tropical Andes host one of the richest alpine floras of the world, with exceptionally high levels of endemism and turnover rates. Yet, little is known about the patterns and processes that structure altitudinal and latitudinal variation in plant community diversity. Herein we present the first continental‐scale comparative study of plant community diversity on summits of the tropical Andes. Data were obtained from 792 permanent vegetation plots (1 m2) within 50 summits, distributed along a 4200 km transect; summit elevations ranged between 3220 and 5498 m a.s.l. We analyzed the plant community data to assess: 1) differences in species abundance patterns in summits across the region, 2) the role of geographic distance in explaining floristic similarity and 3) the importance of altitudinal and latitudinal environmental gradients in explaining plant community composition and richness. On the basis of species abundance patterns, our summit communities were separated into two major groups: Puna and Páramo. Floristic similarity declined with increasing geographic distance between study‐sites, the correlation being stronger in the more insular Páramo than in the Puna (corresponding to higher species turnover rates within the Páramo). Ordination analysis (CCA) showed that precipitation, maximum temperature and rock cover were the strongest predictors of community similarity across all summits. Generalized linear model (GLM) quasi‐Poisson regression indicated that across all summits species richness increased with maximum air temperature and above‐ground necromass and decreased on summits where scree was the dominant substrate. Our results point to different environmental variables as key factors for explaining vertical and latitudinal species turnover and species richness patterns on high Andean summits, offering a powerful tool to detect contrasting latitudinal and altitudinal effects of climate change across the tropical Andes.  相似文献   

4.
The fully vegetated summits of the table mountains that form the Guayana Highlands (GH), in northern South America, hold amazing biodiversity and endemism levels, and unique vegetation types. In spite of their present‐day healthy appearance, their biota is seriously threatened of habitat loss by upward displacement, because of the projected warming for the end of this century. Available data are still insufficient for a definite assessment, but preliminary estimations based on representative endemic vascular plant species show that roughly one‐tenth to one‐third of them would loss their habitat with the 2–4°C temperature increase predicted for the region by AD 2100. Given the underlying endemism, the eventual loss of biodiversity will be of global nature. Other mountain ranges around the world with similar characteristics of the GH, namely topographical isolation, high endemism and absence of nival stage because of the lower altitude, would be under similar unexpected risk, and should be urgently considered for conservation purposes.  相似文献   

5.
The Guayana Highlands (GH) constitute a highly diverse, but relatively poorly studied Neotropical biome, comprised of ~50 flat-topped mountain summits (called tepuis). Previous studies based on warming forecasts for the region suggested that an upward displacement of environmental conditions of 500–700 m could occur by 2100, potentially resulting in the extinction of c. 50% of its endemic flora due to total habitat loss. To assess the ecological responses of the species to climate change, and select the appropriate conservation measures, long-term monitoring of the GH plant communities will be necessary. In this study, the baseline state for future comparisons was established for the best explored tepui in terms of its flora, Roraima-tepui (2810 m), through a floristic characterization of its different vegetation types. We also identified the environmental gradients underlying the major plant communities, and assessed the effects of human activities on the chemistry of soils and water at three field camps. Our results yielded five main community types: three meadows, one shrubland, and one forest, with their corresponding diagnostic species. The herbaceous communities were mainly influenced by the presence of flat sandy soils, with varying flooding capacity. Shrublands and forests were characterized by irregular organic soils with very low pH. Finally, pH values below 3 were measured on an organic soil of a field camp, although further studies will be necessary to attribute this deviation to human activities.  相似文献   

6.
The aim of this study is to analyse the vascular flora and the local climate along an altitudinal gradient in the Lefka Ori massif Crete and to evaluate the potential effects of climate change on the plant diversity of the sub-alpine and alpine zones. It provides a quantitative/qualitative analysis of vegetation-environment relationships for four summits along an altitude gradient on the Lefka Ori massif Crete (1664–2339 m). The GLORIA multi-summit approach was used to provide vegetation and floristic data together with temperature records for every summit. Species richness and species turnover was calculated together with floristic similarity between the summits. 70 species were recorded, 20 of which were endemic, belonging to 23 different families. Cretan endemics dominate at these high altitudes. Species richness and turnover decreased with altitude. The two highest summits showed greater floristic similarity. Only 20% of the total flora recorded reaches the highest summit while 10% is common among summits. Overall there was a 4.96°C decrease in temperature along the 675 m gradient. Given a scenario of temperature increase the ecotone between the sub-alpine and alpine zone would be likely to have the greatest species turnover. Southern exposures are likely to be invaded first by thermophilous species while northern exposures are likely to be more resistant to changes. Species distribution shifts will also depend on habitat availability. Many, already threatened, local endemic species will be affected first.  相似文献   

7.
This study identifies 'centers of endemism' for typhlocybine leafhoppers in China, revealing diversity patterns and congruence of patterns between total species rich- ness and endemism. Distribution patterns of 774 Typhlocybinae (607 described and 167 undescribed species) were mapped on a 1.5° × 1.5° latitude/longitude grid. Total species richness, endemic species richness and weighted endemism richness were calculated for each grid cell. Grid cells within the top 5% highest values of weighted endemism richness were considered as 'centers of endemism'. Diversity patterns by latitude and altitude were obtained through calculating the gradient richness. A congruence of diversity patterns between total species richness and endemism was confirmed using correlation analysis. To investigate the bioclimatic factors (19 variables) contributing to the congruence be- tween total species richness and endemism, we compared the factor's difference between non-endemic and endemic species using the Kruskal-Wallis test. Eleven centers of en- demism, roughly delineated by mountain ranges, were identified in central and southern China, including the south Yunnan, Hengduan Mountains, Qinling Mountains, Hainan Is- land, Taiwan Island and six mountain areas located in western Sichuan, northwest Fujian, southeast Guizhou, southeast Hunan, central and western Guangdong, and north Zhejiang. Total species richness and endemic species richness decreased with increased latitude and had a consistent unimodal response to altitude. The proportions of endemism decreased with increased latitude and increased with rising altitude. Diversity patterns between total species richness and endemism were highly consistent, and 'Precipitation of Coldest Pe- riod' and 'Temperature of Coldest Period' may contribute to the congruence of pattern. Migration ability may play a role in the relationship of endemism and species richness; climate, environment factors and important geologic isolation events can also play crucial effect  相似文献   

8.
Reports about changes of alpine plant species richness over the past 60 years in the Swedish Scandes are reviewed, synthesized and updated with data from recent reinventories. Methodologically, this endeavour is based on resurveys of the floristic composition on the uppermost 20 m of four high‐mountain summits. The key finding is that the species pool has increased by 60–170% since the 1950s and later. Some of the invading species are new to the alpine tundra, with more silvine and thermophilic properties than the extant alpine flora. Not a single species of the original flora has disappeared from any of the summits. This circumstance is discussed in perspective of widespread expectations of pending temperature‐driven extinction of alpine species in an alleged future warmer climate. These progressive changes coincided with distinct warming (summer and winter) since the late 1980s. During a short cooler period (1974–1994), the species numbers decreased and the upper elevational limits of some ground cover species descended. Thus, discernible responses, concurrent with both warming and cooling intervals, sustain a strong causal link between climate variability and alpine plant species richness. Methodologically, plot‐less revisitation studies of the present kind are beset with substantial uncertainties, which may overstate floristic changes over time. However, it is argued here that carefully executed and critically interpreted, no other method can equally effectively sense the earliest phases of plant invasions into alpine vegetation.  相似文献   

9.
Aim The genus Kniphofia contains 71 species with an African–Malagasy distribution, including one species from Yemen. The genus has a general Afromontane distribution. Here we explore whether Kniphofia is a floristic indicator of the Afromontane centre of endemism and diversity. The South Africa Centre of diversity and endemism was explored in greater detail to understand biogeographical patterns. Location Africa, Afromontane Region, southern Africa, Madagascar and Yemen. Methods Diversity and endemism for the genus were examined at the continental scale using a chorological approach. Biogeographical patterns and endemism in the South Africa Centre were examined in greater detail using chorology, phenetics, parsimony analysis of endemicity (PAE) and mapping of range‐restricted taxa. Results Six centres of diversity were recovered, five of which are also centres of endemism. Eight subcentres of diversity are proposed, of which only two are considered subcentres of endemism. The South Africa Centre is the most species‐rich region and the largest centre of endemism for Kniphofia. The phenetic analysis of the South Africa Centre at the full degree square scale recovered three biogeographical areas that correspond with the subcentres obtained from the chorological analysis. The PAE (at the full degree square scale) and the mapping of range‐restricted taxa recovered two and six areas of endemism (AOEs), respectively. These latter two approaches produced results of limited value, possibly as a result of inadequate collecting of Kniphofia species. Only two AOEs were identified by PAE and these are embedded within two of the six AOEs recovered by the mapping of range‐restricted taxa. All the above AOEs are within the three subcentres found by chorological and phenetic analysis (at the full degree square scale) for the South Africa Centre. Main conclusions The centres for Kniphofia broadly correspond to the Afromontane regional mountain systems, but with some notable differences. We regard Kniphofia as a floristic indicator of the Afromontane Region sensu lato. In southern Africa, the phenetic approach at the full‐degree scale retrieved areas that correlate well with those obtained by the chorological approach.  相似文献   

10.
We studied the distribution patterns of endemic ferns along an elevational gradient of 3400 m in Costa Rica, Central America. We related the endemism patterns of the whole species set and separated for life forms and microhabitats according to topography and environmental factors. Fern species were surveyed in 156 plots each with an area of 400 m2, with up to five plots at every elevational step of 100 m. Global range size for every species was compiled from literature data, and species restricted to the mountain range from Costa Rica and adjacent western Panama were defined as endemic (24.5% of all species recorded). We found patterns of endemism rates mostly peaking at mid-elevation, but when separated for different life forms and microhabitats, some deviations from the overall pattern emerged. High constant humidity and reduced surface area were closely related to high levels of endemism. High humidity is discussed as a general predictor for high endemism rates in concert with highest overall richness. Restricted area of elevational belts, indicating a fragmented habitat, leads to a higher degree of population isolation and thus species differentiation. However, both interpretations were not fully supported by our data. Most importantly, endemism rates were fairly low on mountain tops that have the smallest available area in a topographically highly fragmented setting. In contrast, endemic species were more common than widespread species at the highest elevations. History and climatic shifts are assumed to play a role in this respect.  相似文献   

11.
Mountain systems throughout the globe are characterized by high levels of species richness and species endemism. Biodiversity, however, is not distributed evenly with altitude, but often declines from mid to high altitudes. Conversely, endemic species may be over‐represented at high altitudes. Upward elevational range shifts of mountain species have been reported in response to ongoing changes in climate, yet the reports are dominated by studies on woody species and mountains at high latitudes. We investigated spatial and temporal changes in the mountain biodiversity in the subtropical island of Taiwan, based on historical survey and resurvey data during the period 1906–2006. We found that upper altitudinal limits of mountain plant distributions have risen by ca 3.6 m yr?1 during the last century, in parallel with rising temperatures in the region. Although species, genus, and family richness decline with altitude, ca 55% of species at the highest altitudes are endemic to the island. Given the steep decline in land area with increasing elevation, these high altitude areas are disproportionately important for plant biodiversity when richness and endemism are standardized by available land area. We argue that the distributional shift that we report, in combination with the altitudinal distribution of plant diversity, is likely to pose a major threat to high mountain species of this highly biodiverse island, a threat that is becoming increasingly evident for high mountain plants throughout the globe.  相似文献   

12.
13.
The influence of functional traits on floristic patterns remains poorly understood in tropical rain forests. This contribution explores whether patterns of endemism of plant species are influenced by their life form and mode of dispersal. We used a comprehensive dataset of 3650 georeferenced plant specimens collected in Cameroon belonging to 115 taxa of Orchidaceae and 207 Rubiaceae endemic to Atlantic Central Africa. Species diversity of each family was compared using raw species richness (SR) and an index of species diversity (S k ) using subsampling procedure to correct for sampling bias. Measures were compared at three scales (square grids of one half-degree and one-degree per side and ecoregions) and according to elevation and continentality gradients. Species similarity between grid cells was measured using the sample-size corrected NNESS index. For both families, SR and S k decreased along the continentality gradient. In forest habitats below 1500 m altitude, both Orchidaceae and Rubiaceae show similar endemism patterns, but they differ in intensity. At higher altitudes, S k is higher for orchids due to the presence of endemic terrestrial taxa in grasslands, where the endemic Rubiaceae flora is rather poor. Substantial endemism observed at the ecoregion level and turnover analysis supported the role of the Sanaga River as a phytogeographical boundary. Similar endemism patterns were observed in lowland forests for Orchidaceae and Rubiaceae, even though Orchidaceae are assumed to have better long distance dispersal capabilities. The dispersal ability of Orchidaceae could be limited by the need of specific mycorhizal fungi for seed germination or host specificity for epiphytic orchids.  相似文献   

14.
We determined the environmental correlates of vascular plant biodiversity in the Baetic‐Rifan region, a plant biodiversity hotspot in the western Mediterranean. A catalog of the whole flora of Andalusia and northern Morocco, the region that includes most of the Baetic‐Rifan complex, was compiled using recent comprehensive floristic catalogs. Hierarchical cluster analysis (HCA) and detrended correspondence analysis (DCA) of the different ecoregions of Andalusia and northern Morocco were conducted to determine their floristic affinities. Diversity patterns were studied further by focusing on regional endemic taxa. Endemic and nonendemic alpha diversities were regressed to several environmental variables. Finally, semi‐partial regressions on distance matrices were conducted to extract the respective contributions of climatic, altitudinal, lithological, and geographical distance matrices to beta diversity in endemic and nonendemic taxa. We found that West Rifan plant assemblages had more similarities with Andalusian ecoregions than with other nearby northern Morocco ecoregions. The endemic alpha diversity was explained relatively well by the environmental variables related to summer drought and extreme temperature values. Of all the variables, geographical distance contributed by far the most to spatial turnover in species diversity in the Baetic‐Rifan hotspot. In the Baetic range, climate was the most significant driver of nonendemic species beta diversity, while lithology and climate were the main drivers of endemic beta diversity. Despite the fact that Andalusia and northern Morocco are presently separated by the Atlantic Ocean and the Mediterranean Sea, the Baetic and Rifan mountain ranges have many floristic similarities – especially in their western ranges – due to past migration of species across the Strait of Gibraltar. Climatic variables could be shaping the spatial distribution of endemic species richness throughout the Baetic‐Rifan hotspot. Determinants of spatial turnover in biodiversity in the Baetic‐Rifan hotspot vary in importance between endemic and nonendemic species.  相似文献   

15.
Nepal is located in the central part of the greater Himalayan range with a unique series of mountain chains formed by recent mountain building geological events. As one of the youngest mountains in the world it contributes to diversity of plants and also provided barriers to and corridors through which plants migrated during the ice ages. The higher altitudinal variation with the high mountains, deep river valleys and lowland plains combine with the effects of the summer monsoon and dry winter result with an extraordinary diversity of ecosystems including flora and fauna in a relatively small land area. The existing checklists for Nepal record some 6000 species of flowering plants and about 530 ferns. However, the botanical experts estimate that numbers may go up to 7000 when the poorly known remote regions are fully explored. The information on plant endemism in Nepal Himalaya is not adequately known as Nepal is still struggling to complete long awaited Flora of Nepal project. Endemic species are confined to specific areas and are the first to be affected by land use and other global changes. We sought to explore the spatial distribution of endemic plant species in Nepal in relation to the consequences associated with climatic and geologic changes over time in the region with the help of published literature. It was found that the endemism showed marked spatial variation between open moist habitat and dry inner valleys, the former with higher endemism. The updated records showed 312 flowering plant species to be endemic to Nepal with higher endemism around the elevation of 3800e4200 m at sea level. The recent human population explosion, intensified deforestation, habitat fragmentation and modern day environmental changes are posing greater threats to endemic plant in Nepal. The conservation status and threats to these peculiar species are unknown. Nevertheless, environmental degradation and high poverty rates create a potent mix of threats to biodiversity in this landscape.  相似文献   

16.
Changes in the local flora of mountains are often explained by climate warming, but changes in grazing regimes may also be important. The aim of this study was to evaluate whether the alpine flora on summits in the Tatra Mts, Poland and Slovakia, has changed over the last 100 years, and if the observed changes are better explained by changes in sheep grazing or climate. We resurveyed the flora of 14 mountain summits initially investigated in the years 1878–1948. We used ordination methods to quantify changes in species composition. We tested whether changes in plant species composition could be explained by cessation of grazing and climate change, and whether these factors have influenced shifts in Ellenberg’s plant ecological indicator values and Raunkiaer’s life forms. Changes in alpine flora were greater on lower elevation summits, and lower on summits less accessible for sheep. More accessible summits were associated with a decrease in mean values of plant species’ light ecological indicator values over time, and a concurrent increase in temperature and nitrogen ecological indicator values. No significant relationships were found between accessibility for sheep and changes in Raunkiaer’s life-forms. Greater accessibility for sheep (meaning high historical grazing pressure) led to greater compositional changes of mountain summits compared with summits with low accessibility. Our results suggest that cessation of sheep grazing was the main factor causing changes in the species composition of resurveyed mountain summits in the Tatra Mts, while climate change played a more minor role.  相似文献   

17.
The diversity and distribution patterns of endemic species of birds inChina have been studied on the basis of the distribution database of specimencollections and published references. One hundred and two endemic species ofbirds in China, belonging to 53 genera, 16 families and 8 orders are recognized.They account for 8.1% of the total species of China. The distribution patternswere studied and three centers of endemism were found, includingHengduanshan Mountains, mountain areas of western Qinling, north Sichuan Province andSouth Gansu Province, as well as Taiwan Island, which are suggested as conservationpriorities based on endemism. Twenty-four endemics are rare and endangered, listedin the China Red Data Book of Endangered Animals. Among them, 15 species are in rankI and 9 species are in rank II. The study results are to be beneficial tofurther study on both the processing mechanism of the distribution patterns andon the priority of the diversity and endemism conservation.  相似文献   

18.
We compiled herbarium specimen data to provide an improved characterization of geographic patterns of diversity using indices of species diversity and floristic similarity based on rarefaction principles. A dataset of 3650 georeferenced plant specimens belonging to Orchidaceae and Rubiaceae endemic to Atlantic Central Africa was assembled to assess species composition per half‐degree or one‐degree grid cells. Local diversity was measured by the expected number of species (Sk) per grid cell found in subsamples of increasing size and compared with raw species richness (SR). A nearly unbiased estimator of the effective number of species per grid cell was also used, allowing quantification of ratios of ‘true diversity’ between grid cells. Species turnover was measured using a presence/absence‐based similarity index (Sørensen) and an abundance‐based index that corrects for sampling bias (NNESS). Our results confirm that the coastal region of Cameroon is more diverse in endemic species than those more inland. The southern part of this coastal forest is, however, as diverse as the more intensively inventoried northern part, and should also be recognized as an important center of endemism. A strong congruence between Sørensen and NNESS similarity matrices lead to similar delimitations of floristic units. Hence, heterogeneous sampling seems to confer more bias when measuring patterns of local diversity using raw species richness than species turnover using Sørensen index. Overall, we argue that subsampling methods represent a useful way to assess diversity gradients using herbarium specimens while correcting for heterogeneous sampling effort. Abstract in French is available in the online version of this article.  相似文献   

19.
The Poaceae family includes approximately 700 genera and 10000 species, and Mexico is considered one of its most important centers of diversity and endemism. A total of 256 taxa (including 16 subspecific taxonomic units), belonging to 65 genera, are endemic to Mexico. Some of them are close relatives of important crops, while others are used in different ways all over the country. The aim of this paper is to discuss the distribution patterns at state level of the Mexican endemic species of Poaceae. Using cluster strategies, the states are classified according to their floristic similarities. Later, hotspots of endemism are identified, in order to discuss their role in conservation strategies. To evaluate the importance of each state in the conservation of the Mexican endemic Poaceae, two iterative complementarity methods were also used. Our results show that the largest concentration of endemic taxa occurs in a few states, such as Jalisco, Mexico, Michoacán, Durango, Oaxaca, Veracruz, San Luis Potosi, Chiapas, Chihuahua, Puebla, and Coahuila. The results also show that there are some patterns in the relationship to its endemism that seem to reflect important diversification trends in the family. Accordingly, 31% of the grass genera of Mexico have at least one endemic species, and 16.7% of the genera have only one endemic species. In contrast, six genera contribute 47.2% of the total number of grass endemics in Mexico. The Chloridoideae contributes 42.9% of the total grass endemic species of Mexico, whereas the Panicoideae includes 24.6%, and the Pooideae 19.8%. Thus, these three subfamilies contribute about 87% of the species endemism. On the basis of the habitat and distribution patterns of these subfamilies, two main areas of endemicity can be identified. The first area is located in warm habitats, whereas the second is related to temperate and high regions. The cluster analyses indicate the occurrence of four state groups whose phytogeographical explanation is discussed on the basis of a floristic regionalization of Mexico. The results also indicate the need to establish a relatively high number of sites and states for the conservation of 256 endemic taxa. The elevated number of sites required to conserve the Mexican endemic Poaceae is mainly due to the fact that many taxa have a restricted distribution pattern. On the basis of the patterns obtained, a few proposals are presented for undertaking the establishment of conservation priorities of these taxa.  相似文献   

20.
Although the high diversity of neotropical plants is often associated with rain forests, another important location is open vegetation at mountain tops. In the present study, we investigated the phytogeographic patterns of the Espinhaço Range, in eastern Brazil, a region characterized by campos rupestres and marked by high levels of plant richness and endemism. Based on the occurrence of Asclepiadoideae (Apocynaceae) in a grid of 0.5º × 0.5º cells, we conducted cluster analyses and parsimony analysis of endemicity (PAE). We also calculated indexes of diversity and endemism and examined the distribution of palaeo- and neo-endemics. According to our data, the topographic gap between the Espinhaço Range of Minas Gerais and Bahia seems to be an important constraint for the dispersion of endemics, and the floristic similarity between northern Minas Gerais and Bahia is a result of species with broad distribution. Based on the seven areas of endemism that emerged from PAE, we defined five principal centres of endemism in the Espinhaço Range, including the region comprising Serra do Cipó and the Diamantina Plateau, in Minas Gerais, as the major Asclepiadoideae cradle, and Chapada Diamantina, in Bahia, as an Asclepiadoideae museum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号