首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The efficacy of censusing black rhinoceros ( Diceros bicornis Linnaeus) populations from the air was tested. Repeated aerial counts were made of the black rhinoceros population centered on Qlduvai Gorge, Tanzania, where the number of rhinoceros on the ground is known accurately. Even under the most ideal conditions only 50% of the population was detected by observers in an aircraft, and factors accounting for this are considered. It is concluded that the light aircraft is of limited value in providing estimates of black rhinoceros populations, and estimates based purely on aerial counts are subject to considerable variation.  相似文献   

2.
Effective conservation of large carnivores requires reliable estimates of population density, often obtained through capture–recapture analysis, in order to prioritize investments and assess conservation intervention effectiveness. Recent statistical advances and development of user-friendly software for spatially explicit capture–recapture (SECR) circumvent the difficulties in estimating effective survey area, and hence density, from capture–recapture data. We conducted a camera-trapping study on leopards (Panthera pardus) in Mondulkiri Protected Forest, Cambodia. We compared density estimates using SECR with those obtained from conventional approaches in which the effective survey area is estimated using a boundary strip width based on observed animal movements. Density estimates from Chao heterogeneity models (3.8 ± SE 1.9 individuals/100 km2) and Pledger heterogeneity models and models accounting for gender-specific capture and recapture rates (model-averaged density 3.9 ± SE 2.9 individuals/100 km2) were similar to those from SECR in program DENSITY (3.6 ± SE 1.0/100 km2) but higher than estimates from Jack-knife heterogeneity models (2.9 ± SE 0.9 individuals/100 km2). Capture probabilities differed between male and female leopards probably resulting from differences in the use of human-made trails between sexes. Given that there are a number of biologically plausible reasons to expect gender-specific variation in capture probabilities of large carnivores, we recommend exploratory analysis of data using models in which gender can be included as a covariate affecting capture probabilities particularly given the demographic importance of breeding females for population recovery of threatened carnivores. © 2011 The Wildlife Society.  相似文献   

3.
Accurate population size estimates are important information for sustainable wildlife management. The Romanian Carpathians harbor the largest brown bear (Ursus arctos) population in Europe, yet current management relies on estimates of density that lack statistical oversight and ignore uncertainty deriving from track surveys. In this study, we investigate an alternative approach to estimate brown bear density using sign surveys along transects within a novel integration of occupancy models and home range methods. We performed repeated surveys along 2‐km segments of forest roads during three distinct seasons: spring 2011, fall‐winter 2011, and spring 2012, within three game management units and a Natura 2000 site. We estimated bears abundances along transects using the number of unique tracks observed per survey occasion via N‐mixture hierarchical models, which account for imperfect detection. To obtain brown bear densities, we combined these abundances with the effective sampling area of the transects, that is, estimated as a function of the median (± bootstrapped SE) of the core home range (5.58 ± 1.08 km2) based on telemetry data from 17 bears tracked for 1‐month periods overlapping our surveys windows. Our analyses yielded average brown bear densities (and 95% confidence intervals) for the three seasons of: 11.5 (7.8–15.3), 11.3 (7.4–15.2), and 12.4 (8.6–16.3) individuals/100 km2. Across game management units, mean densities ranged between 7.5 and 14.8 individuals/100 km2. Our method incorporates multiple sources of uncertainty (e.g., effective sampling area, imperfect detection) to estimate brown bear density, but the inference fundamentally relies on unmarked individuals only. While useful as a temporary approach to monitor brown bears, we urge implementing DNA capture–recapture methods regionally to inform brown bear management and recommend increasing resources for GPS collars to improve estimates of effective sampling area.  相似文献   

4.
ABSTRACT Numerous techniques have been proposed to estimate carnivore abundance and density, but few have been validated against populations of known size. We used a density estimate established by intensive monitoring of a population of radiotagged leopards (Panthera pardus) with a detection probability of 1.0 to evaluate efficacy of track counts and camera-trap surveys as population estimators. We calculated densities from track counts using 2 methods and compared performance of 10 methods for calculating the effectively sampled area for camera-trapping data. Compared to our reference density (7.33 ± 0.44 leopards/100 km2), camera-trapping generally produced more accurate but less precise estimates than did track counts. The most accurate result (6.97 ± 1.88 leopards/100 km2) came from camera-trap data with a sampled area buffered by a boundary strip representing the mean maximum distance moved by leopards outside the survey area (MMDMOSA) established by telemetry. However, contrary to recent suggestions, the traditional method of using half the mean maximum distance moved from photographic recaptures did not result in gross overestimates of population density (6.56 ± 1.92 leopards/100 km2) but rather displayed the next best performance after MMDMOSA. The only track-count method comparable to reference density employed a capture-recapture framework applied to data when individuals were identified from their tracks (6.45 ± 1.43 leopards/100 km2) but the underlying assumptions of this technique limit more widespread application. Our results demonstrate that if applied correctly, camera-trap surveys represent the best balance of rigor and cost-effectiveness for estimating abundance and density of cryptic carnivore species that can be identified individually.  相似文献   

5.
  • 1. An attempt has been made to census elephant by a method which will enable the reliability of the results to be assessed.
  • 2. The method used was a system of stratified random samples.
  • 3. Stratification was based on the positions of elephant clumps recorded on a reconnaissance flight.
  • 4. Strip samples were selected at random for the various strata and elephant and other large mammals were counted in a strip of 440 m width from an aircraft travelling 100 m above the ground at 130 km/h.
  • 5. The problems of maintaining a fixed height above the ground and counting animals in a strip of constant width are acknowledged.
  • 6. One stratum was totally counted for purposes of comparison.
  • 7. Elephant, eland, kongoni, Grant's gazelle, buffalo, oryx, zebra, impala, ostrich and giraffe have been counted.
  • 8. The results are set out in a series of tables and estimates and confidence intervals have been computed.
  • 9. A discussion is held on the influences of various factors on the width of sample strips observed from the aircraft.
  • 10. The total count and sample count of stratum 1 are observed to be in fairly close agreement.
  • 11. The re-stratification of stratum 1 to take advantage of the observed clumps of elephant reduced the standard error of the estimate proportionally. The estimate was increased because the samples were no longer valid for the new strata.
  • 12. The elephant population is of the order of 9,000 animals, as was predicted from observation flights, and the confidence interval of ±1,974 is acceptable for a first attempt at a sample count for elephant. The Mkomazi elephant were observed in three distinguishable groups, this being a distribution pattern frequently recorded since 1965.
  • 13. Estimates and confidence intervals for other mammals do not refer to the whole region. It is observed that standard errors as a proportion of estimates are proportional to the degree of clumping shown by the species.
  • 14. The census took 45 h, and cost K£800. It was accomplished in 7 d by a single pilot and observer. The Mkomazi region covers some 10,857 km2.
  相似文献   

6.
Ringed seal (Pusa hispida) abundance in Spitsbergen, Svalbard, was estimated during the peak molting period via aerial, digital photographic surveys. A total of 9,145 images, covering 41.7%–100% of the total fast‐ice cover (1,496 km2) of 18 different fjords and bays, were inspected for the presence of ringed seals. A total of 1,708 seals were counted, and when accounting for ice areas that were not covered by images, a total of 3,254 (95% CI: 3,071–3,449) ringed seals were estimated to be hauled out during the surveys. Extensive behavioral data from radio‐tagged ringed seals (collected in a companion study) from one of the highest density fjords during the molting period were used to create a model that predicts the proportion of seals hauled out on any given date, time of day, and under various meteorological conditions. Applying this model to the count data from each fjord, we estimated that a total of 7,585 (95% CI: 6,332–9,085) ringed seals were present in the surveyed area during the peak molting period. Data on interannual variability in ringed seal abundance suggested higher numbers of seals in Van Keulenfjorden in 2002 compared to 2003, while other fjords with very stable ice cover showed no statistical differences. Poor ice conditions in general in 2002 probably resulted in seals from a wide area coming to Van Keulenfjorden (a large fjord with stable ice in 2002). The total estimated number of ringed seals present in the study area at the time of the survey must be regarded as a population index, or at least a minimum estimate for the area, because it does not account for individuals leaving and arriving, which might account for a considerable number of animals. The same situation is likely the case for many other studies reporting aerial census data for ringed seals. To achieve accurate estimates of population sizes from aerial surveys, more extensive knowledge of ringed seal behavior will be required.  相似文献   

7.
Dung‐heap counts were used to estimate density of grey duiker (Sylvicapra grimmia Linnaeus 1758) in the Matobo National Park, Zimbabwe. To test assumptions of this method, defecation rate and defecation site selection were investigated under captive and field conditions, and densities were compared with independent estimates derived from territory mapping. Many assumptions were violated: males defecated more frequently than females with mean dry mass per deposit greater in females, but total daily faecal production was similar between sexes. Spatial distribution of faeces was clumped, and 52.8% of locations contained multiple deposits. Duikers exhibited habitat type preferences (i.e. low‐ to medium‐density woodland) with herbaceous layer heights 40–100 cm and visibility >20 m. Calculated grey duiker density from dung‐heap counts in cleared plots was 9.7 ± 1.3 animals km−2, approximately double the territory‐mapping estimate based on Minimum Convex Polygons (5.13 animals km−2) but similar to the 75% Fixed Kernel estimate (10.95 animals km−2). Provided that sex ratios approach parity and sampled area is representative of all utilized habitats, violation of basic assumptions of the dung‐heap count method has a minor effect on density estimate accuracy.  相似文献   

8.
Estimating population densities of key species is crucial for many conservation programs. Density estimates provide baseline data and enable monitoring of population size. Several different survey methods are available, and the choice of method depends on the species and study aims. Few studies have compared the accuracy and efficiency of different survey methods for large mammals, particularly for primates. Here we compare estimates of density and abundance of Kloss’ gibbons (Hylobates klossii) using two of the most common survey methods: line transect distance sampling and triangulation. Line transect surveys (survey effort: 155.5 km) produced a total of 101 auditory and visual encounters and a density estimate of 5.5 gibbon clusters (groups or subgroups of primate social units)/km2. Triangulation conducted from 12 listening posts during the same period revealed a similar density estimate of 5.0 clusters/km2. Coefficients of variation of cluster density estimates were slightly higher from triangulation (0.24) than from line transects (0.17), resulting in a lack of precision in detecting changes in cluster densities of <66 % for triangulation and <47 % for line transect surveys at the 5 % significance level with a statistical power of 50 %. This case study shows that both methods may provide estimates with similar accuracy but that line transects can result in more precise estimates and allow assessment of other primate species. For a rapid assessment of gibbon density under time and financial constraints, the triangulation method also may be appropriate.  相似文献   

9.
Acquiring demographic data for moose (Alces alces) can be difficult because they are solitary in nature, they prefer densely vegetated and mountainous habitats, and they often occur at low density. Such data, however, are essential for long-term population monitoring, evaluating management practices, and effective conservation. Winter aerial surveys are the standard method for estimating moose population parameters, but they can be logistically challenging, expensive, and subject to sightability correction, which necessitates the capture of study animals for initial model development. Herein, we demonstrate a noninvasive alternative approach for estimating population parameters of moose in northern Yellowstone National Park, where aerial surveys were attempted but proved ineffective. We determined individual moose genotype and sex using microsatellite polymerase chain reaction amplification of DNA extracted from fecal pellets, integrated ancillary pellet sample data (i.e., metadata) in genotype analysis to aid in the identification of matching genotypes, and used spatially explicit capture-recapture (SECR) modeling to estimate sex-specific density and abundance. We collected 616 samples over 3 consecutive winters (Dec 2013–Apr 2016) and within 2 sampling occasions each winter. We recorded 514 captures of 142 individual moose (69 males, 73 females). Overall density ranged between 0.062 moose/km2 and 0.076 moose/km2 and averaged 0.034/km2 for females and 0.033/km2 for males. Abundance estimates were 150 moose in 2013 (female = 76, 95% CI = 55–105; male = 74, 95% CI = 54–103), 186 in 2014 (female = 95, 95% CI = 63–142; male = 91, 95% CI = 60–138), and 160 in 2015 (female = 79, 95% CI = 58–108; male = 81, 95% CI = 59–110). Average population sex ratio was 0.99 males/female. We demonstrate that SECR analysis of fecal DNA genotypes, using metadata in genotype analysis to help identify matching moose genotypes, is a promising alternative method for estimating sex-specific density and abundance of a low-density moose population in a mountainous and forested landscape.  相似文献   

10.
Comparisons of recent estimations of home range sizes for the critically endangered black rhinoceros in Hluhluwe-iMfolozi Park (HiP), South Africa, with historical estimates led reports of a substantial (54%) increase, attributed to over-stocking and habitat deterioration that has far-reaching implications for rhino conservation. Other reports, however, suggest the increase is more likely an artefact caused by applying various home range estimators to non-standardised datasets. We collected 1939 locations of 25 black rhino over six years (2004–2009) to estimate annual home ranges and evaluate the hypothesis that they have increased in size. A minimum of 30 and 25 locations were required for accurate 95% MCP estimation of home range of adult rhinos, during the dry and wet seasons respectively. Forty and 55 locations were required for adult female and male annual MCP home ranges, respectively, and 30 locations were necessary for estimating 90% bivariate kernel home ranges accurately. Average annual 95% bivariate kernel home ranges were 20.4 ± 1.2 km2, 53 ±1.9% larger than 95% MCP ranges (9.8 km2 ± 0.9). When home range techniques used during the late-1960s in HiP were applied to our dataset, estimates were similar, indicating that ranges have not changed substantially in 50 years. Inaccurate, non-standardised, home range estimates and their comparison have the potential to mislead black rhino population management. We recommend that more care be taken to collect adequate numbers of rhino locations within standardized time periods (i.e., season or year) and that the comparison of home ranges estimated using dissimilar procedures be avoided. Home range studies of black rhino have been data deficient and procedurally inconsistent. Standardisation of methods is required.  相似文献   

11.
ABSTRACT The Wattled Curassow (Crax globulosa) is a globally threatened species restricted to humid várzea forest (seasonally flooded forest along white‐water rivers) in low‐lying regions of Amazonia. The Wattled Curassow were thought to have been extirpated from the Beni area of Bolivia, but were rediscovered near the Río Negro River in 2001. Our objectives were to determine the size of this population, examine habitat use, and based on our results, assess the conservation status of the Wattled Curassow. During July and August 2006, we used distance sampling to estimate the population density in our study area. We estimated the density of Wattled Curassows at 3.4 (95% CI: 1.4–8.1) individuals/km2 and all were observed within 300 m of the river. Based on the availability of suitable habitat (18 km2 of riparian várzea habitat within 300 m of the river), we estimated that the breeding population of Wattled Curassows in our study area consisted of 61 individuals. The specialized habitat requirements of the Wattled Curassow has important conservation implications because previous population estimates were based on the availability of várzea forest rather than the availability of water edge habitat within várzea forest. As a result, the current global population estimate (2500–9999) is higher than our estimate (500–2500) that takes the specialized habitat requirements of the Wattled Curassow into account. Given this low estimated population, along with the severely fragmented state of the few remaining populations and their dependence on a specialized and vulnerable habitat, we recommend that the status of the Wattled Curassow be upgraded from Vulnerable to Endangered.  相似文献   

12.
Measurements of regional net ecosystem exchange (NEE) were made over a period of 21 days in summer 2002 in the South‐Central part of the Netherlands and extrapolated to an area of 13 000 km2 using a combination of flux measurements made by a Sky Arrow ERA research aircraft, half‐hourly eddy covariance data from four towers, half‐hourly weather data recorded by three weather stations and detailed information on regional land use. The combination of this type of information allowed to estimate the net contribution of the terrestrial ecosystems to the overall regional carbon flux and to map dynamically the temporal and spatial variability of the fluxes. A regional carbon budget was calculated for the study period and the contributions of the different land uses to the overall regional flux, were assessed. Ecosystems were, overall, a small source of carbon to the atmosphere equivalent to to 0.23±0.025 g C m−2 day−1. When considered separately, arable and grasslands were a source of, respectively, 0.68±0.022 and 1.28±0.026 g C m−2 day−1. Evergreen and deciduous forests were instead a sink of −1.42±0.015 g C m−2 day−1. During the study period, forests offset approximately 3.5% of anthropogenic carbon emission estimates obtained from inventory data. Lacking of a robust validation, NEE values obtained with this method were compared with independent state of art estimates of the regional carbon balance that were obtained by applying a semi‐empirical model of NEE driven by MODIS satellite fAPAR data. The comparison showed an acceptable matching for the carbon balance of forest that was a sink in both cases, while a much larger difference for arable and grassland was found. Those ecosystems were a sink for satellite‐based estimates while they were a source for the combined aircraft and tower estimates. Possible causes of such differences are discussed and partly addressed. The importance of new methods for determining carbon balance at the regional scale, is outlined.  相似文献   

13.
We estimated density and abundance of the threatened southwest Alaska distinct population segment of northern sea otters (Enhydra lutris kenyoni) in two management units. We conducted aerial surveys in Bristol Bay and South Alaska Peninsula management units in 2016, and modeled sea otter density and abundance with Bayesian hierarchical distance sampling models and spatial environmental covariates (depth, distance to shore, depth × distance to shore). Spatial environmental covariates substantially impacted sea otter group density in both management units, but effects sizes differed between the two management units. Abundance (9,733 otters, 95% CrI 6,412–17,819) and density (0.82 otters/km2, 95% CrI 0.54–1.49) estimates for Bristol Bay indicated a moderate population size. In contrast, abundance (546 otters, 95% CrI 322–879) and density (0.06 otters/km2, 95% CrI 0.03–0.09) estimates indicated a relatively low population size in South Alaska Peninsula. Overall, our results highlight the importance of accounting for the detection process in monitoring at-risk species to reduce the uncertainty associated with making conclusions about population declines.  相似文献   

14.
Estimating density of elusive carnivores with capture–recapture analyses is increasingly common. However, providing unbiased and precise estimates is still a challenge due to uncertainties arising from the use of (1) bait or lure to attract animals to the detection device and (2) ad hoc boundary-strip methods to compensate for edge effects in area estimation. We used photographic-sampling data of the Malagasy civet Fossa fossana collected with and without lure to assess the effects of lure and to compare the use of four density estimators which varied in methods of area estimation. The use of lure did not affect permanent immigration or emigration, abundance and density estimation, maximum movement distances, or temporal activity patterns of Malagasy civets, but did provide more precise population estimates by increasing the number of recaptures. The spatially-explicit capture–recapture (SECR) model density estimates ±SE were the least precise as they incorporate spatial variation, but consistent with each other (Maximum likelihood-SECR = 1.38 ± 0.18, Bayesian-SECR = 1.24 ± 0.17 civets/km2), whereas estimates relying on boundary-strip methods to estimate effective trapping area did not incorporate spatial variation, varied greatly and were generally larger than SECR model estimates. Estimating carnivore density with ad hoc boundary-strip methods can lead to overestimation and/or increased uncertainty as they do not incorporate spatial variation. This may lead to inaction or poor management decisions which may jeopardize at-risk populations. In contrast, SECR models free researchers from making subjective decisions associated with boundary-strip methods and they estimate density directly, providing more comparable and valuable population estimates.  相似文献   

15.
Errors in estimates of year class strength and mortality among 0-group plaice can result from migrations. In order to reliably determine the number present, tidal flats and channels in a large and clearly delimited Wadden Sea area (715 km2) were sampled simultaneously using different fishing methods (by-catch, beam trawls, pushnets, and fyke nets). The numbers of 0-group plaice calculated for each depth stratum reflected changes in the distribution patterns during the complete diurnal cycle and during the course of the season and proved to be most reliable for estimating the total number in the whole area. In contrast to this, the traditional way of calculating population size by multiplying the arithmetic mean of simultaneous catches resulted in very different numbers which would entail an overestimation of mortality.  相似文献   

16.
Abundance estimates for black bears (Ursus americanus) are important for effective management. Recently, DNA technology has resulted in widespread use of noninvasive, genetic capture–mark–recapture (CMR) approaches to estimate populations. Few studies have compared the genetic CMR methods to other estimation methods. We used genetic CMR to estimate the bear population at 2 study sites in northern New Hampshire (Pittsburg and Milan) in 2 consecutive years. We compared these estimates to those derived from traditional methods used by the New Hampshire Fish and Game Department (NHFG) using hunter harvest and mortality data. Density estimates produced with genetic CMR methods were similar both years and were comparable to those derived from traditional methods. In 2006, the estimated number of bears in Pittsburg was 79 (95% CI = 60–98) corresponding to a density of 15–24 (95% CI) bears/100 km2; the 2007 estimate was 83 (95% CI = 67–99; density = 16–24 bears/100 km2). In 2006, the estimated number of bears in Milan was 95 (95% CI = 74–117; density = 16–25 bears/100 km2); the 2007 estimate was 96 (95% CI = 77–114; density = 17–25 bears/100 km2). We found that genetic CMR methods were able to identify demographic variation at a local scale, including a strongly skewed sex ratio (2 M:1 F) in the Milan population. Genetic CMR is a useful tool for wildlife managers to monitor populations of local concern, where abundance or demographic characteristics may deviate from regional estimates. Future monitoring of the Milan population with genetic CMR is recommended to determine if the sex ratio bias continues, possibly warranting a change in local harvest regimes. © 2011 The Wildlife Society.  相似文献   

17.
A questionnaire survey of land owners, managers and gamekeepers was conducted in order to assess the distribution of mountain hares in Scotland, assess their current management, collate numbers harvested in 2006–07 and estimate distribution change by comparing with similar data collected in 1995–96. The land area covered by returned questionnaires was 71098km2 (90% of Scotland). Mountain hares were reported as present on 34359km2 (48%) and absent from 36739km2 (52%). Mountain hare presence was strongly associated with heather moorland managed for red grouse shooting. Moorland managed for driven grouse shooting had the highest percentage area of mountain hare presence (median 64%) followed by moorland managed for walked‐up grouse shooting (median 9%) and moorland with no grouse shooting (median 0%). Approximately 25000 mountain hares were harvested in 2006–07. Based on the estimated UK population in 1995 of 350000 (range ±50%), this represents around 7% of the population (range 5–14%). Reasons given by respondents for harvesting hares were tick control (50%), sport (40%) and forestry or crop protection (10%). Comparison of the estates surveyed in both 2006–07 and 1995–96 (a total area of 20462km2) indicated no net gain or loss in hare distribution. Furthermore, there was no evidence that levels of harvest had reduced the range of mountain hares in this area. It is not possible to comment on any distribution change outside this area (58737km2). Similarly, as no data were collected on abundance, it is not possible to draw conclusions on changes in density. Regular monitoring of mountain hare distribution within Scotland is required to identify any distribution changes. Measures of abundance throughout the range are necessary to estimate the population size, investigate the relationship between harvest intensity and changes in abundance and further assess the conservation status of this UK Biodiversity Action Plan species.  相似文献   

18.
Population density data on depleted and endangered wildlife species are essential to assure their effective management and, ultimately, conservation. The European wildcat is an elusive and threatened species inhabiting the Iberian Peninsula, with fragmented populations and living in low densities. We fitted spatial capture–recapture models on camera-trap data, to provide the first estimate of wildcat density for Portugal and assess the most influential drivers determining it. The study was implemented in Montesinho Natural Park (NE Portugal), where we identified nine individuals, over a total effort of 3,477 trap-nights. The mean density estimate was 0.032 ± 0.012 wildcat/km2, and density tended to increase with distance to humanized areas, often linked to lower human disturbance and domestic cat presence, with forest and herbaceous vegetation cover and with European rabbit abundance. Although, this density estimate is within the range of values estimated for protected areas elsewhere in the Iberian Peninsula, our estimates are low at the European level. When put in context, our results highlight that European wildcats may be living in low population densities across the Iberian Mediterranean biogeographic region. No phenotypic domestic or hybrid cats were detected, suggesting potentially low admixture rates between the two species, although genetic sampling would be required to corroborate this assertion. We provide evidence that Montesinho Natural Park may be a suitable area to host a healthy wildcat population, and thus be an important protected area in this species' conservation context.  相似文献   

19.
Effective management of threatened species requires accurate population size estimation and monitoring. However, reliable population size estimates are lacking for many endangered species. The critically endangered blond titi monkey (Callicebus barbarabrownae) is an endemic primate of the Caatinga biome in Northeastern Brazil. A previous assessment based on presence-only data estimated a minimum population size of 260 mature individuals in 2,636 km2, and studies based on visual records suggested very low local relative abundance. However, this cryptic species is known to be difficult to visually detect. We played back recordings of C. barbarabrownae loud calls to count the number of responding groups in 34 sampling sites during 9 consecutive days in a 221-km2 study area. Repeated group counts at sites were used in N-mixture models, which account for imperfect detection, to estimate the number of groups in relation to dry forest area and distance to villages. We estimated a total of 91 groups in the study area. Considering the mean number of adults per group as three, we estimated a population of 273 adult individuals, resulting in a density of 2.3 individuals/km2 in the dry forest habitat. Detection probability was four times higher for surveys conducted between sunrise to midmorning than between midmorning to sunset. We also found that C. barbarabrownae abundance increases with increasing dry forest area and increasing distance to the nearest village, indicating the need to promote dry forest restoration in the Caatinga. As our results suggest a larger population of C. barbarabrownae than had been previously estimated for its entire distribution, our results suggest a need for similar assessments in other areas to reliably estimate the total population size. This study demonstrates how playback surveys coupled with N-mixture models can be used to estimate population sizes of acoustically-responsive primates, and thus contribute to more effective conservation management.  相似文献   

20.
AGE CRITERIA AND VITAL STATISTICS OF A BLACK RHINOCEROS POPULATION   总被引:2,自引:0,他引:2  
Tsavo National Park, in Kenya, probably contains the largest population of black rhinoceros (Diceros bicornis (L.)) left in existence. Large-scale damage of the vegetation initiated by elephants and aggravated by fire has changed considerable areas of the park. The ecology of the black rhinoceros in this changing environment has been studied; the present status and population structure is considered here, including the development of detailed ageing criteria for the species, an analysis of natural mortality and survivorship, and a record of the structure of the living populations within the major habitat types. Crania and mandibles were collected from 506 rhinoceros found dead in all areas of the park. This material was divided into 20 relative age classes based on dental characteristics. Crude chronological ages, based on an estimate of the maximum expectation of life and the examination of seven known-age dental records of captive animals, were assigned to each age class. These crude ages were then refined by examination of 16 dental records of known-age wild rhinoceros, and a chronological age scale established. A survivorship curve of the population was thus constructed. Annual mortality during the first and second year of life is about 16%, and the indicated mean annual mortality from 5–25 y is 9.8%. A theoretical model of the population structure is shown, and analysis of the annual mortality and recruitment at birth suggests that the population was stable during the 1960's. Assuming the data represent a stable population the mean expectation of life at birth is 8.4 y. Thirteen major habitat types are described. The characteristics of the rhinoceros population within each habitat type were established both from ground studies and aerial observations. Nearly 700 rhinoceros were identified and catalogued on the ground, in sample areas selected for intensive study. Population structures, cow: calf ratios, and recruitment appear to be average in most habitat types. The analysis of recruitment at birth and mortality during the first year of life, both from computations from the survivorship curve and from the structure of the living populations, support the validity of the ageing criteria, and further suggest that the population was stable during the 1960's. Finally, the relationship between the elephant and the rhinoceros in the changing environment is discussed with reference to recent findings in elephant ecology. In conclusion it is recommended that population reduction of the Tsavo elephants should be initiated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号