首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim The cosmopolitan genus Herbertus is notorious for having a difficult taxonomy and for the fact that there is limited knowledge of species ranges and relationships. Topologies generated from variable molecular markers are used to discuss biogeographical patterns in Herbertus and to compare them with the geological history of continents and outcomes reported for other land plants. Location Africa, Asia, Azores, Europe, southern South America, northern South America, North America, New Zealand. Methods Phylogenetic analyses of nuclear ribosomal internal transcribed spacer and chloroplast (cp) trnL–trnF sequences of 66 accessions of Herbertus and the outgroup species Triandrophyllum subtrifidum and Mastigophora diclados were used to investigate biogeographical patterns in Herbertus. Areas of putative endemism were defined based on the distribution of species included in the analyses. Maximum parsimony analyses were undertaken to reconstruct ancestral areas and intraspecies migration routes. Results The analyses reveal species‐level cladograms with a correlation between genetic variation and the geographical distribution of the related accessions. The southern South American Herbertus runcinatus is sister to the remainder of the genus, which is split into two main clades. One contains the Neotropical–African Herbertus juniperoideus and the New Zealand/Tasmanian Herbertus oldfieldianus. An African accession of H. juniperoideus is nested within Neotropical accessions. The second main clade includes species that inhabit Asia, the Holarctic, Africa, and northern South America. Maximum parsimony analyses indicate that this clade arose in Asia. Herbertus sendtneri originated in Asia and subsequently colonized the Holarctic and northern South America. An Asian origin and colonization into Africa is indicated for H. dicranus. Main conclusions The current distribution of Herbertus cannot be explained by Gondwanan vicariance. A more feasible explanation of the range is a combination of short‐distance dispersal, rare long‐distance dispersal events (especially into regions that faced floral displacements as a result of climatic changes) extinction, recolonization, and diversification. The African Herbertus flora is a mixture of Asian and Neotropical elements. Southern South America harbours an isolated species. The molecular data indicate partial decoupling of molecular and morphological variation in Herbertus. Biogeographical patterns in Herbertus are not dissimilar to those of other groups of bryophytes, but elucidation of the geographical ranges requires a molecular approach. Some patterns could be the result of maintenance of Herbertus in the inner Tropics during glacial maxima, and dispersal into temperate regions in warm phases.  相似文献   

2.
Peter Raven, in 1963, included two fern taxa of the genus Botrychium in his list of plant species exhibiting American amphitropical bipolar disjunctions. He attributed the southern hemisphere occurrences to post‐Pleistocene long‐distance dispersal from counterparts in the northern hemisphere, probably assisted by annual bird migrations between the disjunct areas. Using genetic evidence gathered through worldwide analyses of phylogenetic relationship in Botrychium, we now review and reconsider Raven's conclusions. Genetic similarities indicate that South American Botrychium dusenii is an allotetraploid taxon closely related to B. spathulatum, a North American endemic, and that B. lunaria in New Zealand possesses a genotype identical to that of a taxon in North America derived through introgressive hybridization between B. lunaria and an endemic North American species, B. neolunaria. Both North American counterparts exhibit Raven's characteristics of bipolar disjuncts in their occurrence in mountain and coastal meadows, copious production of small propagules (spores in Botrychium), occurrence in habitats frequented by transpolar bird migrants, and ability to found new colonies through inbreeding. We discuss these characteristics in Botrychium and relative to other ferns and suggest further studies on Botrychium and related taxa to address questions of time, number, and mode of bipolar dispersals.  相似文献   

3.
Aim The flowering plant genus Hoffmannseggia consists of 21 species distributed amphitropically between the arid regions of the south‐western United States and adjacent Mexico, and west‐central South America. This pattern of geographical disjunction is shared by numerous other angiosperm genera and has been the subject of discussions for more than a century with various authors advocating a northern origin for particular taxa and others advocating a southern origin. This study uses a well‐supported phylogeny of a genus with numerous species in each area to address the issues of a northern or southern origin and the facility with which organisms move between the two continents. Location South‐western United States and northern Mexico, northern Chile and Argentina, southern Bolivia, and western Peru. Methods Using DNA sequence data from the nuclear and chloroplast genomes, we generated a phylogenetic hypothesis for all species of Hoffmannseggia rooted with Zuccagnia and Balsamocarpon. Geographical data were optimized on the resultant tree to assess the probable continent of origin for the genus, the pattern of disjunctions between North and South America, and species radiations within the genus. Main conclusions Hoffmannseggia arose in South America and initially split into a suffrutescent (somewhat woody) and an herbaceous clade. Within each of these major clades, there have been at least two exchanges between North and South America. There are no data to support an ancestral pan‐American range for Hoffmannseggia and we therefore ascribe the amphitropical disjunctions to long‐distance dispersal. The phylogeny clearly shows that all dispersals were from South to North America and they occurred at different times and thus the pattern is not the result of a single simultaneous set of dispersals.  相似文献   

4.
Euphrasia includes perennial or annual green parasitic plants, and has a disjunct bipolar distribution except for one transtropical connection across the high mountains of Oceania. The disjunction is coupled with strikingly contrasting patterns of morphological diversity between the southern and northern hemispheres, making it an exciting model to study processes of evolutionary diversification which shaped present floras. We inferred the relationships among 51 species representing 14 of the 15 sections of the genus based on nrDNA ITS and cpDNA trnL intron, trnL-trnF and atpB-rbcL intergenic spacers. Maximum parsimony and Bayesian inference support monophyly of the genus and of several intrageneric groups characterized by morphology, ploidy level, and geographic range. Molecular phylogenetic dating using Bayesian “relaxed” clock methods suggests that the earliest Euphrasia radiations occurred minimum 11–8 Mya with bipolarity being achieved 7–5 Mya. Biogeographic analyses using explicit model-based approach inferred Eurasia as an ancestral area for the genus. The most parsimonious reconstruction found by a dispersal-vicariance analysis requires 17 dispersals to account for the current biogeographic pattern and supports Eurasian origin for Euphrasia. Both long-distance dispersal and across land vicariance can be invoked to explain the diversification in the genus, which experienced rapid radiations driven by new ecological opportunities of the late Pliocene and Pleistocene but also retained a set of local endemic or relict species of an earlier origin.  相似文献   

5.
Historical changes in the distributions of temperate species in response to Milankovitch climate cycles have been well documented in palaeontological studies and recently evaluated with phylogeographical methods. How these cycles influence biological diversity remains a matter of debate. Molecular surveys of terrestrial and freshwater fauna demonstrate glacial refugia in low latitudes and range expansions into high latitudes, but few genetic studies have assessed the corresponding impact on marine fauna. In the present study, mtDNA sequences (N = 84) are surveyed to understand the impact of long‐term climate oscillations on ‘Old World’ anchovies (genus Engraulis), a monophyletic group occurring in north and south temperate zones of the eastern Atlantic and the western Pacific. The analysis of a 521‐bp sequence of mtDNA cytochrome b indicates a late Miocene or Pliocene dispersal from the north‐eastern Pacific (California–Mexico) to the north‐western Pacific (Japan), followed by Pleistocene dispersal from the north‐western Pacific to Europe. Geography mandates that populations in southern Africa and Australia were stepping‐stones for this dispersal. However, neither population occupies an intermediate position in the mtDNA genealogy; both populations are more recently derived from their northern neighbours. Haplotype diversity is high (h = 0.93–0.97) in European, Australian, and Japanese anchovies, but low (h = 0.22) in the southern African population, where all haplotypes are more closely related to European specimens than to each other. These southern populations occupy a precarious position, lacking north–south coastlines that allow range shifts during climatic extremes. Recurring extinctions and episodic recolonizations from northern hemisphere populations are the likely results. In this case, ocean‐climatic changes retard rather than enhance opportunities for evolutionary radiations. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 88 , 673–689.  相似文献   

6.
Plant disjunctions between the temperate regions of the northern and southern hemisphere, commonly called amphitropical or bipolar disjunctions, have been discussed by numerous authors but very little attention has been paid to the occurrence of such disjunctive ranges in the complex thalloids (Marchantiidae). A perusal of the literature revealed 20 species of Marchantiidae with amphitropical ranges, in eight genera (Asterella, Clevea, Corsinia, Cryptomitrium, Oxymitra, Riccia, Riella and Sphaerocarpos). These amphitropical species are distributed in subtropical and Mediterranean regions of the northern and southern hemisphere but not, or rarely, in the tropics. The majority are disjunctive between North America and southern South America and between Eurasia and South Africa. Long-distance dispersal of spores via birds is considered the most plausible natural cause of these amphitropical ranges. About two-third of the species have bisexual spores, which should be advantageous to long-distance dispersal. Extinction due to past climatic fluctuations may also have played a role but fossil evidence is lacking. A few species have attained their amphitropical range by human-mediated introduction: Riccia warnstorfii Limpr. and Sphaerocarpos texanus Austin were presumably introduced in the southern hemisphere whereas S. stipitatus Bisch. ex Lindenb. from Central Chile and South Africa is adventive in the northern hemisphere. The amphitropical ranges exhibited by a number of complex thalloid species are solely based on morphological, floristic and ecological evidence and have not been tested by molecular analysis. Careful comparisons of the northern and southern populations based on an integrated molecular-phylogenetic, morphological-anatomical and chemical approach should be carried out.  相似文献   

7.
We examined the temperature tolerance of microscopic phases from geographically disjunct isolates of eight species or closely related, putatively conspecific taxa of temperate brown algae with disjunct distributions. Maximum within-taxon differences were small and ranged from 1.6° to 4.3° C. Desmarestia aculeata and Sphaerotrichia divaricata, both with northern hemisphere amphioceanic distributions, showed little or no significant intraspecific variation between the mean upper survival limits (USL) of Atlantic and Pacific strains (δUSL ≤ 1.4°C), which would agree with a relatively recent separation of the respective populations. Among the plants with bipolar distributions, there was likewise very little difference (δUSL 0–1.1°C) between northern and southern hemisphere strains in Striaria attenuata and in the species pair Desmarestia viridis/D. willii. In Desmarestia ligulata, and in the species pairs Desmarestia firma/D. munda, Dictyosiphon foeniculaceus/D. hirsutus, and Scytothamnus australis/Scytothamnus sp., significant differences occurred, which indicate longer divergence times. δUSL in these cases ranged from 1.7° to 2.7°C, without overlap between strains from the northern and southern hemispheres. All species that passed the equator during cooler epochs had a USL of 26–27°C, at least in some geographical isolates. The NE Asian kelp Undaria pinnatifida, which passed the equator in recent times, had a USL of 29.6°C. We hypothesize that the mechanism of spreading in the amphipolar species studied was migration of vegetative microthalli. The more unlikely alternative hypothesis of continuous populations through the tropics during a cooler epoch would imply a drop in seawater temperatures to approximately 20° C in summer and 15° C in winter, which is not supported by paleoclimatic evidence.  相似文献   

8.
Nyssa (Nyssaceae, Cornales) represents a classical example of the well‐known eastern Asian–eastern North American floristic disjunction. The genus consists of three species in eastern Asia, four species in eastern North America, and one species in Central America. Species of the genus are ecologically important trees in eastern North American and eastern Asian forests. The distribution of living species and a rich fossil record of the genus make it an excellent model for understanding the origin and evolution of the eastern Asian–eastern North American floristic disjunction. However, despite the small number of species, relationships within the genus have remained unclear and have not been elucidated using a molecular approach. Here, we integrate data from 48 nuclear genes, fossils, morphology, and ecological niche to resolve species relationships, elucidate its biogeographical history, and investigate the evolution of morphology and ecological niches, aiming at a better understanding of the well‐known EA–ENA floristic disjunction. Results showed that the Central American (CAM) Nyssa talamancana was sister to the remaining species, which were divided among three, rapidly diversified subclades. Estimated divergence times and biogeographical history suggested that Nyssa had an ancestral range in Eurasia and western North America in the late Paleocene. The rapid diversification occurred in the early Eocene, followed by multiple dispersals between and within the Erasian and North American continents. The genus experienced two major episodes of extinction in the early Oligocene and end of Neogene, respectively. The Central American N. talamancana represents a relic lineage of the boreotropical flora in the Paleocene/Eocene boundary that once diversified in western North America. The results supported the importance of both the North Atlantic land bridge and the Bering land bridge (BLB) for the Paleogene dispersals of Nyssa and the Neogene dispersals, respectively, as well as the role of Central America as refugia of the Paleogene flora. The total‐evidence‐based dated phylogeny suggested that the pattern of macroevolution of Nyssa coincided with paleoclimatic changes. We found a number of evolutionary changes in morphology (including wood anatomy and leaf traits) and ecological niches (precipitation and temperature) between the EA–ENA disjunct, supporting the ecological selection driving trait evolutions after geographic isolation. We also demonstrated challenges in phylogenomic studies of lineages with rapid diversification histories. The concatenation of gene data can lead to inference of strongly supported relationships incongruent with the species tree. However, conflicts in gene genealogies did not seem to impose a strong effect on divergence time dating in our case. Furthermore, we demonstrated that rapid diversification events may not be recovered in the divergence time dating analysis using BEAST if critical fossil constraints of the relevant nodes are not available. Our study provides an example of complex bidirectional exchanges of plants between Eurasia and North America in the Paleogene, but “out of Asia” migrations in the Neogene, to explain the present disjunct distribution of Nyssa in EA and ENA.  相似文献   

9.
Aim  The genus Prosopis includes 44 species and has a pseudoamphitropical, disjunct distribution. We aimed to determine whether American Prosopis sections arose in North or South America, and to explain the current distribution of their species on the basis of their genetic relationships.
Location  South-western USA, Mexico, Caribbean Antilles, Peru–Ecuador, central and northern Argentina, south-western Argentina (Patagonia) and Cuyo, south-western Asia and northern Africa.
Methods  Internal transcribed spacer fragments from 21 species of Prosopis were sequenced and the data were used to analyse the phylogenetic relationships using Microlobius and Mimosa as outgroups. Genetic distances were calculated to estimate the degree of divergence. Dispersal–vicariance (DIVA) analysis was conducted to help understand the biogeographical history of the genus.
Main conclusions  The sections Strombocarpa and Algarobia are not monophyletic. Prosopis argentina (section Monilicarpa ) and the species of Algarobia are included in single clade. The phylogeny, DIVA analysis, and the pattern of genetic distances indicate that the ancestral area for the American species was wide, from south-western USA to Central and northern Argentina. Successive vicariance events split this area, and long-distance dispersal episodes (perhaps mediated by birds) led to recolonizations from North to South America, and vice versa .  相似文献   

10.
The Western Ghats (WG) of south India, a global biodiversity hotspot, has experienced complex geological history being part of Gondwana landmass and encountered extensive volcanic activity at the end of Cretaceous epoch. It also has a climatically and topographically heterogeneous landscape. Thus, the WG offer a unique setting to explore the influence of ecological and geological processes on the current diversity and distribution of its biota. To this end, three explicit biogeographical scenarios were hypothesized to evaluate the distribution and diversification of wet evergreen species of the WG – (1) southern WG was a refuge for the wet evergreen species during the Cretaceous volcanism, (2) phylogenetic breaks in the species phylogeny would correspond to geographic breaks (i.e., the Palghat gap) in the WG, and (3) species from each of the biogeographic subdivisions within the WG would form distinct clades. These hypotheses were tested on the centipede genus Digitipes from the WG which is known to be an ancient, endemic, and monophyletic group. The Digitipes molecular phylogeny was subjected to divergence date estimation using Bayesian approach, and ancestral areas were reconstructed using parsimony approach for each node in the phylogeny. Ancestral‐area reconstruction suggested 13 independent dispersal events to explain the current distribution of the Digitipes species in the WG. Among these 13 dispersals, two dispersal events were at higher level in the Digitipes phylogeny and were from the southern WG to the central and northern WG independently in the Early Paleocene, after the Cretaceous Volcanism. The remaining 11 dispersal events explained the species’ range expansions of which nine dispersals were from the southern WG to other biogeographic subdivisions in the Eocene‐Miocene in the post‐volcanic periods where species‐level diversifications occurred. Taken together, these results suggest that southern WG might have served as a refuge for Digitipes species during Cretaceous volcanism.  相似文献   

11.
Aim Turdus thrushes are one of the most speciose and widespread songbird genera, comprising nearly 70 species that combined have a near‐global distribution. Herein, we use molecular phylogenetic, molecular clock and behavioural evidence to examine the historical biogeography of the genus. Ancestral area reconstructions in conjunction with divergence estimates and palaeoclimatogical data are used to test whether the long‐standing paradigm of Beringian colonization or trans‐Atlantic dispersal best explains modern distributions in the New and Old Worlds. Location Worldwide, with emphasis on New World–Old World biotic interchange. Methods Using a molecular phylogenetic hypothesis of Turdus thrushes, we reconstructed ancestral area relationships utilizing the five major continental or regional areas occupied by species in the genus. We also examined the evolution of behaviours on the phylogeny, and estimated the timing of major lineage divergences via a molecular clock. Results Turdus originated in Eurasia, and following the colonization of Africa underwent a series of five trans‐Atlantic sweepstake dispersals. The data reject the alternative hypothesis that connections between Old and New World Turdus species can be attributed to movement through Beringia with subsequent extinction. Divergence estimates indicate that these dispersals all occurred near the Miocene–Pliocene boundary, 5 Ma. A significant phylogenetic correlation between migratory and flocking behaviour is evident in the genus. Main conclusions The initial divergence of Turdus in the Old World was followed by a series of trans‐Atlantic sweepstake dispersal events. These dispersals are temporally correlated with a specific palaeoclimatic system, which would have facilitated transport of Turdus from the Caribbean to the Old World across the Atlantic. Uplift of the Central American Seaway 4.7 Ma effectively shut down the palaeoclimatic system, and no additional trans‐Atlantic dispersals are evident in Turdus after this time. Migratory movements by ancestral lineages in flocks, rather than as single individuals, suggest an increased likelihood of successfully colonizing new areas, post‐dispersal.  相似文献   

12.
Aim A previous study of the allodapine bee genus Braunsapis suggested an African origin, with dispersal events into Madagascar and Asia, and from Asia into Australia. We re‐examine the phylogeny of this genus, using an expanded set of taxa from Madagascar and Malawi and additional sequence data, in order to determine the number of dispersals and the timeframe over which they occurred. Location Africa, Madagascar, Malawi, Asia and Australia. Methods One nuclear (EF‐1α F2) and two mitochondrial (CO1 and Cyt b) gene regions were sequenced for 36 allodapine bee species (including members of the genera Braunsapis, Nasutapis, Allodape, Allodapula, and Macrogalea) and one ceratinine species (Ceratina japonica). We used Bayesian analyses to examine phylogenetic structure and a penalized likelihood approach to estimate approximate ages for key divergences in our phylogeny. Results Our analyses indicate a tropical African origin for Braunsapis in the early Miocene followed by very early dispersal into Asia and then a subsequent dispersal, following Asian diversification, into Australia during the late Miocene. There have also been two dispersals of Braunsapis from Africa to Madagascar and this result, when combined with phylogenetic and biogeographical data for other allodapines, suggests that these bees have the ability to cross moderately large ocean expanses. These dispersals may have been aided by the West Wind Drift, but rafting across the Mozambique Channel is also possible, and could be aided by the existence of developmental stages that require minimal or no feeding and by tolerance to sea water and spume. Accumulating evidence suggests that many biogeographical patterns in the southern hemisphere may be better explained by dispersal than by Gondwanan vicariance hypotheses. Our results add to this growing body of data and raise the possibility that some puzzling trans‐Indian Ocean distributions may also be explained by historical dispersal events across oceanic barriers that now seem insuperable.  相似文献   

13.
Dispersal scenarios have been favored over tectonic vicariance as an explanation for disjunct distributions in many plant taxa during the last two decades. However, this argument has been insufficiently addressed in cosmopolitan groups showing disjunct patterns in both the temperate and tropical regions. In this study, we used the Cannabaceae, an angiosperm family distributed in tropical and temperate regions of both the New World and the Old World, to explore the role of dispersal in shaping disjunct patterns and species diversification of cosmopolitan plants. We reconstructed the phylogenetic relationships of all 10 genera and 75 species of Cannabaceae (ca. 64.1% of recognized species) based on eight DNA regions. Based on fossil calibrations, we estimated the divergence times and net diversification rates. We further inferred the ancestral geographical ranges with several models and compared the fitness of different models. The Cannabaceae and most genera were strongly supported as monophyletic except for the Parasponia being embedded within the Trema. The Celtis were resolved into two strongly supported clades primarily corresponding to temperate and tropical regions. We inferred that the Cannabaceae originated at ca. 93 Ma, and that subsequent rampant and widespread dispersals shaped the intercontinentally disjunct distribution of the Cannabaceae. Dispersal coincides with adaptation to drier and colder climate in the Northern Hemisphere, or humid and warm climate in the tropical regions, followed by rapid species diversification. This study advances our understanding as to the formation of distribution patterns and species diversification of a plant family with tropical to temperate disjunct distributions.  相似文献   

14.
Polewards expansions of species' distributions have been attributed to climate warming, but evidence for climate‐driven local extinctions at warm (low latitude/elevation) boundaries is equivocal. We surveyed the four species of butterflies that reach their southern limits in Britain. We visited 421 sites where the species had been recorded previously to determine whether recent extinctions were primarily due to climate or habitat changes. Coenonympha tullia had become extinct at 52% of study sites and all losses were associated with habitat degradation. Aricia artaxerxes was extinct from 50% of sites, with approximately one‐third to half of extinctions associated with climate‐related factors and the remainder with habitat loss. For Erebia aethiops (extinct from 24% of sites), approximately a quarter of the extinctions were associated with habitat and three‐quarters with climate. For Erebia epiphron, extinctions (37% of sites) were attributed mainly to climate with almost no habitat effects. For the three species affected by climate, range boundaries retracted 70–100 km northwards (A. artaxerxes, E. aethiops) and 130–150 m uphill (E. epiphron) in the sample of sites analysed. These shifts are consistent with estimated latitudinal and elevational temperature shifts of 88 km northwards and 98 m uphill over the 19‐year study period. These results suggest that the southern/warm range margins of some species are as sensitive to climate change as are northern/cool margins. Our data indicate that climate warming has been of comparable importance to habitat loss in driving local extinctions of northern species over the past few decades; future climate warming is likely to jeopardize the long‐term survival of many northern and mountain species.  相似文献   

15.
地黄属分子系统学分析   总被引:4,自引:0,他引:4  
地黄属是中国准特有属,属内种间关系仍待澄清。该研究基于多个个体的叶绿体与核基因片段对地黄属进行系统发育重建,探讨属内物种分化与可能历史。结果表明:(1)地黄属为单系群,天目地黄为本属原始类群,并与湖北地黄互为姐妹群或连续姐妹群,裂叶地黄-高地黄、地黄-茄叶地黄分别组成姐妹群;(2)多个个体构建的系统树更能揭示本属物种关系的复杂性;(3)祖先分布区重建表明本属经历过3次扩张与2次隔离过程,物种形成过程与历史气候变化密切相关。最后该研究提出了地黄属物种形成研究亟待解决的几个重要问题。  相似文献   

16.
Sphagnum magellanicum has been viewed as being a predominantly circumpolar species in the northern hemisphere, but it occurs in the southern hemisphere and was originally described from the southern parts of Chile. It is an ecologically important species in mire ecosystems and has been extensively used as a model to study processes of growth, carbon sequestration and peat decomposition. Molecular and experimental studies have, however, revealed genetic structure within S. magellanicum, and morphological differences associated with these genetic groups. Here we describe Sphagnum divinum in Sphagnum subgenus Sphagnum (Sphagnaceae, Bryophyta) as a new species, based on molecular and morphological evidence. Sphagnum medium is reinstated as a distinct species and is epitypified. Consequently, a new species concept of S. magellanicum is presented including an epitypification. Important morphological characters to separate these three species in the field and under the microscope are presented. Ecology and distribution differ among the species; S. divinium has a wide habitat range including mire margin, forested peatlands and moist heaths, and a circumpolar distribution around the northern hemisphere. Sphagnum medium seems to be more restricted to ombrotrophic mire expanse habitats and shows an amphi-Atlantic distribution in the northern hemisphere. Sphagnum magellanicum has a very broad ecological niche in peatlands and is found in most mire habitats in Tierra del Fuego on the southern tip of South America.  相似文献   

17.
An updated molecular phylogeny of the blenny genus Ophioblennius, with a focus on two geographically disjunct morphotypes observed in Brazil, is presented. The analyses showed that specimens from the north‐eastern Brazilian coast are the endemic redlip blenny Ophioblennius trinitatis, but specimens from the southern Brazilian coast are conspecific to an undescribed east Atlantic Ocean (Gulf of Guinea) species, previously unknown in Brazil. Possible explanations for this geographical pattern include: natural larval dispersal and rafting across the Atlantic; an unknown ecological attribute that enabled this species to colonize southern Brazil; oil platforms as introduction vectors.  相似文献   

18.
The genus Meristogenys (Anura: Ranidae), endemic to Borneo, presents serious taxonomic problems despite being one of the commonest frogs in the mountainous regions of this island. We investigated molecular and morphological variations in Meristogenys whiteheadi (Boulenger, 1887) using larval and adult specimens from Sabah and Sarawak (Malaysia). We found three allopatric lineages in this species. We regard each of these as a distinct species because they are separated by a large genetic distance, and do not form any monophyletic group. Their morphological characters indicate that the distributional range of M. whiteheadi s.s. is divided into two disjunct areas: Mt Kinabalu (northern Sabah) and northern Sarawak. The two other lineages occupy ranges between those of M. whiteheadi, and represent undescribed cryptic species. One of these, Meristogenys stigmachilus sp. nov. , collected from the northern part of the Crocker Range, is distinguished from M. whiteheadi by black spots on the upper lip and dark dots scattered on the back. A second undescribed species, Meristogenys stenocephalus sp. nov. , was collected mainly from the southern part of the Crocker Range, and is characterized by the large body size of males and a relatively narrow head. Meristogenys stenocephalus sp. nov. also differs from M. stigmachilus sp. nov. and M. whiteheadi in larval morphology, but larvae of the latter two cannot be differentiated morphologically. We discuss relative tibia length, a diagnostic specific characteristic in the genus Meristogenys, and the relationships between body size and sexual size dimorphism in this genus. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 161 , 157–183.  相似文献   

19.
Earlier published records of the gastropod Hydrobia from the warm temperate Knysna Lagoon on the Indian Ocean coast of South Africa are in error. Nevertheless, an animal hitherto identified as an Assiminea (Assimineidae) or as a Tomichia (Pomatiopsidae) is in fact a Hydrobia s.l., and it does occur intertidally within the Knysna system. The same species also occurs in salt pans in the cool temperate Great Berg Estuary on the Atlantic coast of South Africa. This extends the distribution of confirmed species of the dominant coastal hydrobiid mudsnails of the northern hemisphere into the southern hemisphere. H. knysnaensis (Krauss) occurs patchily at low density near the head of the Knysna Estuary in waters of low salinity. This appears to be a suboptimal habitat, and it is suggested that Hydrobia is restricted to this zone as a result of interference competition from potamidid mudwhelks and ocypodid crabs. The prevalence of potamidids and ocypodids in the tropics and in the temperate southern hemisphere may account for the rareness or absence of hydrobiids in these areas. Unlike its equally intertidal relative, the widespread North Atlantic/Arctic H. ulvae, H. knysnaensis develops directly like other Hydrobia.  相似文献   

20.
The 480 species of leafy spurges, Euphorbia subgenus Esula, represent the main temperate radiation in the large genus Euphorbia. This group is distributed primarily in temperate Eurasia, but with smaller, disjunct centres of diversity in the mountains of the Old World tropics, in temperate southern Africa and in the New World. The majority of New World diversity (32 species) occurs in a single section, section Tithymalus. We analysed sequences of the nrITS and plastid ndhF, trnH‐psbA, trnS‐trnG and trnD‐trnT regions to reconstruct the phylogeny of section Tithymalus and to examine the origins and diversification of the species native to the New World. Our results indicate that the New World species of section Tithymalus form a clade that is sister to the widespread, weedy E. peplus. The New World species fall into two primary groups: a ‘northern annual clade’ from eastern North America and a diverse clade of both annual and perennial species that is divided into three subgroups. Within the second group, there is a small ‘southern annual clade’ from Texas and northern Mexico, a perennial ‘Brachycera clade’ from the western United States and northern Mexico, and a perennial ‘Esuliformis clade’ from montane areas of Mexico, Guatemala, Honduras and the Caribbean island of Hispaniola. Ancestral state reconstructions indicate that the annual habit probably evolved in the ancestor of E. peplus and the New World clade, with a subsequent reversal to the perennial habit. In conjunction with this phylogenetic framework, the New World species of section Tithymalus are comprehensively reviewed. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 191–228.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号