首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phylogenetic structure of Asclepiadoideae (Apocynaceae) has been elucidated at the tribal and subtribal levels in the last two decades. However, to date, the systematic positions of seven Asian genera, Cosmostigma, Graphistemma, Holostemma, Pentasachme, Raphistemma, Seshagiria and Treutlera, have not been investigated. In this study, we examine the evolutionary relationships among these seven small enigmatic Asian genera and clarify their positions in Asclepiadoideae, using a combination of plastid sequences of rbcL, rps16, trnL and trnL‐ F regions. Cosmostigma and Treutlera are resolved as members of the non‐Hoya clade of Marsdenieae with strong support (maximum parsimony bootstrap support value BSMP = 96, maximum likelihood bootstrap support value BSML = 98, Bayesian‐inferred posterior probability PP = 1.0). Pentasachme is resolved as sister of Stapeliinae to Ceropegieae with moderate support (BSMP = 64, BSML = 66, PP = 0.94). Graphistemma, Holostemma, Raphistemma and Seshagiria are all nested in the Asclepiadeae–Cynanchinae clade (BSMP = 97, BSML = 100, PP = 1.0). The study confirms the generally accepted tribal and subtribal structure of the subfamily. One exception is Eustegia minuta, which is placed here as sister to all Asclepiadeae (BSMP = 58, BSML = 76, PP = 0.99) and not as sister to the Marsdenieae + Ceropegieae clade. The weak support and conflicting position indicate the need for a placement of Eustegia as an independent tribe. In Asclepiadeae, a sister group position of Cynanchinae to the Asclepiadinae + Tylophorinae clade is favoured (BSMP = 84, BSML = 88, PP = 1.0), whereas Schizostephanus is retrieved as unresolved. Oxystelma appears as an early‐branching member of Asclepiadinae with weak support (BSMP = 52, BSML = 74, PP = 0.69). Calciphila and Solenostemma are also associated with Asclepiadinae with weak support (BSMP = 37, BSML = 45, PP = 0.79), but all alternative positions are essentially without support. The position of Indian Asclepiadoideae in the family phylogeny is discussed. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 601–619.  相似文献   

2.
Arecaceae tribe Cocoseae is the most economically important tribe of palms, including both coconut and African oil palm. It is mostly represented in the Neotropics, with one and two genera endemic to South Africa and Madagascar, respectively. Using primers for six single copy WRKY gene family loci, we amplified DNA from 96 samples representing all genera of the palm tribe Cocoseae as well as outgroup tribes Reinhardtieae and Roystoneae. We compared parsimony (MP), maximum likelihood (ML), and Bayesian (B) analysis of the supermatrix with three species‐tree estimation approaches. Subtribe Elaeidinae is sister to the Bactridinae in all analyses. Within subtribe Attaleinae, Lytocaryum, previously nested in Syagrus, is now positioned by MP and ML as sister to the former, with high support; B maintains Lytocaryum embedded within Syagrus. Both MP and ML resolve Cocos as sister to Syagrus; B positions Cocos as sister to Attalea. Bactridineae is composed of two sister clades, Bactris and Desmoncus in one, for which there is morphological support, and a second comprising Acrocomia, Astrocaryum, and Aiphanes. Two B and one ML gene tree‐species estimation approaches are incongruent with the supermatrix in a few critical intergeneric clades, but resolve the same infrageneric relationships. The biogeographic history of the Cocoseae is dominated by dispersal events. The tribe originated in the late Cretaceous in South America. Evaluated together, the supermatrix and species tree analyses presented in this paper provide the most accurate picture of the evolutionary history of the tribe to date, with more congruence than incongruence among the various methodologies.  相似文献   

3.
The phylogenetic relationships of Peniocereus (Cactaceae) species were studied using parsimony analyses of DNA sequence data. The plastid rpl16 and trnL-F regions were sequenced for 98 taxa including 17 species of Peniocereus, representatives from all genera of tribe Pachycereeae, four genera of tribe Hylocereeae, as well as from three additional outgroup genera of tribes Calymmantheae, Notocacteae, and Trichocereeae. Phylogenetic analyses support neither the monophyly of Peniocereus as currently circumscribed, nor the monophyly of tribe Pachycereeae since species of Peniocereus subgenus Pseudoacanthocereus are embedded within tribe Hylocereeae. Furthermore, these results show that the eight species of Peniocereus subgenus Peniocereus (Peniocereus sensu stricto) form a well-supported clade within subtribe Pachycereinae; P. serpentinus is also a member of this subtribe, but is sister to Bergerocactus. Moreover, Nyctocereus should be resurrected as a monotypic genus. Species of Peniocereus subgenus Pseudoacanthocereus are positioned among species of Acanthocereus within tribe Hylocereeae, indicating that they may be better classified within that genus. A number of morphological and anatomical characters, especially related to the presence or absence of dimorphic branches, are discussed to support these relationships.  相似文献   

4.
 The inclusion of Tenaris and Macropetalum in Brachystelma as proposed by Peckover in 1996 and contested by Victor and Nicholas in 1998 is supported by molecular studies. Parsimony analysis of sequence data from two non-coding molecular markers (ITS region of nrDNA and trnT-L and trnL-F spacers as well as the trnL intron of cpDNA) suggests a well-supported Brachystelma s.l. clade (including Tenaris and Macropetalum) with little internal resolution. The Brachystelma s.l. clade occupies a sistergroup position to the Ceropegia/stapeliad clade, and both clades together are sister to an Anisotoma/Sisyranthus/Neoschumannia clade. Received January 8, 2001 Accepted April 10, 2001  相似文献   

5.
Cladistic analyses of plastid DNA sequences rbcL and trnL-F are presented separately and combined for 48 genera of Amaryllidaceae and 29 genera of related asparagalean families. The combined analysis is the most highly resolved of the three and provides good support for the monophyly of Amaryllidaceae and indicates Agapanthaceae as its sister family. Alliaceae are in turn sister to the Amaryllidaceae/Agapanthaceae clade. The origins of the family appear to be western Gondwanaland (Africa), and infrafamilial relationships are resolved along biogeographic lines. Tribe Amaryllideae, primarily South African, is sister to the rest of Amaryllidaceae; this tribe is supported by numerous morphological synapomorphies as well. The remaining two African tribes of the family, Haemantheae and Cyrtantheae, are well supported, but their position relative to the Australasian Calostemmateae and a large clade comprising the Eurasian and American genera, is not yet clear. The Eurasian and American elements of the family are each monophyletic sister clades. Internal resolution of the Eurasian clade only partially supports currently accepted tribal concepts, and few conclusions can be drawn on the relationships of the genera based on these data. A monophyletic Lycorideae (Central and East Asian) is weakly supported. Galanthus and Leucojum (Galantheae pro parte) are supported as sister genera by the bootstrap. The American clade shows a higher degree of internal resolution. Hippeastreae (minus Griffinia and Worsleya) are well supported, and Zephyranthinae are resolved as a distinct subtribe. An Andean clade marked by a chromosome number of 2n = 46 (and derivatives thereof) is resolved with weak support. The plastid DNA phylogenies are discussed in the context of biogeography and character evolution in the family.  相似文献   

6.
 Representatives of nearly all genera of the taxon-rich stem-succulent stapeliads and most of the few related, leafy genera were analyzed. Sequence data from two non-coding molecular markers (ITS region of nrDNA and trnT-L and trnL-F spacers as well as the trnL intron of cpDNA) support the traditional tribal affiliation of the genera, which form a monophyletic group. This monophylum breaks into a basal Neoschumannia/Anisotoma/Riocreuxia/Sisyranthus nk;clade, from which the core Ceropegieae are derived. The four Ceropegia species included are not monophyletic, and their relationship to Brachystelma changes depending on the marker studied. The stem succulent taxa fall in a number of well supported, but unresolved clades, the most prominent being the predominantly southern African clade comprising Orbea, Stapelia and some other genera. The most derived taxa of NE Africa, Duvaliandra and White-sloanea, are basal to this southern African clade. The other clades comprise the more basal genera of stem-succulent stapeliads, including the members of the Caralluma complex. Of the 17 genera accepted by Plowes for the Caralluma complex, seven are recognized: Caralluma, Apteranthes, Australluma, Boucerosia, Caudanthera, Desmidorchis and Monolluma. New combinations are proposed in 15 cases; Caralluma adscendens var. geniculata is raised to specific rank. Anomalluma is reinstated, and Pseudolithos mccoyi is transfered to it. A broadened concept for Orbea (incl. Angolluma and Orbeopsis) is recognized, but Orbeanthus is kept separate. The monotypic Ballyanthus, recently separated from Orbea, is nested within Duvalia. Piaranthus (incl. Huerniopsis) is monophyletic. The bitypic Notechidnopsis is reduced to the type species, N. tessellata, while N. columnaris is transferred to a new genus, Richtersveldia. Received February 25, 2002; accepted June 17, 2002 Published online: November 7, 2002 Address of the authors: Dr. Ulrich Meve (e-mail: ulrich.meve@uni-bayreuth.de) and Prof. Dr. Sigrid Liede (e-mail: sigrid.liede@uni-bayreuth.de), Universit?t Bayreuth, Lehrstuhl für Pflanzensystematik, Universit?tsstrasse 30, D-95440 Bayreuth, Germany.  相似文献   

7.
Carl E. Lewis 《Brittonia》2002,54(2):78-91
Subtribe Oncospermatinae (Arecaceae: Arecoideae: Areceae) is a diverse group of spiny Old World palms. The subtribe includesOncosperma, a widespread Asian genus of five species, along with seven monotypic genera, all endemic to the Seychelles and Mascarene Islands of the western Indian Ocean. A phylogenetic analysis was conducted in order to test the monophyly of subtribe Oncospermatinae with respect to other Old World genera of tribe Areceae. A matrix of 38 morphological characters was scored for 29 taxa, including 11 species of the Oncospermatinae. A single most parsimonious tree was found, resolving the subtribe as a polyphyletic group of two distinct clades. One clade containingAcanthophoenix, Deckenia, Oncosperma, andTectiphiala was placed as sister to a large group that includes members of subtribes Archontophoenicinae, Arecinae, Iguanurinae, and Ptychospermatinae. The other clade of Oncospermatinae, including the Seychelles endemic generaNephrosperma, Phoenicophorium, Roscheria, andVerschaffeltia, was resolved as sister to the Madagascar endemic subtribe Masoalinae, and may have arisen in the western Indian Ocean region.  相似文献   

8.
The small pooid grass tribe Hainardieae comprises six genera with approximately ten species; however, this tribe was not accepted by all previous taxonomic treatments. To study the relationships among these genera and to infer the phylogeny and evolutionary patterns, we used sequence variation of the internal transcribed spacers (ITS) of nuclear ribosomal and chloroplast (cp) matK DNA and morphology. Many genera of the Aveneae/Poeae tribe complex additionally were included. Both molecular datasets showed Hainardieae to be highly polyphyletic, and its genera to branch with different groups of the Aveneae/Poeae. Parapholis and Hainardia are corroborated as being closely related, and belonging to a firmly supported Eurasian clade together with Catapodium incl. Scleropoa, Cutandia, Desmazeria, Sphenopus, Vulpiella (subtribe Parapholiinae) and with Cynosurus as sister to this assemblage. The other genera of traditionally recognised Hainardieae are positioned phylogenetically distant: Mediterranean Narduroides is verified as more or less related to Festuca and relatives (subtribe Loliinae), whereas the west Eurasian Pholiurus is close to the lineage of Poa and relatives (subtribe Poinae). North American Scribneria is sister to Deschampsia and both genera should be unified under a common subtribe (Aristaveninae or Holcinae). The phylogenetic position of the Algerian genus Agropyropsis (close to Narduroides and within the Loliinae) is suggested on morphology only, because no molecular data was obtained for it. Considering classification, we support the abandonment of tribe Hainardieae and argue to abandon Poeae subtribe Scribneriinae. Poeae subtribe Parapholiinae is redefined with a novel genus content, due to the exclusion of Agropyropsis and Pholiurus and the inclusion of Vulpiella.  相似文献   

9.
The African genus Welwitschiella has traditionally been placed in tribe Heliantheae. Our phylogenetic analysis of chloroplast DNA ndhF sequence data, however, reveals that it is part of tribe Astereae. In order to assess the relationships of this genus within the tribe, we produced a phylogeny based on ITS (nrDNA) sequence data of a sample including Amellus, African Conyza, Chrysocoma, Felicia spp., Mairia, Poeciliopsis, Printzia, Welwitschiella and Zyrphelis. Both parsimony and Bayesian analyses were done. The Bayesian analysis showed that African genera form a basal grade in tribe Astereae along with the Chinese Nannoglottis and South American and New Zealand genera, with Printzia being the earliest diverging member of the tribe. Mairia occupies an isolated position. Amellus, Chrysocoma, Felicia, Poecilolepis and Zyrphelis belong to subtribe Homochrominae, a South African radiation that also includes the St Helena endemics Commidendron and Melanodendron. Pteronia appears isolated, though it might be close to the Homochrominae. Welwitschiella is placed in the latest diverging African clade, subtribe Grangeinae, which also includes Grangea, Psiadia, Nidorella, and the African Conyza species except C. gouani. This subtribe is sister to the Eurasiatic subtribe Bellidinae, and together they are sister to the Astereae crown lineages of Australasia-Asia and South and North America.  相似文献   

10.
Phylogeny, character evolution, and classification of Sapotaceae (Ericales)   总被引:2,自引:0,他引:2  
We present the first cladistic study of the largely tropical family Sapotaceae based on both morphological and molecular data. The data were analyzed with standard parsimony and parsimony jackknife algorithms using equally and successive weighted characters. Sapotaceae are confirmed to constitute two main evolutionary lineages corresponding to the tribes Isonandreae‐Mimusopeae‐Sideroxyleae and Chrysophylleae‐Omphalocarpeae. The Sideroxyleae are monophyletic, Isonandreae are polyphyletic as presently circumscribed, and as suggested by the analyses, the subtribe Mimusopeae‐Mimusopinae has evolved within the Mimusopeae‐Manilkarinae, which hence is also paraphyletic. Generic limits must be altered within Sideroxyleae with the current members Argania, Nesoluma and Sideroxylon. Argania cannot be maintained at a generic level unless a narrower generic concept is adopted for Sideroxylon. Nesoluma cannot be upheld in a narrow or broad generic concept of Sideroxylon. The large tribe Chrysophylleae circumscribes genera such as Chrysophyllum, Pouteria, Synsepalum, and Xantolis, but the tribe is monophyletic only if the taxa from Omphalocarpeae are also included. Neither Chrysophyllum nor Pouteria are monophyletic in their current definitions. The results indicate that the African taxa of Pouteria are monophyletic and distinguishable from the South American taxa. Resurrection of Planchonella, corresponding to Pouteria section Oligotheca, is proposed. The African genera Synsepalum and Englerophytum form a monophyletic group, but their generic limits are uncertain. Classification of the Asian genus Xantolis is particularly interesting. Morphology alone is indecisive regarding Xantolis relationships, the combined unweighted data of molecules and morphology indicates a sister position to Isonandreae‐Mimusopeae‐Sideroxyleae, whereas molecular data alone, as well as successive weighted combined data point to a sister position to Chrysophylleae‐Omphalocarpeae. An amended subfamily classification is proposed corresponding to the monophyletic groups: Sarcospermatoideae (Sarcosperma), Sapotoideae (Isonandreae‐Mimusopeae‐Sideroxyleae) and Chrysophylloideae (Chrysophylleae‐Omphalocarpeae), where Sapotoideae circumscribes the tribes Sapoteae and Sideroxyleae as well as two or three as yet unnamed lineages. Morphological characters are often highly homoplasious and unambiguous synapomorphies cannot be identified for subfamilies or tribes, which we believe are the reason for the variations seen between different classifications of Sapotaceae. © The Willi Hennig Society 2005.  相似文献   

11.
Tribe Spiraeeae has generally been defined to include Aruncus, Kelseya, Luetkea, Pentactina, Petrophyton, Sibiraea, and Spiraea. Recent phylogenetic analyses have supported inclusion of Holodiscus in this group. Spiraea, with 50-80 species distributed throughout the north temperate regions of the world, is by far the largest and most widespread genus in the tribe; the remaining genera have one to several species each. Phylogenetic analyses of nuclear ITS and chloroplast trnL-trnF nucleotide sequences for 33 species representing seven of the aforementioned genera plus Xerospiraea divided the tribe into two well supported clades, one including Aruncus, Luetkea, Holodiscus, and Xerospiraea, the second including the other genera. Within Spiraea, none of the three sections recognized by Rehder based on inflorescence morphology is supported as monophyletic. Our analyses suggest a western North American origin for the tribe, with several biogeographic events involving vicariance or dispersal between the Old and New Worlds having occurred within this group.  相似文献   

12.
Using sequences from the plastid trnL-F region and nrDNA ITS, we investigated the phylogeny of the fleshy-fruited African tribe Haemantheae of the Amaryllidaceae across 19 species representing all genera of the tribe. ITS and a combined matrix produce the most resolute and well-supported tree with parsimony analysis. Two main clades are resolved, one comprising the monophyletic rhizomatous genera Clivia and Cryptostephanus, and a larger clade that unites Haemanthus and Scadoxus as sister genera to an Apodolirion/Gethyllis subclade. One of four included Gethyllis species, G. lanuginosa, resolves as sister to Apodolirion with ITS. Relationships among the Clivia species are not in agreement with a previous published phylogeny. Biogeographic analysis using the divergence/vicariance method roots the tribe in Eastern South Africa, with several subsequent dispersals to the winter rainfall Western Cape region. Chromosomal change from an ancestral 2n=22 (characteristic of Clivia) is associated with each main clade. Reduction in number has occurred in all but Cryptostephanus, which has 2n=24 chromosomes. Increasing the sampling across all of the species in the tribe will allow a more detailed understanding of the biogeographic patterns inherent in the parsimony topology, which undoubtedly reflect Quaternary climatic changes in Southern Africa.  相似文献   

13.
Historically, Pappophoreae included the genera Cottea, Enneapogon, Kaokochloa, Pappophorum and Schmidtia. Some authors consider this tribe as a well-supported monophyletic group; while other evidences reveals Pappophoreae as polyphyletic, with Pappophorum separated from the rest of the tribe. When the latter happens, it can form a clade with Tridens flavus. Molecular phylogenetic analyses of the subfamily Chloridoideae have included few species of Pappophoreae; therefore, further research involving more representatives of this tribe is needed. With the aim of providing new evidence to help clarify the phylogenetic position of Pappophorum and its relationships with other genera of the tribe and the subfamily Chloridoideae, eight new sequences of ITS and trnL-F regions of Pappophoreae species were generated. These sequences were analyzed together with other available sequence data obtained from GenBank, using maximum parsimony and Bayesian inference, for individual (trnL-F or ITS) or combined trnL-F/ITS data sets. All analyses reveal that Pappophoreae is polyphyletic, with Pappophorum separated from the rest of the tribe forming a well-supported clade sister to Tridens flavus.  相似文献   

14.
The tribe Sonerileae in tropical Africa and Madagascar is a morphologically diverse lineage that consists of 239 species in 10 genera. In this study, we present the first in-depth phylogenetic analysis of African Sonerileae to test monophyly of the currently recognized genera. Phylogenetic analyses were performed using sequence data from two nuclear (nrITS and nrETS) and three plastid loci (accD-psaI, ndhF and psbK-psbL). Sampling consisted of 140 accessions including 64 African, 27 Malagasy, 46 Asian, and three neotropical Sonerileae together with a broad outgroup sampling (105 spp.). Phylogenetic relationships were inferred using maximum likelihood and Bayesian inference approaches, and a careful reassessment of morphological characters was carried out. Our results neither support the monophyly of the Old World nor African Sonerileae. The monospecific African genus Benna is partially supported as sister to Phainantha, one of the basal neotropical lineages, while African and Malagasy Medinilla are nested among the SE Asian genera. Gravesia (116 spp.), the most species-rich and morphologically diverse genus in Madagascar, is recovered as monophyletic. The African genera of Sonerileae Calvoa, Dicellandra, and Preussiella form well-supported clades. In contrast, Amphiblemma (including Amphiblemma molle) and Cincinnobotrys s.l. (including Cincinnobotrys felicis) are not monophyletic. To accommodate the caulescent C. felicis we propose reinstatement of the monospecific genus Bourdaria. For the distinctive A. molle a new genus Mendelia is described. Calvoa hirsuta is designated here as the type of genus Calvoa, lectotypes are designated for Medinilla engleri and Veprecella lutea, and a neotype is designated for Preussiella kamerunensis.  相似文献   

15.
Eulophiinae comprise c. 270 species divided into nine genera, with the species‐rich terrestrial genus Eulophia representing 60% of this diversity. Remarkable ecological and morphological variation, and an absence of clear diagnostic characters have led to uncertain generic delimitation in the subtribe. Using a combination of new and previously published DNA sequences, we created a dataset representing 122 taxa and all genera of Eulophiinae and inferred a complete generic‐level phylogeny for the subtribe for the first time. Our sampling focused on analysing Afro‐Madagascan taxa and therefore included representatives of the four mostly epiphytic Madagascan endemic genera, the near Madagascan endemic Oeceoclades and additional sampling of the predominantly African genera Eulophia and Orthochilus. In total, 104 new accessions were collected for this study in Zambia and Madagascar (88 of which represented 36 Eulophia spp. and 12 Oeceoclades spp.). Independent plastid and nuclear phylogenetic trees were inferred using Bayesian and maximum‐likelihood algorithms, which recovered strong support for a monophyletic Eulophiinae, the first‐branching position of the mostly epiphytic Madagascan endemic genera, and increased support for recognition of the terrestrial genera Oeceoclades and Orthochilus. Eulophia, the largest genus in the group, was recovered as polyphyletic, but with implications for its classification and that of Geodorum, that was nested in the main Eulophia clade. Although relationships among several genera were resolved with some confidence, the positions of the South African endemic genus Acrolophia and the epiphytic Madagascan endemic Paralophia require further work. Taxon sampling of Asian Eulophia is a priority for future work on the systematics of this group. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 43–56.  相似文献   

16.
In order to construct a molecular phylogeny of Indonesian Dipterocarpoideae (Dipterocarpaceae), PCR-RFLP of the chloroplast regions rbcL, petB, psbA, psaA, and trnL-F was performed with seven restriction enzymes in 129 samples including 58 species from nine genera. In the strict consensus tree with Monotes kerstingii as outgroup Indonesian Dipterocarpaceae were divided into two major clades. One clade (bootstrap value=71) consisted of Upuna, Cotylelobium, Anisoptera, Vatica, Dipterocarpus (tribe Dipterocarpeae, bootstrap value=83) and Dryobalanops (tribe Shoreae, bootstrap value=99) in a basal position. The second clade consisted of Hopea, Parashorea, and Shorea (tribe Shoreae) with 95% bootstrap support. Tribe Dipterocarpeae is monophyletic, tribe Shoreae is polyphyletic since Dryobalanops is sister to tribe Dipterocarpeae. In the neighbour-joining tree the sister group position of Dryobalanops to tribe Dipterocarpeae is not supported by the bootstrap analysis. Alternatively, we used Upuna borneensis as outgroup. The effect of outgroup selection on tree topology, taxonomic classification and the interpretation of character evolution is discussed.  相似文献   

17.
Both chloroplast trnL (UAA) intron and nuclear ribosomal ITS sequences highly confirmed the monophyly of the tribes of the Gentianaceae defined by the recent classification, and revealed the tribe Exaceae as a basal clade just next to the basal-most lineage, the tribe Saccifolieae. Within the tribe Exaceae, Sebaea (except Sebaea madagascariensis) appeared as the most basal clade as the sister group to the rest of the tribe. The Madagascan endemic genera Gentianothamnus and Tachiadenus were very closely related to each other, together standing as sister to a clade comprising Sebaea madagascariensis, Ornichia, and Exacum. The saprophytic genus Cotylanthera nested deeply inside Exacum. Sebaea madagascariensis was shown closer to the Madagascan endemic genus Ornichia than to any other sampled Sebaea species. Exacum appeared as the most derived taxon within this tribe. The topology of the phylogenetic trees conform with the Gondwana vicariance hypothesis regarding the biogeography of Exaceae. However, no evidence for matching the older relationships within the family to the tectonic history could be corroborated with various divergence time analyses. Divergence dating estimated a post-Gondwana diverging of the Gentianaceae about 50 million years ago (MYA), and the tribe Exaceae as about 40 MYA. The Mozambique Channel land-bridge could have played an important role in the biogeographic history of the tribe Exaceae.  相似文献   

18.
Pentziinae are a subtribe of tribe Anthemideae (Asteraceae), comprising seven almost exclusively southern African endemic genera and c. 60 species. Generic delimitations and relationships in the subtribe are explored using parsimony and Bayesian analyses of nuclear (internal transcribed spacer, ITS) and plastid (ndhF, psbAtrnH, trnKrps16 and rpl32trnL) DNA regions, with morphological and fruit anatomical studies. Phylogenetic analyses for 72 accessions (43 species) representing 72% of the subtribe indicate that several of the genera are not monophyletic as currently circumscribed. Pentzia tortuosa differs from its congeners in its inconspicuously three‐ribbed fruits and in several other distinctive morphological characters. In the phylogenetic trees based on the nuclear dataset, P. tortuosa is recovered in the perennial clade with its congeners, but in the plastid data set, it is strongly placed among the early diverging lineages comprising annual taxa with three‐ribbed fruits. Even with the exclusion of P. tortuosa, Pentzia remains paraphyletic by the inclusion of at least Rennera and possibly also Cymbopappus and Marasmodes. A possible sister relationship between Marasmodes and Pentzia, however, cannot be excluded. The four Rennera specise are therefore here transferred to Pentzia, whereas Marasmodes and Cymbopappus are retained pending further investigation. Among the annual lineages, Foveolina is also found to be polyphyletic, with F. dichotoma (the type species) and F. tenella clearly allied with Oncosiphon, and the anomolous species, F. burchellii, recovered with Myxopappus in the nuclear trees. Both Myxopappus species share the disciform capitula and heteromorphic fruits with Foveolina burchellii (characters previously overlooked in Myxopappus and reported here for the first time). © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 633–647.  相似文献   

19.
The possible alliance between Gaertnera and Pagamea (Rubiaceae-Rubioideae), two genera from the Old and New World, respectively, is investigated on the basis of wood anatomy and pollen morphology. Nowadays, the main point of discussion about the taxonomic position of these genera is whether they belong to the Psychotrieae or constitute a tribe Gaertnereae characterised by their secondarily superior ovary and sheathing stipules. Both the wood and pollen of the genus pair are found to show specific features absent in other genera of the Psychotrieae, e.g. parenchyma bands in the xylem and endexine thickenings on the polar sites of the pollen apertures. Nevertheless Gaertnera and Pagamea share many other characters with the Psychotrieae. Wood and pollen convincingly demonstrate the very close affinity of the two genera. The sister pair differs in so many features from other Psychotrieae, that Gaertnera and Pagamea should constitute at least a subtribe Gaertnerinae, formally recognized here. The general lack of profound studies on the affinities within the very large tribe Psychotrieae makes further comments on the taxonomic relationships of the Gaertnerinae difficult.  相似文献   

20.
Coleeae (Bignoniaceae) are a tribe almost entirely restricted to Madagascar. Coleeae have previously been placed in neotropical Crescentieae due to species with indehiscent fruits, a character otherwise unusual in Bignoniaceae. A phylogeny based on three chloroplast regions (ndhF, trnT-L spacer, trnL-F spacer) identifies a monophyletic Coleeae that is endemic to Madagascar and surrounding islands of the Indian Ocean (Seychelles, Comores and Mascarenes). African Kigelia is not a member of Coleeae, rather it is more closely related to a subset of African and Southeast Asian species of Tecomeae. The molecular phylogeny indicates that indehiscent fruit have arisen repeatedly in Bignoniaceae: in Coleeae, Kigelia and Crescentieae. The characteristic fleshy fruits of species of Coleeae likely arose autochthonously in Madagascar. Within Coleeae Colea and Ophiocolea are sisters, Phyllarthron is sister to Colea + Ophiocolea, and Rhodocolea is sister to the rest of the tribe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号