首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measures of biodiversity are often hindered by a lack of methodological practices that distinguish cryptic or morphologically similar cohabiting species. This is particularly difficult for marine fishes where direct observations of the ecology and demography of populations are difficult. Dragonets (Foetorepus c.f. calauropomus) were collected as bycatch from research trawls deployed in waters off north-eastern Tasmania, Australia. Morphometric and genetic analyses were conducted on the 43 specimens recovered. Sequence analysis of two mitochondrial loci distinguished three genetic clusters, each having levels of dissimilarity consistent with species-level distinctions between other members of the Callionymidae. While clear morphological distinctions were observed between male and female fish, limited morphometric analyses could not differentiate between members of the three genetic groups. This finding highlights questions about the ability of genetically distinct but morphologically similar groups to occupy the same ecological niche, and points to additional and undescribed hidden biodiversity amongst cryptic species of fish.  相似文献   

2.
Calophyllum (Calophyllaceae), previously placed in Clusiaceae, is easily recognizable by its opposite entire leaves with close parallel venation alternating with resin canals. However, distinction between species has been difficult, because of infraspecific variation in tepal and stamen number and resemblance among species that share similar habitats. Here, I report the results of multivariate analyses of morphological and anatomical characters for Calophyllum in South America, and provide a taxonomic treatment for the genus in South America, the first since that of Vesque in 1893. Thirteen preliminary morphogroups were identified. Thirty‐two morphological characters of the leaf, flower and fruit from 401 specimens, and 17 anatomical leaf characters from 45 specimens were measured and analysed using principal component analyses (PCAs) and discriminant analyses (DAs). PCAs were used to find groups and DAs were used to validate those PCAs that were potential groups. Two main subgroups were identified in the general analysis. Subgroup M1 has terete stems and smaller leaves and flowers than subgroup M2, which, instead, has quadrangular stems. Only subgroup M2 showed distinctive clusters in regional and local analyses. Distinctive clusters and morphological and anatomical characters helped us to recognize four species in South America, including a new species, Calophyllum pubescens sp. nov. . In addition, a new species, Calophyllum mesoamericanum sp. nov. , is described from Central America. © 2013 The Linnean Society of London,  相似文献   

3.
杨丽娥  孟盈  聂泽龙  孙航 《广西植物》2017,37(7):829-840
茜草属为茜草科模式属,全球约80种,中国有近一半的物种,是茜草属的重要分布中心,大部分隶属于sect.Oligoneura。但是,该组内各种间的形态特征错综复杂,依靠单个性状不易划定种间界限。该研究在全面衡量sect.Oligoneura组内各种间形态特征的基础上,选取该组20种共171份标本,对其3个数量性状和28个定性性状进行聚类分析和主成分分析。结果表明:在主成分分析中,前3个主成分累积贡献率有46.88%,性状的累积贡献率增长并不明显,但该结果仍与聚类分析结果一致。对前3个主成分贡献较大的特征包括叶形(叶长宽比)、叶柄长度、叶脉、每轮叶片数和生活型等,这些形态性状也是该属传统分类学中重要的物种鉴定特征。该研究结果与分子系统发育结果基本一致,支持该组内ser.Chinenses、R.mandersii group、R.angustissima group和R.siamensis group类群的划分,但并不支持ser.Cordifoliae单独成系。sect.Oligoneura内除少数物种外,大部分物种界限均比较清晰。形态计量学研究为sect.Oligoneura甚至茜草属的物种鉴定与划分提供了重要的参考意义。  相似文献   

4.
Global patterns of intraspecific leaf trait responses to elevation   总被引:1,自引:0,他引:1  
Elevational gradients are often used to quantify how traits of plant species respond to abiotic and biotic environmental variations. Yet, such analyses are frequently restricted spatially and applied along single slopes or mountain ranges. Since we know little on the response of intraspecific leaf traits to elevation across the globe, we here perform a global meta‐analysis of leaf traits in 109 plant species located in 4 continents and reported in 71 studies published between 1983 and 2018. We quantified the intraspecific change in seven morpho‐ecophysiological leaf traits along global elevational gradients: specific leaf area (SLA), leaf mass per area (LMA), leaf area (LA), nitrogen concentration per unit of area (Narea), nitrogen concentration per unit mass (Nmass), phosphorous concentration per unit mass (Pmass) and carbon isotope composition (δ13C). We found LMA, Narea, Nmass and δ13C to significantly increase and SLA to decrease with increasing elevation. Conversely, LA and Pmass showed no significant pattern with elevation worldwide. We found significantly larger increase in Narea, Nmass, Pmass and δ13C with elevation in warmer regions. Larger responses to increasing elevation were apparent for SLA of herbaceous compared to woody species, but not for the other traits. Finally, we also detected evidences of covariation across morphological and physiological traits within the same elevational gradient. In sum, we demonstrate that there are common cross‐species patterns of intraspecific leaf trait variation across elevational gradients worldwide. Irrespective of whether such variation is genetically determined via local adaptation or attributed to phenotypic plasticity, the leaf trait patterns quantified here suggest that plant species are adapted to live on a range of temperature conditions. Since the distribution of mountain biota is predominantly shifting upslope in response to changes in environmental conditions, our results are important to further our understanding of how plants species of mountain ecosystems adapt to global environmental change.  相似文献   

5.
Variation in leaf traits of dominant tree species in six montane rain forest communities was analyzed along an elevational gradient ranging from 1220 to 2560 m within a single basin at La Chinantla, Oaxaca, México. Three groups of characters were used: morphological (leaf shape, margin, blade configuration, and phyllotaxy), morphometric (leaf area, leaf mass per area, stomatal density, and blade length/width ratio), and anatomical (thicknesses of blade, palisade [PP], and spongy [SP] parenchymae, PP/SP ratio, and epidermis and cuticle thicknesses). The variation of morphological characteristics was only evident at the highest elevations; in contrast, thickness of leaf blade, PP, SP, as well as leaf mass per area clearly increased along the gradient, whereas leaf area was the only variable that significantly decreased with elevation. Thicknesses of epidermis and of the two cuticles were not significantly correlated with elevation. A classification analysis based on a leaf trait matrix led to the distinction between low and high elevation communities, with an approximate limit between them at ca 2300 to 2400 m. The results are discussed in light of environmental changes occurring along elevational gradients. Leaf characteristics of montane rain forest plants offer important insights about the complex roles of abiotic factors operating in these environments and supplement the traditional physiognomic classification schemes for these communities.  相似文献   

6.
The morphological and molecular differentiation of the Micrasterias truncata (Corda) ex Bréb species complex was investigated. In total, 17 strains traditionally assigned to M. truncata were isolated from different European localities (Czech Republic, southwest France, Ireland), and obtained from public culture collections. In addition, strains of the morphologically similar species, M. decemdentata (Nägeli) W. Archer and M. zeylanica F. E. Fritsch, were also included. Molecular phylogenetic analysis based on trnGucc intron sequences revealed five well supported clades. Two Australian strains assigned to M. truncata var. pusilla G. S. West formed a lineage sister to M. zeylanica. This was evident from a concatenated phylogeny based on small subunit rDNA and trnGucc intron sequences. The isolated position of these strains was also illustrated by parallel landmark‐based geometric morphometric analysis of cell shapes. The strains NIES 783 and NIES 784 probably represent a separate species. Particular analysis, including additional strains, is needed to resolve the relationship inside this lineage. The second phylogenetic lineage, containing two strains of M. truncata var. semiradiata (Kützing) Wolle, was also different from other strains on the basis of morphometric data. We suggest recognizing this variety as a separate species, Micrasterias semiradiata L.A. Brébisson ex F. T. Kützing. The remaining three clades formed a firmly supported group of the ‘core’M. truncata recognized by both molecular markers. However, neither any morphological, morphometric, nor geographical pattern was detected among members of these three clades. This pattern could be caused by a relatively recent origin of these lineages that may represent a sympatric, truly cryptic species. Strains attributable to traditional morphologically defined variety M. truncata var. neodamensis were nested within the ‘core’M. truncata.  相似文献   

7.
A complex of closely related Mallomonas taxa belonging to the section Papillosae, M. kalinae ?ezá?ová and M. rasilis Dürrschmidt, has been studied in detail by molecular and morphometric methods. Our investigations uncovered the existence of a new species found in water bodies in Vietnam, which we describe here as Mallomonas furtiva sp. nov. This taxon is morphologically very similar to M. kalinae , from which it differs by minute, but statistically significant morphological differences on the structure of silica scales. Indeed, the principal component analysis of morphological traits measured on silica scales significantly separates all three species in the complex. Mallomonas kalinae and M furtiva differ by number of papillae on the shield and the dome, as well as by the scale sizes. Likewise, Mallomonas rasilis and M. furtiva are primarily differentiated by the absence of submarginal anterior ribs on silica scales of the former species. Phylogenetic analyses showed that Mallomonas furtiva is closely related to M kalinae , with which it formed a highly supported lineage. Distribution patterns of all three studied taxa are further discussed.  相似文献   

8.
The biodiversity crisis has had particularly harsh impacts on marine environments. However, there is still considerable uncertainty about how many species have been seriously impacted and the effectiveness of protection measures (e.g., marine protected areas or MPAs) due to high levels of cryptic species in many taxa. Here, we employ an integrative taxonomy approach to mullet species in the genus Mugil. In addition to its high economic value, this genus is notable for having diversified ~29 million years ago without marked morphological and ecological divergence. We obtained 129 specimens of Mugil from the Coral Coast MPA, the largest of its kind in the Tropical Southwestern Atlantic marine province. Although morphometric and meristic traits revealed six taxonomically recognized species, only five mitochondrial lineages were observed. All individuals morphologically identified as M. incilis belonged to the mitochondrial lineage of Mugil curema, which is consistent with misidentification of morphologically similar species and an overestimation of species diversity. Remarkably, Mugil species in our sample that diverged up to ~23 million years ago are also the most morphologically similar (M. curema and M. rubrioculus), suggesting extreme morphological conservatism, possibly driven by similarities in habitat use and life‐history traits. This study demonstrates the potential utility of integrative taxonomy (including DNA barcoding) for contributing to the conservation and sustainable use of natural resources.  相似文献   

9.
Molecular systematic studies have changed the face of algal taxonomy. Particularly at the species level, molecular phylogenetic research has revealed the inaccuracy of morphology‐based taxonomy: Cryptic and pseudo‐cryptic species were shown to exist within many morphologically conceived species. This study focused on section Rhipsalis of the green algal genus Halimeda. This section was known to contain cryptic diversity and to comprise species with overlapping morphological boundaries. In the present study, species diversity within the section and identity of individual specimens were assessed using ITS1–5.8S–ITS2 (nrDNA) and rps3 (cpDNA) sequence data. The sequences grouped in a number of clear‐cut genotypic clusters that were considered species. The same specimens were subjected to morphometric analysis of external morphological and anatomical structures. Morphological differences between the genotypic cluster species were assessed using discriminant analysis. It was shown that significant morphological differences exist between genetically delineated species and that allocation of specimens to species on the basis of morphometric variables is nearly perfect. Anatomical characters yielded better results than external morphological characters. Two approaches were offered to allow future morphological identifications: a probabilistic approach based on classification functions of discriminant analyses and the classical approach of an identification key.  相似文献   

10.
Taxonomic confusion among closely related and morphologically similar Deprea species has persisted in the literature and in the identification of species. Morphological variation among three closely related, monophyletic Deprea species was studied to determine if and how they can be distinguished. Their sympatric occurrence in Venezuela afforded an opportunity to couple field study with analysis of herbarium specimens representing their entire geographic range. An analysis of 94 morphological characters resulted in five vegetative and 13 reproductive taxonomically informative traits. Canonical variates analysis clearly separated the three species using six quantitative traits. We conclude that these taxa, although quite variable and similar morphologically, are taxonomically distinct. Results of character analysis indicated that D. orinocensis is morphologically more similar to D. bitteriana than either are to D. paneroi. In D. paneroi, small, sterile anthers on fruit-bearing plants and the absence of fruits on plants possessing large, plllen-bearing anthers, suggest cryptic dioecy. Based on these data, D. granulosa is considered to be a synonym of D. orinocensis: Athenaea bitteriana, a misapplied synonym, is the correct basionym and is applicable to many specimens identified as D. granulosa. We submit a new combination, D. bitteriana (Werderm.) Sawyer & Benítez, and designate a lectotype to accommodate these findings.  相似文献   

11.
12.
In addition to experimental studies, computational models provide valuable information about colony development in scleractinian corals. Using our simulation model, we show how environmental factors such as nutrient distribution and light availability affect growth patterns of coral colonies. To compare the simulated coral growth forms with those of real coral colonies, we quantitatively compared our modelling results with coral colonies of the morphologically variable Caribbean coral genus Madracis. Madracis species encompass a relatively large morphological variation in colony morphology and hence represent a suitable genus to compare, for the first time, simulated and real coral growth forms in three dimensions using a quantitative approach. This quantitative analysis of three-dimensional growth forms is based on a number of morphometric parameters (such as branch thickness, branch spacing, etc.). Our results show that simulated coral morphologies share several morphological features with real coral colonies (M. mirabilis, M. decactis, M. formosa and M. carmabi). A significant correlation was found between branch thickness and branch spacing for both real and simulated growth forms. Our present model is able to partly capture the morphological variation in closely related and morphologically variable coral species of the genus Madracis.  相似文献   

13.
The taxonomy of the amphi‐Atlantic tree genus Carapa (Meliaceae) has long been controversial. Of the three species currently recognized in the genus, two are known to present substantial morphological variation that has been used in the past to distinguish several taxa, most of which are currently placed in synonymy. Here, a combination of field observations, univariate analyses of leaf, floral and seed characters and principal coordinate analyses of floral characters in the context of a molecular phylogenetic analysis was used to investigate the patterns of variation and delimit morphological species anew in the genus. These results support the recognition of 27 species in Carapa, of which 16 are previously described and 11 are new. In general, phylogenetically related species occurred in the same geographical area, but were morphologically distinct. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 165 , 186–221.  相似文献   

14.
Scalation, colour pattern, linear and geometric morphometrics were used to quantify geographical differentiation in the long-nosed snake, Rhinocheilus lecontei, and to test the hypothesis that all four subspecies are morphologically distinct. Also investigated were potential associations between morphological (scalation, colour pattern, linear measurements) and environmental variables (climate, vegetation, soil). Sexual dimorphism was weakest for geometric and strongest for linear morphometric variables. Morphological variables differed widely in their ability to differentiate subspecies. Linear morphometric variables achieved the most statistically significant pairwise Mahalanobis distances between subspecies, while geometric morphometrics largely failed to differentiate them. Colour pattern showed the strongest and linear morphometrics the weakest correlation with environment. Several characters varied continuously along latitudinal or longitudinal gradients, such that, in some cases, the clines for closely related traits were discordant. No one subspecies was consistently divergent in all analyses, leading to the conclusion that the three mainland subspecies are not sufficiently distinct to warrant separate subspecies status. The island subspecies, though not always statistically distinct, is geographically separate from other populations and differs in characters related to size. Given the small number of specimens available, a decision regarding its taxonomic status (i.e. elevation to species level) is best deferred until additional specimens can be examined and data on molecular variation can be analysed.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 65–85.  相似文献   

15.
Pallid sturgeon (Scaphirhynchus albus) captured in the Middle and Lower Mississippi River (i.e. below St. Louis, MO, USA) are morphologically very similar to shovelnose sturgeon (Scaphirhynchus platorynchus). Available empirical data are limited to a few studies based on low sample sizes from disjointed populations. Geneticists are currently searching for markers that will differentiate the two species, but the need for unequivocal species‐specific field characters remains. Continuation of commercial fishing for shovelnose sturgeon in some states necessitates an immediate means for accurate field identifications. Previous studies of lower basin river sturgeon classified individuals with simple morphometric character indices and interpreted intermediacy as interspecific hybridization. In this study, morphometric variation among Scaphirhynchus specimens from the Middle and Lower Mississippi River is examined for evidence of hybridization. Data are compared for large (>250‐mm standard length) hatchery‐reared and wild pallid specimens and wild shovelnose specimens. Specimens are compared using two morphometric character indices, two morphometric/meristic character indices and principal components analysis. Results indicate substantial morphological variation among pallid sturgeon below the mouth of the Missouri River. The amount of variation appears to decrease downstream in the Mississippi River. Sheared principal components analysis of morphometric data shows complete separation of shovelnose and pallid sturgeon specimens, whereas character indices indicate overlap. Both character indices and sheared principal components analysis demonstrate that pallid sturgeon in the Lower Mississippi River are morphologically more similar to shovelnose sturgeon than are pallids from the Upper Missouri River. This similarity, explained in previous studies as hybridization, may be the result of latitudinal morphometric variation and length‐at‐age differences between populations of the upper and lower extremes of the range.  相似文献   

16.
The Persian Jird, Meriones persicus, is distributed from Eastern Anatolia to Afghanistan and western Pakistan. Six subspecies were described based on skull features and coat colours, but the validity of these subspecies is uncertain, and no molecular work has ever been conducted on this species. Iran appears to be a key geographical region in which to revise the systematic and evolutionary history of this species, because five of the six subspecies are present in this country. To evaluate the phylogeographical history and taxonomy of this species in Iran, we used a combination of genetic (cytochrome b gene sequences of 70 specimens) and geometric morphometric (2D landmarks on the ventral side of skull of 258 specimens) analyses. We also used ecological niche modelling to make inferences about the evolutionary history of these lineages. Our molecular data highlight the existence of four genetic lineages, but they only partly correspond to the previously described subspecies. Our molecular and morphometric data confirm the validity of M. p. rossicus and show that it has a wider geographical range than previously thought. M. p. gurganensis and M. p. baptistae are genetically very close. The skull of M. p. gurganensis is morphologically distinguishable from other subspecies. The subspecies M. p. persicus and M. p. baptistae are genetically distinct, but morphologically close. Meriones p. ambrosius is genetically close to M. p. persicus, and additional analyses with more specimens are needed to validate its subspecific status. The genetic structure observed in Iran seems to fit the topography and biogeography of the country and emphasize the role of the Abarkooh, Central and Lut deserts as barriers to gene flow. All intraspecific divergent events within the Persian Jird occurred during the last 1.4 My, suggesting that climatic changes probably trigger diversification within this species. Our genetic and species niche modelling results suggest that potential refugial areas persisted during glacial periods for this species in north‐western Zagros Mountains, north‐eastern Alborz Mountains and Kohrud Mountains.  相似文献   

17.
Different ecological preferences among species may result in differences in response to similar environmental variation. To test this hypothesis, we assessed the patterns of skull and mandible size and shape variation in three Sigmodontinae mice from agroecosystems of central Argentina with increasing degree of specialization: Calomys musculinus, Akodon azarae and Oxymycterus rufus. Spatial patterns in size and shape were analysed after controlling for allometry and sexual dimorphism using a total of 697 specimens. We then evaluated the covariation between shape, climatic and environmental variables and assessed the contribution of distinct climatic and environmental variables to phenotypic variability. Oxymycterus rufus displayed a marked spatial structure, and there was a high correlation between shape, climatic and environmental variables in this species. Climatic and environmental variables had a moderate effect on the phenotype of A. azarae, and were not correlated with morphological variation in C. musculinus. Our study highlights the difference in phenotypic responses to spatial and environmental gradients across coexisting species, specialist species displaying a more marked spatial structure in morphology than generalist species. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 180–203.  相似文献   

18.
19.
Genetic variation is increasingly recognized as an important factor influencing the establishment and spread of introduced species, and depends on both the introduction history and partitioning of genetic variation within and among potential source populations. We examine patterns of genetic variation in native and introduced populations of variable leaf watermilfoil, Myriophyllum heterophyllum, using chloroplast (trnL-F) and ribosomal (ITS) DNA sequences, as well as amplified fragment length polymorphisms (AFLPs). We identify a strong phylogeographic break distinguishing populations located on the Atlantic Coastal Plain (ACP) versus other (“Continental”) portions of the native range. Within these distinct biogeographic regions, we also find genetic variation to be strongly partitioned among populations as analysis of molecular variance (AMOVA) partitioned 91 and 75% of cpDNA and ITS diversity among populations, respectively. We demonstrate that the introduced ranges of variable leaf watermilfoil (northeastern and western US) result from multiple independent introductions from a variety of source populations, including lineages from both the ACP and Continental portions of the native range. In addition, we used our molecular markers to demonstrate that variable leaf watermilfoil is genetically distinct from three closely-related species that it is morphologically similar to. In particular, we demonstrate that M. heterophyllum is clearly distinct from a morphologically similar native species in the western US, M. hippuroides—whose distinctiveness from M. heterophyllum has been questioned—and therefore confirm the introduction of M. heterophyllum in the western US. Furthermore, we provide the first evidence for hybridization between these two species. Finally, our molecular markers identify previously unrecognized genetic variation in these four species, and therefore demonstrate the need for further taxonomic investigation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号